

ECE695: Reliability Physics of Nano-Transistors Lecture 18: DC-IV and Charge Pumping Methods

Muhammad Ashraful Alam alam@purdue.edu

Copyright 2013

This material is copyrighted by M.Alam under the following creative commons license:

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline

- I. Recall: Properties of Interface Defects
- 2. Flux-based method I: Direct Current-Voltage method
- 3. Flux-based method 2: Charge pumping method
- 4. Conclusions

Review and background

Measurement is a complex process

We periodically stop the stress and measure defects ...

The measurements are often complex and interpretation of data depends on our interpretation of measurement

Outline

- I. Recall: Properties of Interface Defects
- 2. Flux-based method I: Direct Current-Voltage method
- 3. Flux-based method 2: Charge pumping method
- 4. Conclusions

Algorithm of DC-IV measurement

- I. Initialize by Forward biasing the source-substrate junction with a small V_0 so that just a small forward current exists.
- 2. Stress to the device by increasing VG for stress duration
- 3. For measurement, set $V_G=0$ and measure/record terminal current. Observe the change in Gurrent. Back to step 2.

The logic of DC-IV measurement

Another View

Neugroschel, Talam42(19)595p 1657, 1995

DC-IV measurement: Short Derivation

$$\frac{I_R}{W} = \Delta n \left(x = 0 \right) \times S^* \times q \times \left(x_n + x_p \right) \propto D_{IT} \left(x = 0, t \right)$$

(1)
$$n \times p = n_i^2 \exp(F_N - F_p/k_B T_L) = n_i^2 \exp(qV_o/kT)$$

$$n = p = n_i^2 \exp(qV_0/2k_BT)$$

$$\Delta n = n - n_i = n_i \times \left[\exp(qV_0/2k_BT_L) - 1 \right]$$

$$\approx n_i \times \exp(qV_0/2k_BT_L)$$

(2)
$$S^* \approx \sigma_o \upsilon_{th} D_{IT} (F_N - F_P)$$

$$= \sigma_o \upsilon_{th} D_{IT} q V_0$$

$$(3) x_n + x_p \approx \sqrt{V_{BI} - V_0}$$

Spatial Profiling: VG-dependent Peak

$$\frac{I_R(V_G, t_{stress})}{W} = \Delta n \left(x @ n = p \right) \times S^* \times q \times \left(x_n + x_p \right) \propto D_{IT}(x(V_G), t_{stress})$$

$$\mathbf{n} \times p = n_i^2 \exp(F_N - F_p / k_B T_L) = n_i^2 \exp(q V_o / kT)$$

$$n(x(V_G)) = p(x(V_G)) = n_i^2 \exp(qV_0/2k_BT)$$

An Example: Profiling based on DV-IV

An Example: Profiling based on DC-IV

An Example: DC-IV and lifetime prediction

How DC-IV is used to detect universality of HCI degradation

Evolution of defect in each location can be traced

Outline

- I. Recall: Properties of Interface Defects
- 2. Flux-based method I: Direct Current-Voltage method
- 3. Flux-based method 2: Charge pumping method
- 4. Conclusion

Appendices

Algorithm of charge pumping method

$$I_{cp} \propto f \times A_G \times \langle D_{IT} \rangle$$

The mechanism of charge pumping

How do charges flow

Algorithm of Charge Pumping Technique

Charge pumping Flux Components

$$Q_{ss} = A_G q \int_{q\psi_{\min}}^{q\psi_{\max}} D_{IT}(E) dE = A_G q^2 \langle D_{IT} \rangle \Delta \psi \quad \Delta \psi \equiv \left[\psi_{\max} - \psi_{\min} \right]$$

$$I_{cp} = Q_{ss} / T_{cycle} = f \times A_G q^2 \langle D_{IT} \rangle \times \Delta \psi$$

$$I_{S/D} = I_1 - I_2 = q^2 A_G \langle D_{IT} \rangle \times f \times \left[\Delta \psi_e - \Delta \psi_{ee} \right]$$

$$I_{S/D} = q^2 A_G \langle D_{IT} \rangle \times f \times \left[\underline{E}_{em,h} - \underline{E}_{em,e} \right]$$

