
Polymatic User Manual

Version 1.0

March 18, 2013

The Colina Group
Department of Materials Science and Engineering

The Pennsylvania State University

http://www.matse.psu.edu/colinagroup/polymatic

https://nanohub.org/resources/17278

Copyright © 2013 Lauren J. Abbott
Distributed under the terms of the GNU General Public License

http://www.matse.psu.edu/colinagroup/polymatic
https://nanohub.org/resources/17278

Contents

1 Introduction 2
1.1 About Polymatic . 2
1.2 Included Files . 2
1.3 GNU Distribution Notice . 3
1.4 Citation . 3
1.5 Publications Using Polymatic 4
1.6 Acknowledgments . 4

2 Random Packing 5
2.1 About . 5
2.2 Syntax . 6
2.3 Output . 6
2.4 Notes . 7
2.5 Examples . 8

3 Simulated Polymerization 11
3.1 About . 11
3.2 Polymerization Step . 13

3.2.1 About . 13
3.2.2 Syntax . 13
3.2.3 Types File . 14
3.2.4 Input Script . 15
3.2.5 Output . 22

3.3 Initialization and Finalization 23
3.3.1 About . 23
3.3.2 Syntax . 23
3.3.3 Output . 24

3.4 Polymerization Loop . 24
3.4.1 About . 24
3.4.2 Syntax . 24
3.4.3 Variables and Input Scripts 25
3.4.4 Setup and Output . 25

3.5 Notes . 28
3.6 Examples . 30

1

1 Introduction

1.1 About Polymatic

Polymatic is a code developed in the Colina Group for structure generation
of amorphous polymers by a simulated polymerization algorithm. Polymatic
can be thought of as a wrap-around code that calls a simulation package to
perform energy minimization and molecular dynamics simulations. In be-
tween these simulations, the code performs polymerization steps by checking
a set of defined bonding criteria and updating the connectivity information of
the system (i.e., bonds, angles, dihedrals, impropers) appropriately to reflect
the new bonds being made.

Polymatic is written to work with the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS). Specifically, it is set up to read in and
write out LAMMPS data files with a class II force field definition, including
the ‘class2’ pair, bond, angle, dihedral, and improper styles. That being said,
the majority of the subroutines included in the Polymatic code do not rely
on these LAMMPS definitions, such that the code could be easily extended
to work with other force fields, file types, and software packages.

1.2 Included Files

The distribution of Polymatic includes the following files:

1. polymatic manual.pdf (this file), a basic user manual for Polymatic

2. pack.pl, a perl script that performs a random packing of molecules in
a periodic cubic cell

3. polym.pl, a perl script that performs a single polymerization step

4. polym init.pl, a perl script that performs an initialization of the sys-
tem before polymerization

5. polym final.pl, a perl script that performs a finalization of the system
after polymerization

2

http://www.matse.psu.edu/colinagroup
http://lammps.sandia.gov
http://lammps.sandia.gov/doc/99/data_format.html
http://lammps.sandia.gov/doc/99/force_fields.html#_cch3_930957527

6. polym loop.sh, a sample bash script to control the simulated polymer-
ization procedure

7. Example*/, all files necessary to run the examples included in this
manual

8. COPYING, a text file of the GNU General Public License

1.3 GNU Distribution Notice

Polymatic is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

Polymatic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANT-
ABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with Polymatic. If not, see http://www.gnu.org/licenses/.

1.4 Citation

The following paper describes the basic Polymatic algorithm and its imple-
mentation for a variety of linear polymers. If you publish work using the
Polymatic code or variations of it, please cite this paper and the source code
with the correct version specified.

Abbott, L. J.; Hart, K. E.; Colina, C. M. “Polymatic: A generalized simu-
lated polymerization algorithm for amorphous polymers.” Theoretical Chem-
istry Accounts, 2013, 132, 1334. DOI: 10.1007/s00214-013-1334-z

Abbott, L. J. Polymatic: A simulated polymerization algorithm, Version 1.0,
2013, https://nanohub.org/resources/17278.

3

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/
http://dx.doi.org/10.1007/s00214-013-1334-z
https://nanohub.org/resources/17278

1.5 Publications Using Polymatic

Below is a growing list of published work using the Polymatic code or varia-
tions of it.

