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Classical HCI … only ON state?! 

True only for logic transistor,  at relatively low operating voltage 
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OFF state HCI is possible, if …  

… large band-to-band tunneling at high VD 
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OR as parasitic degradation in accelerated tests of logic transistors 
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Degradation mechanism  
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Electric field peaks at the surface leading to BTBT & Impact ionization 
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Drain Current at ON/OFF-state stress  

Channel inversion 
current is dominant in 

ON-State 

VG=2V 
VD=8V 

ISD 
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VG=0V 
VD=8V 

IBTBT 

Band-to-band tunneling 
current is dominant in 

OFF-State 
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Heating of electrons generated by BTBT 

Impact Ionization of BTBT current generate hot carriers 
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Current components in DeNMOS 

4 Terminal 

  0V  0−7V   0V 

  0V 

4 5 6 7
 

 

I D
 (a

.u
.)

4T

VDG, VDB (V) 

4 5 6 7
 

 

I D
 (a

.u
.)

4T
3T

VDG, VDB (V) 

  Float  0−7V   0V 

3 Terminal 

  0V 

VDG (V) 

4 5 6 7
 

 

I D
 (a

.u
.)

4T
3T
3T+VS

3 Terminal + Voltage Splitting 

  Float  0−5.2V   -1.8V 

  0V 

2 Terminal 

  Float  0−7V   Float 

 0V 

VDB (V) 

Surface BTBT is the dominant current component! 
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Generation & recovery of NOT in Off-state 

 Higher time exponents  No recovery 

Most of the bonds broken are Si-O …  
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NIT correlation with hot holes 

 Damage primarily due to broken Si-O bonds 

D. Varghese, EDL, Vol. 26, p. 572, 2006 
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  Recall: Voltage dependent constant t0 
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Scaling function describes SiO and SiH bond dissociation  



Universal Degradation 

Varghese, IRPS, 2008. 
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ON-state HCI in DeMOS transistors 
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 Dominant current component changes from BTBT to ISD 

 Resultant degradation is universal for VG =1V & 2V  
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LDMOS: SiO bonds and universality 
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OFF-state HCI in logic transistors 
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IDSAT and VTH degradation in 
addition to  CP and IDLIN 
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Universality of DePMOS degradation 
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 IDLIN for PMOS first increases, and then reduces 
 Degradation curves still exhibit a universal behavior! 

Initially dominated by acceptor like traps, then donor traps 
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Universal HCI degradation across technologies 
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 Wide range of devices and bias conditions show robust universality 
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 Off-state degradation in drain extended devices are driven hot 

carriers generated by Band-to-band tunneling and Impact ionization 

 Bulk damage and parametric degradation in both NMOS and 

PMOS devices show similar universal behavior. 

 The substrate current-based model involves a special form of 

scaling theory.  

 The scaling function applies only when there is a dominant 

degradation mode. Mixed mode degradation needs to isolated in 

individual components, before scaling theory can be applied.  
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Self Test Review questions 
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1. Why is BTBT tunneling important for  OFF-state HCI, but nor for 

ON-state HCI?  

2. What type of bond dissociation dominated DeMOS degradation?  

Provide two supporting arguments.  

3. Will universality hold of SiH and SiO bond dissociation occur in equal 

proportion?  

4. Do you expect NBTI to be described by universal voltage and 

temperature scaling? What if electron/hole trapping is present?  

5. Support the argument that scaling hypothesis is theory-agnostic, and 

therefore once empirically demonstrated, is more powerful.  
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