Homework: A few steps in the derivation

$$r_N = -\left(\frac{dn}{dt}\right)_{R=C} = \frac{c_n}{r} p_T n - \frac{e_n}{r} n_T \qquad \Rightarrow \frac{e_n}{r} = \frac{c_n}{r} \left(\frac{p_{T0}}{n_T}\right) n_0 = \frac{c_n}{r} n_1$$

$$e_n \equiv \tau_{em}^{-1}$$
 $c_n \equiv \tau_c^{-1} = (\upsilon_{th}\sigma)^{-1}$ $n_1 = n_i \times e^{\frac{E_T - E_i}{k_B T}}$ Eq. 5.18, SDF

$$\mathbf{E}_{T}^{'} - E_{i} = -k_{B}T_{L} \ln \left(\upsilon_{th} \, \sigma \, n_{i} \, \mathbf{\tau}_{em} \right)$$

$$I_{CP} = I_{S/D} = q^2 A_G \langle D_{IT} \rangle \times f \times \left[E_{em,h} - E_{em,e} \right]$$

$$= 2q^2 A_G \langle D_{IT} \rangle \times f \times k_B T_L \left[\ln \left(\upsilon_{th} \sqrt{\sigma_n \sigma_p} n_i \right) + 0.5 \times \ln \left(\tau_{em,e} \times \tau_{em,h} \right) \right]$$

Charge Pumping Technique

$$\frac{I_{CP}}{2q^2 A_G k_B T_L} = \langle D_{IT} \rangle f \left[\ln \left(\upsilon_{th} \sqrt{\sigma_n \sigma_p} n_i \right) + 0.5 \times \ln \left(\tau_{em,e} \times \tau_{em,h} \right) \right]$$

$$\tau_{em,e} \equiv \frac{\left| V_{FB} - V_{th} \right|}{\left| V_{G,H} - V_{G,L} \right|} \times t_f \qquad \tau_{em,h} \equiv \frac{\left| V_{FB} - V_{th} \right|}{\left| V_{G,H} - V_{G,L} \right|} \times t_r$$

$$\frac{I_{CP}}{2q^{2}A_{G}k_{B}T_{L}} = \langle D_{IT} \rangle f \left[\ln \left(\upsilon_{th} \sqrt{\sigma_{n}\sigma_{p}} n_{i} \right) + \ln \left(\frac{\left| V_{FB} - V_{th} \right|}{\left| V_{G,H} - V_{G,L} \right|} \right) \sqrt{t_{r}t_{f}} \right]$$

Obviating the need of capture coefficients

Spatial Profiling by Charge Pumping

Homework: Defect Profiling by CP

$$\Delta I_{CP}(V_{base}) = \Delta I_{CP,s}(V_{base}) - \Delta I_{CP}(V_{base})$$

$$\propto \int_{-y_1}^{0} N_{IT}(y) dy + \int_{0}^{y_{1,s}} N_{IT,s}(y) dy$$

$$- \int_{-y_1}^{0} N_{IT}(y) dy - \int_{0}^{y_1} N_{IT}(y) dy$$

$$= \int_{0}^{y_{1,s}} \left(N_{IT,s}(y) - N_{IT}(y) \right) dy + \int_{y_1}^{y_{1,s}} N_{IT}(y) dy$$

$$= \int_{0}^{y_{1,s}} \Delta N_{IT,s}(y) dy + \int_{y_1}^{y_{1,s}} N_{IT}(y) dy$$

NBTI stress HCI stress

Example: Profiling based on CP and DV-IV

Both anticipate peaks in similar position Both confirm universal scaling

26

MFCP: Bulk trapping at low frequency

M. Masuduzzaman TED, 55(12), 3421, 2008.

Conclusions

- ☐ Careful measurement techniques is the first step of doing physics reliability physics is no exception.
- Both DC-IV and CP methods are widely used because of their simplicity and ability to provide wealth of information.
- ☐ CP method constantly evolving. Modern variants like multifrequency CP can probe bulk traps, transient CP can measure defect in SOI, etc.
- Once the NBTI relaxation issues were understood, CP and
 DCIV method needed to be augmented by on-the-fly methods.