1. Abbott, L. J.; Colina, C. M. “Atomistic structure generation and gas
adsorption simulations of microporous polymer networks.” Macro-
molecules, 2011, 44, 4511–4519. DOI: 10.1021/ma200303p

2. Abbott, L. J.; Hart, K. E.; Colina, C. M. “Polymatic: A generalized
simulated polymerization algorithm for amorphous polymers.” The-
oretical Chemistry Accounts, 2013, 132, 1334. DOI: 10.1007/s00214-
013-1334-z

3. Hart, K. E.; Abbott, L. J.; Colina, C. M. “Analysis of force fields
and BET theory for polymers of intrinsic microporosity.” Molecular
Simulation, 2013. DOI: 10.1080/08927022.2012.733945

1.6 Acknowledgments

The development of Polymatic was supported in part by funding from the
National Science Foundation (NSF) through grant DMR-0908781. Addition-
ally, its development would not have been possible without computational
resources and support provided by the Research Computing and Cyberin-
frastructure unit of Penn State Information Technology Services and the
Materials Simulation Center of the Materials Research Institute.

Thanks are also due to the people who have contributed to the development
of Polymatic:

� Kyle E. Hart
� Grant Gonzalez
� Justin Hughes

4

http://dx.doi.org/10.1021/ma200303p
http://dx.doi.org/10.1007/s00214-013-1334-z
http://dx.doi.org/10.1007/s00214-013-1334-z
http://dx.doi.org/10.1080/08927022.2012.733945
http://www.nsf.gov
http://rcc.its.psu.edu/
http://rcc.its.psu.edu/
http://www.msc.psu.edu/

2 Random Packing

2.1 About

The random packing code included with this distribution (pack.pl) packs
any number of reference molecules into a periodic cubic simulation cell. A
specified number of each reference molecule is packed into the periodic cell
one at a time, where insertions are made avoiding only hard-core overlaps
of the van der Waals radii. For ease of use with the Polymatic simulated
polymerization code, the packing code was written to read in and write out
LAMMPS data files.

Users should note that the intention of the packing code is to provide initial
systems of molecules and/or polymeric repeat units at low densities, such
as for use with the Polymatic simulated polymerization code. It was not
designed to handle packing of large and complex molecules at high densities.
Nor does it implement any type of Monte Carlo moves to introduce flexibility
into the original reference molecule structures, nor any restraints on regions
in which to pack molecules.

While the random packing code is included in this distribution, it is not
required to generate initial structures for the Polymatic simulated polymer-
ization. Initial structures can be obtained in any way, including use of other
codes and software packages. Some examples of other software that can
perform packing tasks include:

1. Amorphous Cell in the Materials Studio commercial software package,
which implements a Monte Carlo packing algorithm.
http://accelrys.com/products/datasheets/amorphous-cell.pdf

2. Packmol, an open-source software for packing molecules in defined re-
gions of space, including possible spatial constraints.
http://www.ime.unicamp.br/~martinez/packmol

3. Monte Carlo for Complex Chemical Systems (MCCCS) Towhee, which
includes several Monte Carlo algorithms such as configurational-bias.
http://towhee.sourceforge.net

5

http://accelrys.com/products/datasheets/amorphous-cell.pdf
http://www.ime.unicamp.br/~martinez/packmol
http://towhee.sourceforge.net

2.2 Syntax

The syntax of the random packing code is:

./pack.pl -i num F1.lmps N1 F2.lmps N2 (...)

-l boxL

-o pack.lmps

Below is a description of all the command-line flags for this program. Note
that the order in which the flags are specified is not important, but the order
of the variables included for each individual flag is.

1. The -i flag indicates the reference molecule files (input files) and the
number of each to be packed in the periodic cubic cell. Any number of
reference molecules can be read in, which is indicated by num, but each
molecule must be provided in its own data file, specified as F1.lmps,
F2.lmps, etc. The number of molecules of each reference molecule to
pack is given by N1, N2, etc.

2. The -l flag is used to define the length of the sides of the cubic simu-
lation cell.

3. The -o flag gives the name of the output LAMMPS data file to be
created, which contains the packed molecules.

4. The -h flag prints the syntax, then quits the program.

Note that if more than one reference molecule is provided, all molecules of
reference type 1 (F1.lmps) are packed first, followed by the molecules of
reference type 2 (F2.lmps), and so on. For most efficient performance, it is
advised that the larger molecule types are packed first.

2.3 Output

The primary output of the packing code is the LAMMPS data file containing
the packed system (pack.lmps). Additionally, output is printed to the com-
mand prompt showing the progress of the packing. When reading in a new
reference molecule, a header line is printed showing the number and file name

6

of the reference molecule. Then, after each successfully packed molecule, the
molecule number is printed, followed by the number of insertions attempted
for that molecule.

