

ECE695: Reliability Physics of Nano-Transistors Lecture 19: Spin-Dependent Recombination and Electrically Detected Magnetic Resonance

Muhammad Ashraful Alam alam@purdue.edu

Alam ECE-695

Copyright 2013

This material is copyrighted by M.Alam under the following creative commons license:

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline

- I. Importance of measuring interface damage
- 2. Electronic Spin Resonance (A quick review)
- 3. Spin Dependent Recombination
- 4. Electrically detected spin-resonance and noise-spectroscopy
- 5. Comparing the approaches
- 6. Conclusions

Measurement is a complex process

We periodically stop the stress and measure defects ...

The measurements are often complex and interpretation of data depends on our interpretation of measurement

C-V, SILC, DCIV, CP, SDR, Idlin methods,

Review and background

Different types of ESR-visible defects

Helms and Poindexter, 1994.

Alam ECE 695 6

Nonbridging oxygen hole cente

ESR: a 'microscope' for defects

Hyperfine interaction & paramagnetic resonance

Alam ECE 695

B-value suggests local environment

easyspin.org

 $\binom{1}{1}$ $m_{\rm r}$; $m_{\rm s} = 1/2$

ESR signature of different defects

P. M. Lenahan, 2004.

Pb parallel and perpendicular to <111>

Outline

- I. Importance of measuring interface damage
- 2. Electronic Spin Resonance (A quick review)
- 3. Spin Dependent Recombination
- 4. Electrically detected spin-resonance and noise-spectroscopy
- 5. Comparing the approaches
- 6. Conclusions

Spin dependent recombination

Basics of a SDR measurement

$$\frac{d(\Delta n)}{dt} = G - \frac{\Delta n}{\tau(B)} = 0$$

$$\tau(\mathbf{B}) \equiv (\sigma N_{IT} \upsilon)^{-1}$$

$$\Delta n(B) = G \times \tau(B)$$

$$\Delta J = J - J_0 = q \Delta n(B) \upsilon$$

$$= qG\upsilon \times \tau(B)$$

Alam ECE-695

Singlet vs. Triplet States: How to make lifetime B dependent

$$S=0, M_s=0$$

S = I

13

Alam ECE-695

Another perspective of spin relaxation

Rules of spin relaxation

- 1. S_0 to S_1 transition is allowed both ways.
- 2. S_1 to T_1^0 transition through intersystem coupling (note $\Delta S_Z = 0$)
- 3. Selection rule allows transition with $\Delta S_Z = \pm 1$. Therefore, T_1^{+1} couples to T_1^0 , and T_1^0 couples to both T_1^{+1} and T_1^{-1} , but T_1^{+1} does not couple to T_1^{-1} .
- 3. Coupling between T_1^{+1} and S_0 is similar to that of T_1^{-1} to S_0 , but T_1^0 to S_0 is different.
- 4. The splitting between T_1^{+1} and T_1^0 is different from that of T_1^{-1} and T_1^0 . The field couples to only one group. And this restores equilibrium among the states.

Derivation of the key result

Trapassisted

assisted Direct
$$\frac{dn_e}{dt} = G - \sigma n_e n_{S_0} - Rn_e$$

$$\frac{dn^{+}}{dt} = \frac{\sigma n_{e} n_{S_{0}}}{3} - n^{+} R - (n^{+} - n^{0}) W - (n^{+} - n^{0}) B$$

$$\frac{dn^{0}}{dt} = \frac{\sigma n_{e} n_{S_{0}}}{3} - n^{0} R_{0} - (n^{0} - n^{+}) W - (n^{0} - n^{-}) W - (n^{0} - n^{+}) B$$

$$\frac{dn^{-}}{dt} = \frac{\sigma n_{e} n_{S_0}}{3} - n^{-}R - n^{-}R - (n^{-} - n^{0})W$$

Derivation ... continued

$$\frac{d\mathbf{n}^+}{dt} = \frac{d\mathbf{n}^0}{dt} = \frac{d\mathbf{n}^-}{dt} = 0$$

$$n_T = n^0 + n^+ + n^- = \frac{\sigma n_e n_{S_0}}{3} F(B)$$

$$f(\mathbf{B}) = \frac{(R+W)(2R_0 + R + 9W) + B(R_0 + 5R + 9W)}{(R+W)(RR_0 + 2RW + R_0W) + B(RR_0 + 2RW + R_0W + R^2)}$$

$$G = \frac{\sigma n_e n_D}{1 + \frac{1}{3} \sigma n_e n_D F(B)} + Rn_e$$

Outline

- I. Importance of measuring interface damage
- 2. Electronic Spin Resonance (A quick review)
- 3. Spin Dependent Recombination
- 4. Electrically detected spin-resonance and noise-spectroscopy
- 5. Comparing the approaches
- 6. Conclusions

