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A. Recap Fresnel coefficients, Impedance Approach 

 We now consider a problem of light beam incident obliquely at a flat interface (z=0) 

between two medium. Let       denote the material properties of the medium covering 

the z>0 half space, and         denote material properties of that z<0 half space 

accordingly. As we noted earlier, the light field could be decomposed of two distinct 

polarizations, and let’s consider the cases involving these two polarizations separately. 

 

Taking P-polarization as example, the H field of the input plane wave in 

frequency ( )       is: 

  ⃗⃗⃗⃗    ̂      (             ), Hx=Hz=0  

 

From continuity of tangential fields at the boundary we obtain x and y components of E and 

H field should be continuous: 
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Using impedance to connect the Ex components to Hy at boundary: 
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So we arrive at: 

                

Together with            

This helps to determine the Fresnel coefficients r, t: 

   
  
  
 

   
      

 
 
    
     

    
     

 
    
      

 

   
  
  
 
      
      

 

    
     

 
    
      

    
     

 
    
      

 

Note that such impedance are polarization dependent too. In the case of TE waves, the 

impedance becomes: 
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B. Total Internal Reflection, Evanescent Waves 

For arbitrary frequency of spatial variation kx at the interface, we may define a complex 

wavenumber    √  (
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, the wavenumber    becomes 

imaginary, therefore defining an ‘evanescent’ field that decays away from the interface.  

e.g.   ⃗⃗⃗⃗    ̂      (         ),  (z<0) 
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For a system that does not involve gain, we select the proper sign of  to ensure the 

field at z=∞ is zero. 

If both materials are loss-free, and only one kz component is imaginary(say,     (
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, then the corresponding impedance  ZII is imaginary while ZI is real. We 



can see the reflection coefficient r become a complex number, while the amplitude |r|=1.  

This is referred as total internal reflection. 

Using P-polarization as example, we see that when     (
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The physical meaning of phase    

 

Under total internal reflection we see that the reflected beam is retarded by a 

phase    with respect to the incident field at the interface. Geometrically this is 

visualized as a lateral and vertical shift of the beam center (also known as Goos-

Hanchen Effect, named after their seminal experiments in 1947, see homework 

1).  A refined experiment was reported by:  

- Lotsch, H. K. V. 1970, Beam displacement at total reflection: the Goos–Hänchen 

effect, I–IV. Optik 32, 116–137. 

 
Illustration of Goos-Hanchen effect. 

 

 A related effect, transverse shift of circularly polarized light beams upon 

reflection, (Fedorov–Imbert shift) was reported by: 

- Costa de Beauregard, C. & Imbert, C. 1972, Quantized longitudinal and 

transverse shifts associated with total internal reflection. Phys. Rev. Lett. 28, 

1211–1213. (doi:10.1103/PhysRev Lett.28.1211) 
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Evanescent waves: 

 

Like the case of reflection, we can show that the evanescent field 

          (         )  |  |     (            )  

This is an indication that the presence of the field at the boundary caused the reflected 

wave to lag behind. Indeed, it is impressive to see such pronounced delay of light field, 

although the evanescent field may only penetrate in the sparse medium by a fraction of the 

wavelength. You may make an analogy to “no-slip” boundary conditions in fluid mechanics, 

in which a bullet shaped laminar flow profile can be developed. However when the 

boundary is allowed to slip, we no longer have zero flow velocity at the interface and the 

velocity profile is closer to a flat hat shape. 

 

Graphical methods for Evanescent waves: 

Consider the fact that the lateral momentum kx is conserved, we may focus on the 

difference of     across the interface. 
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Therefore,  
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From the above we can start to draw a circle that connects kz and . Given any incident 
angle from the prism, we first use Descartes sphere (red circle) to determine kz, and then 
project onto the small blue circle to find The larger the faster the field decays away 
from the interface. You may also observe that, for small kx (thus the incident angle), the kz 

 goes outside the blue circle, indicating there is no evanescent field present.
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