For example, for a packing of 5 molecules of one reference type, output similar
to the following would be generated:

Packing molecule type 1: F1.lmps

1, 1 attempts

2, 2 attempts

3, 1 attempts

4, 6 attempts

5, 3 attempts

For a packing of 3 molecules of one reference type and 2 molecules of a second
reference type, output similar to the following would be generated:

Packing molecule type 1: F1.lmps

1, 1 attempts

2, 1 attempts

3, 4 attempts

Packing molecule type 2: F2.lmps

4, 2 attempts

5, 5 attempts

2.4 Notes

Below is a list of notes about the packing code that may be useful for using
and/or modifying it.

1. When a LAMMPS data file of a reference molecule is read in, all
information (atoms, bonding, coefficients, etc.) is stored in variables
and arrays proceeded by ref (i.e., $refNumAtoms and @refAtomType).
Likewise, the packed system information is stored in a similar set
of variables and arrays proceeded by pack (i.e., $packNumAtoms and
@packAtomType).

7

2. A maximum number of insertion attempts for each molecule is defined
to prevent the code from running for infinite time. The default value
is 1,000,000, but can be changed if desired. This variable is defined as
$maxAttempts.

3. A molecule is inserted in the box through a random translation and
rotation. The reference molecule is centered at the origin so that the
rotation is made about this point. As currently written, the geometric
center is used, but the code could be easily modified to make this the
center of mass by incorporating the masses of each atom. The molecule
centering takes place in the readRef subroutine.

4. Insertions of molecules are made to avoid overlap of the van der Waals
radii of every intermolecular atom pair. The overlap is tested between
the atoms based on the sigma values defined in the Nonbond Coeffs
section of the LAMMPS data file. This overlap criterion is set in the
checkOverlap subroutine.

5. To improve the efficiency of the code, neighbor lists are employed during
the check for overlaps, which are updated with the addition of a new
molecule. The width of the bins is set by the largest sigma value defined
in the Nonbond Coeffs section of the LAMMPS data file. The neighbor
list definitions are made in the addMol subroutine.

2.5 Examples

Two examples are provided here for using the random packing code. The first
uses one reference molecule, the second uses two reference molecules. Illus-
trations of the molecules and final packed boxes are shown in Figure 1.

Example 1: This example will pack 45 repeat units of polystyrene into
a periodic simulation cell with length 30 Å. The reference molecule file is
ps monomer.lmps and the packed system created is written to pack.lmps.
The random packing is performed with the command:

./pack.pl -i 1 ps_monomer.lmps 45 -l 30 -o pack.lmps

8

Figure 1. (a) A random packing of 45 repeat units of polystyrene in a
periodic simulation cell of length 30 Å. (b) A random packing of 10 molecules
of C60 fullerene and 40 repeat units of polycarbonate in a periodic simulation
cell of length 40 Å. For clarity, the molecules of each reference type are shown
in different colors in the packed systems.

9

Example 2: This example will pack 10 molecules of C60 fullerene and 40
repeat units of polycarbonate into a periodic simulation cell of length 40 Å.
The reference molecule files are c60.lmps and pc monomer.lmps, and the
packed system created is written to pack.lmps. The random packing is
performed with the command:

./pack.pl -i 2 c60.lmps 10 pc_monomer.lmps 40 -l 40 \

-o pack.lmps

A special considerations should be noted when using more than one molecule,
as in this example. The data types for all molecules must be consistent across
the data files for each reference molecule, such that all data types are present
in all files. For example, atom type 1 in the first reference molecule must be
the same as atom type 1 in the second reference molecule, and so on.

Note: The input and output files for these two examples are provided with
the Polymatic distribution in directories Example1 and Example2.

10

3 Simulated Polymerization

3.1 About

The Polymatic distribution includes codes to perform a simulated polymer-
ization of a simulation cell of monomers or repeat units. Using this approach,
repeat units in close proximity are bonded according to a set of criteria, which
take place along with energy minimization and molecular dynamics simula-
tions in cycles to form a final polymeric system. A flowchart of the algorithm
is given in Figure 2. It can be grouped into five main components:

1. Polymerization initialization: An initial system to be polymerized is
provided, with the reactive atoms (“linkers”) identified by unique atom
types. Optionally, artificial charges can be added to linking atoms to
encourage more efficient bonding in the polymerization process.

