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Scaling and reliability: A short history 
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Classical Gate Dielectric Breakdown 

Gate dielectric breakdown is an issue for both NMOS and PMOS 
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Time dependent dielectric breakdown 
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Alam, IRPS, 2000;  Alam, ECS, 2000;  Stathis, IBM J. Res/Dev, 46, 2002. 



Features: Breakdown can correlated or uncorrelated 

Correlated breakdown 
in thick Insulators 

Uncorrelated breakdown  
In thin insulators 

Theory of partially correlated breakdown  
is important and  contacts define everything.  
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Features: TDDB voltage (not field)-accelerated 

Empirical 
projection. 
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Features: Failure times Weibull distributed 
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Weibull distribution 

Breakdown 
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Features: Soft vs. Hard breakdown 
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Breakdown could be hard or soft … 

HBD 
Pey, IRPS, 2002 



Features: BD softer at lower voltages 
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Features: PMOS with soft breakdown 
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 Features: Increase in Leakage Current 
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4. Conclusions 
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Features: BD Induced Microstructure Damages 

0.2 µm0.2 µm

Tang et al., IEEE TDMR,  4(1), 2004;  Pey et al., Microelectronics Rel., 43, 2003. 
 

• Contact burnt out in 
various post break-
down samples. 
 

• Note the associated 
substrate damages. 
 

• Electrical measure-
ment shows S/D 
short through 
channel. 
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BD Induced Microstructure Damages 

• Sample with 20Å gate 
oxide  and HBD at 
100mA 
 

• Total epitaxy of poly-Si 
gate with Si sub 
 

• Severe Si substrate 
channel damages  
 

• Electrical measurement 
shows S/D short 
through channel 

gate 

s/d 

s/d 

substrate 
damages 

Courtesy,  Pey,  Tutorial, 11th Workshop on 
Gate Oxide Technology, 2006. 

Tang et al., IEEE TDMR, 4(1), 2004. 
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• Dielectric breakdown induced 
metal migration (DBIM) in 
various device dimension, 
process technologies, and stress 
conditions. 
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Courtesy,  Pey,  Tutorial, 11th Workshop on 
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(a) 1 mA 

100 nm 

(b) 50 μA 

50 nm 
(c) 10 μA 

50 nm 

(d) 10 μA 

100 nm 
(e) 1 μA 

50 nm 

(f) 100 nA 

50 nm 

• Dielectric breakdown induced 
epitaxy (DBIE) in various device 
dimension, process technologies, 
and stress conditions. 

• Device may still be functional. 

Features: Microstructure 
Damage 

Courtesy,  Pey,  Tutorial, 11th Workshop on 
Gate Oxide Technology, 2006. 
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Tung et al., ULSI Semiconductor Technology  
Atlas, John Wiley and Sons, 2003.  

   

 



21 

TEM image across transistor width  

  

STI corner is not the BD 
location 
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∆ = Atn(t) : Saturating 
time exponent  
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• Does the time exponent remain constant with time? 
• How does the time exponent change with bias?  
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Dissociation Barriers and its Distribution 
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BD model anticipates time exponent 
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Universal function obtained by CP/SILC 
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Measurement of trap generation by Stress-
induced leakage current 

∆IG =  ( IG- IG (0) ) / IG(0) at Vsense: depends on TOX 
and Vsense 

 Power-law: ∆IG ∝ tP, P usually < 0.5 close to 
breakdown 

 Find t*, time required to reach a given amount of 
∆IG 

T. Nigam,  Ph.D. Thesis, 1998. 
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 Dielectric breakdown has a long history and broad range of physical 
and technological implications. 
 

  TDDB is important for thick and think dielectrics, but the physics of 
breakdown is very different.  
 

 Measurement of TDDB at very low voltage has been difficult – 
therefore a theory of dielectric breakdown and accurate 
measurement techniques (SILC) are very important.  
 

 For thin oxides, statistical distribution of failure time is a key feature 
of TDDB. Theory is essential here as well. 
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1. What is the name of the failure distribution that we expect for thin 
oxides?  
 

2. For thin oxides,  is PMOS or NMOS more of a concern in modern 
transistors? 
 

3. What is DBIE? When does it occur? Can the transistor be still 
functional ?  
 

4. In what ways is TDDB compare with NBTI and HCI time-
degradation? Explain.  
 

5. Why do you suspect that hard breakdown destroys thick oxide, 
while in thin oxides breakdown can be soft?  
 

6. What is stress-induced leakage current? What is ‘stress-induced’ 
about it?  
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