Notes and References

- Schroeder has an excellent book on Device Characterization. See Semiconductor Materials and Device Characterization, 3rd Edition, John Wiley.
- The DC-IV method is a generalization of the gated-diode method. It was originally developed by CT Sah (see for example, Proc. IRE, p. 1623, 1961; TED, p. 1962, 1962. and then generalized by in modern form by Neugroschel, See for example, TED 42(9), pp 1657, 1995. Also, see TED, 43(1), 137, 1996)
- Note that the DCIV method is closely related to gated diode method and GIDL techniques. These related methods are easier to interpret, but difficult to measure with high accuracy.
- The original paper by Guido Groesenekan still remains the best. A reliable approach to charge pumping in MOS transistors, 31(1), 41, 1984. The first order by JS Brugler and PGA Jespers, TED, 16(3), 297, 1969.
- Determining the capture cross-section is always a challenge. I explained one method by rise-and-fall time. Other approaches involving 3-level CP is also possible, see NS Saks, EDL, 11(8), 339, 1990.

- Spatial profiling of defects by with variable base CP is discussed in detail in Solid State Electronics, 43, 915, 1999 by S. Mahapatra et al.
- M. Masuduzzaman generalized the technique to explore bulk defects see Exploring the Capability of Multi-frequency Charge Pumping in Resolving Location and Energy Levels of Traps Within Dielectric, 55(12), 3421, 2008.
- The CP method relevant to SOI which does not have bulk gate devices is discussed in EDL, 23(5), 279, 2002 by S. Okhonin.

Self-Test Questions

- I) Between DCIV and CP methods, which one is easier and why?
- 2) In what ways are CP and DCIV methods better at characterizing traps compared to C-V methods?
- 3) What are the problems of using CP, DCIV, C-V methods for NBTI measurements?
- 4) Which method does not suffer from the same problem as CP, DCIV, etc. for NBTI and HCI applications?
- 5) What method would you use to determine the density of midgap states?
- 6) CP frequency has to be kept relatively high to probe interface traps; can you explain why?
- 7) Why can you not use classical CP for SOI devices?

Appendices

- I.A detailed derivation of the DC-IV method
- 2. Spatial profiling by DC-IV method by two techniques
- 3. Difference between gated-diode and DC-IV
- 4. Spatial profiling by charge pumping method
- 5. Multi-frequency charge pumping method

DC-IV measurement: Short Derivation

$$\frac{I_R}{W} = \Delta n \left(x = 0 \right) \times S^* \times q \times \left(x_n + x_p \right) \propto D_{IT} \left(x = 0, t \right)$$

(I)
$$\mathbf{n} \times p = n_i^2 \exp(F_N - F_p/k_B T_L) = n_i^2 \exp(qV_o/kT)$$

$$n = p = n_i^2 \exp(qV_0/2k_BT)$$

$$\Delta n = n - n_i = n_i \times \left[\exp(qV_0/2k_BT_L) - 1 \right]$$

$$\approx n_i \times \exp(qV_0/2k_BT_L)$$

(2)
$$S^* \approx \sigma_o \upsilon_{th} D_{IT} (F_N - F_P)$$

$$= \sigma_o \upsilon_{th} D_{IT} q V_0$$

$$(3) x_n + x_p \approx \sqrt{V_{BI} - V_0}$$

Theory of DC-IV: Proper Derivation

$$R_{s} = \int_{x_{p}}^{x_{n}} \left(\int_{F_{P}}^{F_{N}} \frac{D_{IT}(E).\sigma_{o}v_{th}}{(n_{s} + n_{1s}) + (p_{s} + p_{1s})}.dE \right) .(n_{s}p_{s} - n_{i}^{2})dx$$