Recall: Statistics of trapping

 $10^{17} \text{ cm}^{-3} \times 2 \text{nm} \times 100 \text{nm} \times 100 \text{nm} = 2 \text{ traps/device}$

Alam ECE-695

Fluctuation in single trap occupation

$$S(\omega) = \frac{1}{T \to \infty} \left\langle \left| F(\omega) \right|^2 \right\rangle = \left[\frac{N_0^2 \tau_c}{1 + \left(\tau_c \omega \right)^2} \right]$$

Electrically detected spin resonance of a single trap in a MOSFET

Ref. Xiao, Nature, 430, 435, 2004.

Paramagnetic Trap with single electron

Singly occupied

$$E_z = g \, \mu_0 B_0$$

$$E_z \, E_T$$

$$\downarrow |\uparrow\rangle$$

$$\text{Channel electrons}$$

$$\text{Singly occupied}$$

trap 1e-

Doubly occupied

Energy level splitting of a si

I. Original data $(E_T \sim E_F)$

2. Cleaned data $(E_T \sim E_F)$

Normalized current

2. Statistical Distribution

Noise as a characterization tool

Overall, noise can be a sensitive monitor of shallow traps

Conclusions

- ☐ ESR has long been a powerful tool for chemists and physicists, SDR has a long history as well.
- ☐ The modern synthesis of SDR and ESR in the form of EDSR has become a powerful tool.
- ☐ The approach is sensitive, the key challenge is complexity of setup. Cannot be used for routine characterization of wafer.
- ☐ A combination of analytical tools allow fundamental understanding of a given reliability problem. Once this goal is achieved, classical tools are often more convenient.

References

- I followed the derivation of L.S. Vlasenko et al. Electron Paramagnetic Resonance vs. spin-dependent recombination: Excited triplet states of structural defects in irradiated silicon, PRB, 52(2), 1995. p. 1144. The original work was done by D. Lepine, Spin-Dependent recombination on silicon surface, PRB, 6(2), 1972. p. 436. The first correct formulation is due to 4D. Kaplan, I. Solomon, and N. Mott, J. Phys. Lett. 39, 51 ~1978 although they emphasized direct e-h recombination, not the trap-assisted generalization we discussed.
- C. Boehme and K. Lips Theory of time-domain measurement of spin-dependent recombination with pulse electrically detected magnetic resonance", PRB, 68, 245105, 2003 provides a more sophisticated quantum mechanical treatment of the problem.
- The EDMR (electrically detected magnetic resonance) technique has become sophisticated enough to detect single spin— see, L. Martin, "A scheme for electrical detection of single-electron spin resonance", PRL, 018301, 2003.T. Wimbauer et al., Defects in planar silicon p-n junctions studied with electrically detected magnetic resonance. APL, 76(16), 2280, 2000. M. Xiao et al., "Electrical Dectection of the spin resonance of a single electron in a silicon field-effect transistor, Nature, p. 435, 2004.

 K. Hung et al., Random Telegraph Noise in Deep-Submicrometer MOSFETs, 11(2), p. 90, 1990.. B.
 Gross and Charles G. Sodini. 1/f noise in MOSFETs with ultrathin gate dielectrics.

In IEDM Technical Digest, pages 881 (884, 1992.

Alam ECE 695

Self-Test Questions

- Q1. If a signal disappears from ESR because of negative-U configuration, can it be detected by SDR or EDSR methods?
- Q2. What is the relationship between Gauss and Tesla as units of magnetic field?
- Q3. Was the original SDR method for bulk or interface traps?
- Q4: What is the relationship between RTN noise spectra and EDSR spectra? At what point will they be substantially different?
- Q5. For single spin, we have 2 states at the ground level. For two spins, we have 4 states (singlet and triplet). How many spin states do you expect for a 3-spin system?
- Q6. What are the advantages and disadvantages of spin-based detection?
- Q7. What is the difference between hyperfine interaction and hyper-polarizibility?
- Q8. If ESR experiments are used for NBTI degradation, what type of time exponent would you expect? What about HCI degradation?

Alam ECE-695