2. Polymerization step: The closest pair of linking atoms that satisfies all
bonding criteria is selected, bond(s) are formed to obtain the proper
polymeric structure, and an energy minimization is performed. If ar-
tificial charges were added, they are removed from the pair of bonded
linker atoms. If no pair meeting all bonding criteria is found, a molecu-
lar dynamics (MD) simulation is performed and a polymerization step
attempted again. Up to Mmax polymerization steps are attempted,
after which the polymerization loop (see below) is quit.

3. Polymerization cycle: Ncyc polymerization steps are performed. Then,
an MD step is carried out to allow for relaxation and rearrangement
of the structure. This composes a polymerization cycle. Multiple MD
types can be defined and alternated throughout; in this algorithm, a
second MD type is implemented every Nmd cycles.

4. Polymerization loop: Polymerization cycles are repeated until Btot

bonds are formed or until no pair meeting the bonding criteria is iden-
tified in Mmax attempts.

5. Polymerization finalization: The system is finalized to complete the
polymerization. If artificial charges were added, they are removed from
any remaining linker atoms.

11

Start

Initialize system
HB = 0, M = 0,

±qpolym for all linkersL

Find closest pair
satisfying all

bonding criteria

Pair found?

Yes

No

Form bondHsL
HB++, M = 0,

¡qpolym for pairL

Run energy
minimization

B = Btot?

Yes

No

Finalize system

H¡qpolym for all

remaining linkersL

Run bond MD
HM++L

M < Mmax?

Yes

No

Run cycle MD
Htype 1L

Run cycle MD
Htype 2L

HB � NcycL
% Nmd = 0?

No Yes

B % Ncyc = 0?

Yes

No

Stop

Figure 2. The flowchart of the simulated polymerization algorithm. The
parts of the algorithm performed by the polymerization step perl code
(polym.pl) are outlined in the dashed box. The remaining steps are con-
trolled by the polymerization loop bash code (polym loop.sh).

12

The algorithm is implemented using perl scripts to perform the initialization
(polym init.sh), a polymerization step (polym loop.sh), and the finaliza-
tion (polym final.sh), as well as a bash script to control the polymerization
loop (polym loop.sh). These files will be described in the following sections.
All codes described here were written to read in and write out LAMMPS
data files, as well as to perform energy minimization and molecular dynam-
ics simulations in LAMMPS. However, as many of the tasks performed in
the algorithm are general, modifications could be made to work with other
file types and software packages.

3.2 Polymerization Step

3.2.1 About

The polymerization step is an important part of the Polymatic algorithm, as
it is responsible for identification of the closest pair of reactive atoms that
satisfies all bonding criteria, as well as updating of the connectivity informa-
tion of the system to reflect the new bond(s) being formed to produce the
polymeric structure. The main tasks of the polymerization step, as outlined
in a dashed box in Figure 2, are carried out in a perl script (polym.pl),
which is described here.

3.2.2 Syntax

The syntax of the polymerization step code is:

./polym.pl -i data.lmps

-t types.txt

-s polym.in

-o new.lmps

Below is a description of all the command-line flags for this program. Note
that the order in which the flags are specified is not important.

1. The -i flag indicates the input data file of the initial system.

13

2. The -t flag indicates a types file, which identifies the data types in the
LAMMPS data file. Its format is described in Section 3.2.3.

3. The -s flag indicates the input script, which specifies parameters for
the polymerization step. Its format is described in Section 3.2.4.

4. The -o flag gives the name of the output data file to be created, which
contains the system with updated connectivity. This file is not created
if no pair of linker atoms is found meeting all bonding criteria.

5. The -h flag prints the syntax, then quits the program.

3.2.3 Types File

The types file (types.txt) is used to define the data types in the LAMMPS
data file, such that the atom types involved in each bond, angle, dihedral,
and improper are indicated. This is necessary to add the proper bonded
interactions during the polymerization step after new bonds are formed. Ad-
ditionally, the types file acts as a conversion key between the numerical atom
types in a LAMMPS data file and more meaningful descriptive strings, such
as those given by the force field.

The types file is specified in a text file, with a separate section for each data
type, labeled ‘atom types’, ‘bond types’, ‘angle types’, ‘dihedral types’ and
‘improper types’. In the atom types section, one line is provided for each
atom type, where the numerical value from the LAMMPS data file is given
first, followed by the associated string, space separated. The format of the
atom types section is as follows:

atom types

1 type1

2 type2

...