In forward bias, $n_s \ge n_{1s}$ & $p_s \ge p_{1s}$

$$R_s = \int_{x}^{x_n} \left(\int_{F_n}^{F_N} D_{IT}(E) . \sigma_o v_{th} . dE \right) \cdot \left(\frac{n_s p_s - n_i^2}{n_s + p_s} \right) . dx = I \times S^*$$

$$I = \int_{x_p}^{x_n} \left(\frac{n_s p_s - n_i^2}{n_s + p_s} \right) dx \qquad S^* = \int_{F_P}^{F_N} D_{IT}(E) . \sigma_o v_{th} . dE$$

$$F_n - E_i = qV_0 \left(\frac{x}{W} + \frac{1}{2}\right)$$
 $E_i - F_p = -qV_0 \left(\frac{x}{W} - \frac{1}{2}\right)$

Ex. 5.6, ADF

Theory of DC-IV: Proper Derivation

$$\begin{split} I_{B}^{total} &\equiv \int_{x_{p}}^{x_{q}} \left(\frac{n_{s} p_{s} - n_{i}^{2}}{n_{s} + p_{s}} \right) . dx = \int_{x_{p}}^{x_{q}} \left(\frac{n_{i}^{2} e^{qV_{0}/k_{b}T}}{n_{i} e^{q(F_{N} - E_{i})/k_{b}T} + n_{i} e^{q(E_{i} - F_{p})/k_{b}T}} \right) . dx \\ &= \int_{x_{p}}^{x_{q}} \left(\frac{n_{i}^{2} e^{qV_{0}/k_{b}T}}{n_{i} e^{qV_{0}\left(\frac{x}{w} + \frac{1}{2}\right)/k_{b}T} + n_{i} e^{-qV_{0}\left(\frac{x}{w} - \frac{1}{2}\right)/k_{b}T}} \right) . dx \qquad a \equiv \frac{qV_{0}}{k_{B}T} \\ &= n_{i} e^{a/2} \frac{W}{a} \int_{-\infty}^{\infty} \frac{dp}{e^{p} + e^{-p}} = n_{i} \frac{W}{a} e^{a/2} \left[tan(\infty) - tan(-\infty) \right] \qquad p = \frac{ax}{W} \\ &= \frac{\pi}{2} \frac{W}{a/2} e^{a/2} \qquad = n_{i} \frac{\pi}{2} \frac{Wk_{B}T}{qV_{0}} e^{qV_{0}/2k_{B}T} \\ I_{B}^{total} &= I \times S^{*} = \left(W \frac{2k_{B}T}{qV_{0}} n_{i} e^{qV_{0}/2k_{B}T} \right) \times \left(\frac{\pi}{2} \int_{F}^{F_{N}} D_{IT}(E) . \sigma_{o} v_{th} . dE \right) \end{split}$$

Theory of DC-IV: Proper Derivation

$$I_{B}^{peak} \equiv \frac{n_{s} p_{s} - n_{i}^{2}}{n_{s} + p_{s}} S^{*} = \frac{n_{i}^{2} e^{qV_{0}/k_{b}T} \times S^{*}}{n_{i}^{2} e^{qV_{0}/(k_{b}T)} \times S^{*} + n_{i}^{2} e^{-qV_{0}(\frac{x=0}{w} - \frac{1}{2})/k_{b}T}} = n_{i}^{2} e^{qV_{0}/(2k_{b}T)} S^{*}$$

$$I_{B}^{Total} = \frac{\pi}{2} \frac{2Wk_{B}T}{qV_{0}} n_{i} e^{qV_{0}/2k_{B}T} S^{*}$$

$$\frac{I_{B}^{peak}}{I_{B}^{Total}} = \frac{Wn_{i} e^{qV_{0}/2k_{b}T} S^{*}}{\frac{\pi}{2} \frac{Wk_{B}T}{qV_{0}} n_{i} e^{qV_{0}/2k_{B}T} S^{*}} = \frac{2}{\pi} \frac{qV_{0}}{2k_{B}T}$$

