

ECE695: Reliability Physics of Nano-Transistors
Lecture 13: Introductory Lecture on HCI Degradation

Muhammad Ashraful Alam alam@purdue.edu

copyright 2013

This material is copyrighted by M. Alam under the following Creative Commons license:

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline of Lecture 13

- I. Background and features of HCI Degradation
 - Phenomenological observations
 - 2. Origin of Hot carriers
- 2. Theory of Si-H Bond Dissociation
- 3. Theory of Si-O Bond Dissociation
- 4. Conclusions

Hot Carrier Degradation: Emerging Issue

Hot carrier degradation

HCI occurs during the on-state $(V_G > V_T)$, at $V_D > V_G$

Classical HCI ... only ON state?!

True only for logic transistor, at relatively low operating voltage

Impact on Device Performance

• Degradation of I_{DLIN} , V_{T} and I_{DSAT} occur during hot carrier stress

Observation 1: Time exponents and recovery

Observation 2: HCI Degradation is Universal

ON-State Logic: Universality of various metrics

• ON-state degradation ($V_G = IV \& 2V$) in logic transistors ($L_{CH} = 0.16 \mu m \& 0.7 \mu m$) also show universal behavior

Observation 3: Hydrogen vs. deuterium

Foley, PRL, 80(6), 1336, 1998.

Hess, TED, 45(2), 406, 1998.

Summary: Empirical Observations

Time exponent

Voltage Scaling

Temp. Scaling

Significant difference between H and D!

Scales with respect to drain voltage!

Negative temp. coefficient!

Outline of Lecture 13

- 1. Background and features of HCI Degradation
 - I. Phenomenological observations
 - 2. Origin of Hot carriers
- I. Theory of Si-H Bond Dissociation
- 2. Theory of Si-O Bond Dissociation
- 3. Conclusions

Different types of dangling bonds

Bias condition for hot carriers

Transistors off, very few carriers

Transistors on, Maximum damage

Transistor ON, but relax over channel

Contributions of SiO, SiH, and trapped Charges

Outline

- Background and features of HCI Degradation
 - I. Phenomenological observations
 - 2. Origin of Hot carriers
- I. Theory of Si-H Bond Dissociation
- 2. Theory of Si-O Bond Dissociation
- 3. Conclusions

Dissociation of SiH and SiO bonds

[100] surface Pb₀ along [111]

NBTI & HCI degradation compared

NBTI(PMOS)

Cold holes
Traps uniform in channel
SiH bonds

HCI (NMOS)

Hot carriers
Localized damage
SiH and SiO bonds

Time Exponent of Si-H dissociation

$$\frac{dN_{IT}}{dt} = k_f \left[N_0 - N_{IT} \right] - k_r N_{IT} N_H(0) \qquad \Rightarrow k_F N_0 / k_R = N_{IT} N_H(0)$$

$$N_{IT}(t) = \sqrt{\frac{k_f N_o}{k_r}} (D_H t)^{1/4}$$

$$N_{IT}^{HCI}(t) = \left(\frac{\pi}{12}\right) N_{H}^{(0)} \times \left(\sqrt{D_{H}t}\right)^{2}$$

$$N_{IT}(t) = \sqrt{\frac{k_f N_0}{k_r}} (D_H t)^{1/2}$$

Universal Scaling for SiH Bonds

$$\begin{split} N_{\mathrm{IT}}^{\mathrm{SiH}} = & \left(\frac{k_F \left(V_G, V_D\right) N_0}{k_R}\right)^{\alpha} \times t^n \\ \equiv & \left(\frac{t}{t_0}\right)^n = f_{\mathrm{SiH}} \left(\frac{t}{t_0}\right) \end{split}$$

with
$$t_0(V_G, V_D) = g(k_F, k_R, N_0)$$

All curves scaled by a factor form a universal curve.

What about Relaxation?

Experiments show very little relaxation!

NBTI Data: Chen et al., IRPS Proc. P. 196, 2003, M.A. Alam, IEDM Tech. Dig. p.345, 2003

Very Small Relaxation for HCI

With n=1/2 for atomic H diffusion ...

$$\frac{N_{IT}^{HCI}(2t_0)}{N_{IT}^{HCI}(t_0)} \bigg]_{H} = \frac{1}{1+\frac{1}{2}t_0} = \frac{4}{5}$$

$$1+\frac{1}{2}t_0$$

With n=1/3 for H2 diffusion ...

$$\frac{N_{IT}^{HCI}(2t_0)}{N_{IT}^{HCI}(t_0)} = \frac{1}{1+\frac{1}{3}t_0} = \frac{6}{7}$$

$$1+\frac{1}{(t_0+t_0)}$$

25% of bonds broken is SiH, so the relaxation <5%.

Origin of Si-H and Si-D bond dissociation

Of Pa, Pb, Pc -- only Pb survives Related to NBTI degradation

Outline

- Background and features of HCI Degradation
 - I. Phenomenological observations
 - 2. Origin of Hot carriers
- I. Theory of Si-H Bond Dissociation
- 2. Theory of Si-O Bond Dissociation
- 3. Conclusions

Dissociation of SiO Bonds

Different types of dangling bonds

Dissociation barriers and their distribution

SiO bond dispersion model

$$\frac{dN_{IT}(t)}{dt} = k_f \left(N_0 - N_{IT}(t) \right)$$

$$\frac{dN_{IT}(t)}{dt} = \int_{E_0 - n\sigma}^{E_0 + n\sigma} k_f(E) (g(E) - f(E, t)) dE$$

K. Hess et al., IEDM, 5.1.1, 2000; Hess, Ckt & Dev. 2001.

Universal scaling function for SiO bonds

$$N_{IT}^{SiO} = \sum_{E} g(E, E_A) \left[1 + e^{-k_F (E, V_G, V_D)t} \right] dE \equiv f_2 \left(\frac{t}{t_0 (V_G, V_D)} \right)$$

Will discuss the exact form of t₀ later ...

$$t_0^{-1}(V_G, V_D) = I_G = k \frac{I_D}{W_{eff}} \left[\frac{I_{sub}}{I_d} \right]^{\frac{\Phi_e}{\Phi_i}}$$

$$t_0^{-1}(V_G, V_D) = I_G = \frac{r_{ii}^{m}I_D}{k_1W} + \frac{r_{ii}^{m}I_D^2}{k_2W^2} + \frac{V_d^{\gamma}}{k_3} \frac{I_D^{\alpha}}{W^{\alpha}}$$

Conclusions

- □ Hot carrier degradation became important soon after NMOS and PMOS technologies were introduced. Insistence on keeping the VD unchanged contributed to the issue.
- □ Hot carriers break both SiH as well as SiO bonds. And the hot electron/hole trapping also contributes. Taken together there could be a significant shift in voltages.
- ☐ One can treat the kinetics of SiH and SiO bond dissociation separately. Both follow universal scaling laws.

Self-Test Questions

- 1. Both SiH and SiO are involved in HCl degradation. Give two evidences.
- 2. Why doesn't HCI occur during NBTI stress condition?
- 3. I suggested that HCI curve can shifted horizontally to form a universal curve, do you believe that I can do a corresponding vertical shift to form the universal curve.
- 4. What is the physical origin of distribution of bond-strengths for SiO bonds?
- 5. Why is it that SiH bonds are easily repassivated, while SiO bond are not. What can you do to repassivate these bonds?
- 6. HCI is a bigger problem for NMOS compared to PMOS what could be the reason.
- 7. Why did people expect HCl to disappear below 1V?

Alam ECE-695