After the atom types section, a section is listed for all other data types with
a line for each numerical value, along with the atom types involved in that
interaction. The atom types for each interaction should correspond to those
given in the atom types section, and should be comma separated. The format

14

of the bond types and angle types sections is as follows (the dihedral types
and improper types sections are similar):

bond types

1 type1,type2

2 type2,type6

...

angle types

1 type1,type2,type3

2 type4,type2,type7

...

Note that the order of the atom types in the definitions of the data types are
not unique. For example, the bond, angle, and dihedral types are reversible,
and can be provided in either order in the types file. For the improper types,
the second type listed must be the central atom.

Examples of types files for three different polymers can be found in the
example files included with the Polymatic distribution. These examples are
described in Section 3.6.

3.2.4 Input Script

The input script (polym.in) is provided to pass important parameters for a
polymerization step to the polymerization step code. Information given in
the input script can include the linker atoms to be bonded, specifications for
bonding criteria, optional artificial charges to add to linker atoms, additional
bonds to be made other than between linker atoms, etc.

Each definition in the input script is given on a separate line, where the first
word of the line is the command specifying which definition is provided. The
commands currently implemented in Polymatic are listed below. The order
of the command lines do not matter unless specified.

Linker atoms The linker atoms define the atoms between which bonds
are to be formed during the polymerization steps. As specified by the Poly-
matic algorithm, a bond is formed between the pair of linker atoms in closest

15

proximity in the structure that meets all bonding criteria. Definition of the
linker atoms is given in the input script by a link command as:

link type1,type1_new type2,type2_new

Example:

link Lc1,c1 Lc2,c2

Here, ‘type1’ and ‘type2’ are the atom types of the linker atoms, while
‘type1 new’ and ‘type2 new’ are new atom types assigned to the linker atoms
after they are bonded. These types should be consistent with the strings de-
fined in the types file.

Note that new atom types are given to bonded linker atoms to prevent them
from participating in further polymerization steps. Therefore, unique atom
types should be provided for linker atoms, which could be duplicates of other
atom types in the system with a new name.

Artificial charges Artificial charges can be added to linker atoms to in-
troduce stronger attractions between linker atoms during the molecular dy-
namics simulations. This can improve the efficiency of the polymerization by
increasing the chances of two linker atoms coming in contact, as well as re-
duce the separation between linker atoms when bonds are formed. Definition
of the charges is given in the input script by a charge command as:

charge q1 q2

Example:

charge +0.3 -0.3

Here, ‘q1’ and ‘q2’ are the charges added to all linker atoms during the
polymerization initialization, corresponding to qpolym in Figure 2. Their order
should be consistent with the linker atoms in the link command (i.e., ‘q1’
is added to ‘type1’ and ‘q2’ to ‘type2’). After a bond is formed between
two linker atoms, the charges are removed from that atom pair. During the
polymerization finalization, artificial charges are removed from any remaining
linker atoms at the end of the polymerization.

16

Note that the charges specified in the input script are added to the charges
already present for the linker atoms, and do not replace their original charges.
Adding charges of equal magnitude, one positive and one negative, maintains
a charge neutral system.

Cutoff radius The cutoff radius is a required bonding criterion for the
polymerization step. It specifies the maximum distance two linker atoms
can be from one another in order to allow bond formation. If no pair of
linker atoms is found within this distance, no bonds will be added during
the polymerization step. Definition of the cutoff radius is given in the input
script by a cutoff command as:

cutoff r

Example:

cutoff 6.0

Intramolecular bonds A bonding criterion can be specified to allow or
deny bonds to be formed within the same molecule. When polymerizing
linear systems, for example, intramolecular bonds are generally prevented
to keep the chains from forming loops. However, for network polymers,
intramolecular bonding should be allowed. Definition of the intramolecular
bonding criterion is given in the input script by an intra command as:

intra true_false

Example:

intra true

Note that the default value for intramolecular bonding is false.

Atom connectivity The remaining commands listed in this section in-
volve atoms within the structure other than the linker atoms. In order to
identify those atoms, the atom connectivity from the linker atoms to the
other involved atoms is required. The linker atoms are assumed to be atoms

17

1 and 2 in this definition, in the same order they were defined in the link

command. The connectivity and atom types sections (see below) should be
provided at the end of the input script. Definition of the atom connectivity
is given in the input script by a connect command as:

connect

1 connected_atoms_1

2 connected_atoms_2

3 connected_atoms_3

...