2. Spatial Profiling: VG-dependent Peak Location

$$\frac{I_R(V_G, t_{stress})}{W} = \Delta n \left(x @ n = p \right) \times S^* \times q \times \left(x_n + x_p \right) \propto D_{IT}(x(V_G), t_{stress})$$

$$n \times p = n_i^2 exp(F_N - F_p/k_B T_L) = n_i^2 exp(qV_o / kT)$$

$$n(x(V_G)) = p(x(V_G)) = n_i^2 exp(qV_0/2k_BT)$$

Spatial Profiling: Localized vs. Delocalized Damage

Measure I_B vs.V_{DB}

$$I_B = qW \int_{V_D(V_{DB}, V_{GB})}^{L-y_S(V_{SB}, V_{GB})} D_{IT}(y) R_{SRH}(y, V_{GB}, V_{SB}) dy$$

$$\frac{dF}{d\alpha} = \frac{d}{d\alpha} \int_{\psi(\alpha)}^{\phi(\alpha)} f(x,\alpha) dx$$

$$= f(\phi, \alpha) \frac{d\phi}{d\alpha} - f(\psi, \alpha) \frac{d\psi}{d\alpha} + \int_{\psi(\alpha)}^{\phi(\alpha)} \frac{d}{d\alpha} f(x, \alpha) dx$$

$$\frac{dI_B}{dV_{DB}} = -qWD_{IT}(y)R_{SRH}(y,V_{GB},V_{SB})\frac{dy_D}{dV_{DB}}$$

The method discussed in previous slide works for localized defects only

Sah, EDL, 17(2), 1996.

37

3. Difference between Gated Diode and DC-IV

Gated Diode

DCIV

Typically reversed biased

Forward biased

Small current

Also IB=IE

Large current IB<<IE better resolution

ID potential

2D potential approx. as ID

Difference between Gated Diode and DC-IV

$$I_T = I_J + I_{GIJ} + I_S = \frac{qn_iA_jW_J}{\tau_{g,J}} + \frac{qn_iA_GW_G}{\tau_{g,G}} + qn_iA_GW_GS^*$$
 Alam ECE-695

4. Spatial Profiling by Charge Pumping

Spatial Profiling by Charge Pumping

Before stress ...

$$I_{CP}(V_{base}) \propto \int_{-y_1}^{0} N_{IT}(y) dy + \int_{0}^{y_1} N_{IT}(y) dy$$

 y_1 is defined by $V_{FB}(y_1) \equiv V_{base}$

$$I_{CP}(V_{top}) \propto \left(\int_{-y_m}^{-y_2} N_{IT}(y) dy + \int_{y_2}^{y_m} N_{IT}(y) dy \right)$$

 y_2 is defined by $V_{th}(y_2) \equiv V_{top}$

 y_m is defined by $V_{FB}(y_m) \equiv V_{base, min}$

After stress ...

$$I_{CP}(V_{base}) \propto \int_{-y_1}^{0} N_{IT}(y) dy + \int_{0}^{y_{1,s}} N_{IT,S}(y) dy$$

$$I_{CP}(V_{top}) \propto \left(\int_{-y_m}^{-y_2} N_{IT}(y) dy + \int_{y_{2,s}}^{y_m} N_{IT}(y) dy \right)$$
Alam ECE-695

Pumped region

41

Defect Profiling by Charge Pumping

$$\begin{split} \Delta I_{CP}(V_{base}) &= \Delta I_{CP,s}(V_{base}) - \Delta I_{CP}(V_{base}) \\ &\propto \int_{-y_{1}}^{0} N_{IT}(y) dy + \int_{0}^{y_{1,s}} N_{IT,s}(y) dy \\ &- \int_{-y_{1}}^{0} N_{IT}(y) dy - \int_{0}^{y_{1}} N_{IT}(y) dy \\ &= \int_{0}^{y_{1,s}} \left(N_{IT,s}(y) - N_{IT}(y) \right) dy + \int_{y_{1}}^{y_{1,s}} N_{IT}(y) dy \\ &= \int_{0}^{y_{1,s}} \Delta N_{IT,s}(y) dy + \int_{y_{1}}^{y_{1,s}} N_{IT}(y) dy \\ &\uparrow & \uparrow \end{split}$$

NBTI stress HCI stress

5. High frequency Charge Pumping

Low frequency Charge Pumping

Two Regions of CP

L_{CH} dependent Quasi-geometrical CP

Low f CP Summary

Two consequences of the lower electron barrier*:

- 1) Skewed Region A towards Valance Band
- 2) Deeper scanning for Region B