Here, the connectivity for each atom is given on a separate line, with the atom
number given, followed by a comma-separated list of the atom numbers of
the connected atoms. Only the connectivity to atoms referenced in other
commands is required.

Note that the atom numbers given in the connectivity section are not the
same as the atom numbers defined in the LAMMPS data file. They are
uniquely defined for use only in the polymerization step to identify atoms
within the repeat units.

A detailed example of a connectivity definition is provided here for ladder
polymer PIM-1, two repeat units of which are illustrated in Figure 3a. In
the figure, the linker atoms are marked by blue and red beads (atoms 1 and
2, respectively). The other atoms defined by atom numbers 3–12 are marked
by green beads. The connectivity for this example is defined as:

connect

1 3,4

2 5

3 6

4 7

5 8,9

8 10,11

9 12

These extra atom definitions, atoms 3–12, are provided so the atoms can
be referenced in other commands in the input script, examples of which are
provided in the remainder of this section for PIM-1.

18

Figure 3. (a) Definition of a polymerization step for PIM-1, where the
bonds to be formed are marked by dashed lines. Illustrations of (b) a vector
check and (c) a plane check performed during the PIM-1 polymerization step,
where the vectors and normal vectors are shown as blue arrows. The atom
numbers correspond to the input script commands.

19

Atom types The atom types for the atoms specified in the connectivity
section (see above) must also be given in order to identify the correct atoms
within the structure. The atom types and connectivity sections should be at
the end of the input script. Definition of the atom types is given in the input
script by a types command as:

types

1 type1

2 type2

3 type3

...

Here, the atom type for each atom is given on a separate line, where the
atom number corresponding to the connectivity section is given, followed by
the atom type. The atom types should be expressed as strings consistent
with the definitions given in the types file.

For the PIM-1 example, as illustrated in Figure 3a, the types section corre-
sponding to the connectivity section defined above is given as:

types

1 Lcp

2 Loc

3 Lcp

4 cp

5 cp0

6 cp

7 cp

8 cp0

9 cp

10 Loc

11 cp

12 c5

Note that, in this example, an atom type ‘cp0’ was specified as a duplicate
of ‘cp’ for atoms 5 and 8. This duplicate atom type was required to allow for
a unique atom connectivity. This is discussed in more detail for the PIM-1
polymerization step example given in Section 3.6.

20

Extra bonds Polymerization steps can be defined for more complicated
systems that require formation of an extra bond, in addition to the bond
added between the closest linker atoms. Definition of an extra bond is given
in the input script by a bond command as:

bond atom1 atom2

Here, ‘atom1’ and ‘atom2’ correspond to the atom numbers given in the
connectivity definition. Note that, if the atom types of the atoms involved
in the extra bond are consistent with the linker atom types, then their atom
types are changed after bond formation according to the link command, and
artificial charges are removed if included. In this situation, the atoms in the
extra bond should be specified in the same order as the link command.

For the PIM-1 example, shown in Figure 3a, the primary bond between the
closest linker atoms is marked by the black dashed line, the additional bond
by a gray dashed line. The extra bond for this example is given as:

bond 3 10

Vector checks Alignment checks can be imposed as bonding criteria to
ensure that only reasonable bonds are formed during a polymerization step.
Vectors can be defined by atoms within the system and the angle checked
between those vectors to ensure it meets a specified set of criteria. Definition
of a vector check is given in the input script by a vector command as:

vector head1,tail1 head2,tail2 conditions

Here, the two vectors involved in the alignment check are specified by their
head and tail atoms, identified by numbers as defined in the connectivity
section. The conditions for the angle between the vectors are given last,
which are specified as strict inequalities (i.e., < or >).

For the PIM-1 example, vectors can be defined pointing out from each repeat
unit, as illustrated by blue arrows in Figure 3b, the angle between which
would have to satisfy θ > 135◦. This example is defined as:

vector 1,7 5,12 >135

21

Plane checks Alignment checks can be imposed also on the angle between
normal vectors of best-fit-planes for atoms in the system. These work simi-
larly to the vector checks in the previous section. Definition of a plane check
is given in in the input script by a plane command as:

plane atom1a,atom1b,... atom2a,atom2b,... conditions

Here, the two planes involved in the alignment check are specified by groups
of atoms, identified by numbers as defined in the connectivity section. The
conditions for the angle between the normal vectors of the planes are given
last, which are specified as strict inequalities. If two separate conditions are
required, they are joined by an AND (&) or OR (||) logical operator.

In the PIM-1 example, planes are defined by atoms in the aromatic rings to
give normal vectors, as illustrated by the blue plane and arrows in Figure 3c,
the angle between which would have to satisfy θ < 40◦ or θ > 140◦. This
example is given as:

plane 4,1,3,6 9,5,8,11 <40,>140,||

Note that any number of vector and plane checks can be defined, each of
which should be given as its own command in the input script.

3.2.5 Output

The primary output of the polymerization step code is a LAMMPS data file
containing the system with updated connectivity (new.lmps). In addition,
output is written to the command prompt specifying the distance between
the linker atoms participating in the new bond formation (in angstroms), as
well as the atom numbers of the atoms. If an extra bond is formed, a line is
also printed to specify the atoms involved. For example:

Pair: 2.59 A (3,16)

Extra bond: (4,15)

Note that a new LAMMPS data file is written only if a successful polymer-
ization step is completed. If no linker atoms are found within the system
meeting all bonding criteria, no new file is written and an incomplete status
code (3) is returned.

22

3.3 Initialization and Finalization

3.3.1 About

The initialization and finalization of the system are performed at the begin-
ning and end of the polymerization loop, respectively, as indicated in the
flowchart in Figure 2. Currently, the only task included in the initialization
and finalization of Polymatic is the addition and removal of artificial charges
to linker atoms, if specified by a charge command in the polymerization
input script (see Section 3.2.4). In the initialization script (polym init.pl),
the artificial charges are added to all linker atoms within the system. Like-
wise, in the finalization script (polym final.pl), the artificial charges are
subtracted from any remaining linker atoms in the system.

If no artificial charges are used, the initialization and finalization steps need
not be included in the simulated polymerization algorithm. Furthermore,
these scripts could be updated to perform other tasks desired for initialization
or finalization of the simulation, such as changing the atom types of all
remaining linker atoms at the end of the simulation.

3.3.2 Syntax

The syntax of the polymerization initialization and finalization codes is:

./polym_x.pl -i data.lmps

-t types.txt

-s polym.in

-o new.lmps

Here, polym x should be either polym init or polym final.

Below is a description of all the command-line flags for this program. Note
that the order in which the flags are specified is not important.

1. The -i flag indicates the input data file of the initial system.

2. The -t flag indicates a types file, which identifies the data types in the
LAMMPS data file. Its format is described in Section 3.2.3.

23

3. The -s flag indicates the input script, which specifies parameters for
the polymerization step. Its format is described in Section 3.2.4.

4. The -o flag gives the name of the output data file to be created, which
contains the updated system.

5. The -h flag prints the syntax, then quits the program.

3.3.3 Output

The only output of the initialization and finalization scripts is a LAMMPS
data file with the updated system. Currently, this includes only the addition
or subtraction of artificial charges to all linker atoms within the system ac-
cording to charge command in the input script (polym.in). If no charges
are specified, no updates are performed, so that the output file is only a
duplicate of the initial data file.

3.4 Polymerization Loop

3.4.1 About

The polymerization loop bash script (polym loop.sh) controls the entire
simulated polymerization algorithm, performing the appropriate tasks as il-
lustrated in Figure 2. It is responsible for (i) calling LAMMPS to perform
energy minimization and molecular dynamics simulations, (ii) calling the perl
scripts described above to perform a polymerization step, initialization, or
finalization, and (iii) handling file organization and maintenance.

3.4.2 Syntax

The polymerization loop takes no command-line arguments. All variables
are defined in the beginning of the file or in input scripts. The syntax of the
polymerization loop code is:

./polym_loop.sh

24

3.4.3 Variables and Input Scripts

The polymerization loop requires five variables, which are defined at the
beginning of the script. They include:

1. bonds, the initial number of bonds formed in the polymerization, which
corresponds to B in Figure 2. This variable should be 0, unless restart-
ing the polymerization algorithm from the middle.

2. bondsTotal, the total number of bonds to be formed in the polymer-
ization, which corresponds to Btot in Figure 2. This number should not
be changed if performing a restart.

3. bondsCycle, the number of bonds to form in each cycle, which cor-
responds to Ncyc in Figure 2. The cycle MD is performed when the
logical statement B mod Ncyc = 0 is true.

4. mdMax, the maximum number of MD steps to perform during a bond
attempt, which corresponds to Mmax in Figure 2. The polymerization
is quit if M = Mmax during a bond attempt.

5. cycleMd, the period of cycle MD type 2 simulations (in number of cy-
cles), which corresponds to Nmd in Figure 2. The type 2 MD simulation
is performed when the logical statement (B/Ncyc) mod Nmd = 0 is true.

All other parameters for the algorithm are provided in input scripts, the file
paths for which are defined at the beginning of the bash script. These in-
clude a Polymatic input script (polym.in), which provides the parameters
for the polymerization steps as discussed in Section 3.2.4, and LAMMPS in-
put scripts, which give parameters for the energy minimization and molecular
dynamics simulations.

3.4.4 Setup and Output

The main output of the polymerization loop are the files created during each
step of the algorithm, including the files generated during LAMMPS molecu-
lar dynamics and energy minimization simulations. These are organized into
directories during the polymerization, as described here.

25

http://lammps.sandia.gov/doc/Section_commands.html
http://lammps.sandia.gov/doc/Section_commands.html

The base directory should contain the initial LAMMPS data file and types
file. There should also be a scripts directory that contains the polymer-
ization step perl script, polymerization initialization and finalization perl
scripts, Polymatic input script, and LAMMPS input scripts for the energy
minimization and molecular dynamics simulations. Therefore, the initial
setup should be:

polym_loop.sh # Polymerization loop script

data.lmps # LAMMPS data file of initial system

types.txt # Types file

scripts/

md0.in # LAMMPS input script, bond MD

md1.in # LAMMPS input script, cycle MD type 1

md2.in # LAMMPS input script, cycle MD type 2

min.in # LAMMPS input script, minimization

polym.in # Polymatic input script

polym.pl # Polymerization step script

polym_init.pl # Polymerization initialization script

polym_final.pl # Polymerization finalization script

New directories and files are created as the polymerization progresses. First,
the polymerization initialization is performed. A temporary data file is cre-
ated, called temp.lmps, which always contains the most current system dur-
ing the polymerization.

A directory is created for each bonding step, named step 00N. It includes
three LAMMPS data files: (i) the initial system, init.lmps, which is copied
from temp.lmps in the base directory, (ii) the updated system after a suc-
cessful polymerization step, data.lmps, and (iii) the system after an energy
minimization, min.lmps, which then replaces temp.lmps in the base direc-
tory. As such, each step will look similar to:

step_00N/

init.lmps

data.lmps

min.lmps

When the polymerization step does not complete successfully, a molecular
dynamics directory is created within the bond directory, named md M, where

26

M corresponds to the MD step number, as defined in Figure 2. This directory
contains two LAMMPS data files: (i) the initial system, data.lmps, which
is copied from init.lmps in the bond directory, and (ii) the system after the
molecular dynamics step, md.lmps, which then replaces init.lmps in the
bond directory. Note that only one bond MD directory is kept; if additional
steps are needed, the previous MD step is replaced with the current. A
bonding step with molecular dynamics will look similar to:

step_00N/

init.lmps

data.lmps

min.lmps

md_M/

data.lmps

md.lmps

After the completion of a cycle, every Ncyc bonds, a cycle molecular dynamics
step is performed in a new directory, named step 00N md1 or step 00N md2,
depending on whether it is the type 1 or type 2 cycle MD step. The directory
contains two LAMMPS data files: (i) the initial system, data.lmps, which
is copied from temp.lmps in the base directory, and (ii) the system after
molecular dynamics, md.lmps, which then replaces temp.lmps in the base
directory. As such, each MD step will look similar to:

step_00N_md*/

data.lmps

min.lmps

At the end, the polymerization finalization is performed. The final LAMMPS
data file is written to final.lmps.

Note that output files generated by LAMMPS during energy minimization
or molecular dynamics simulations are also written to their respective di-
rectories. In the provided bash script, all files are kept to allow tracking
of the progress throughout, as well as debugging if issues arise. However,
these files are not needed. The most current data file is always stored in the
LAMMPS data file temp.lmps, such that any other temporary files can be
deleted during or after the polymerization is completed.

27

In addition to the new files created during the polymerization, output is
written to the command-prompt with the progress of the simulation. A
header is written at the beginning with the input parameters. Then, a section
is written for each bonding step, which includes the output generated by the
polymerization step, as described in Section 3.2.5, as well as the number of
bond attempts required for that step, defined by M in Figure 2.

For example, the output for a step during the polymerization might be:

Step 003:

Pair: 3.18 A (36,123)

Attempts: 6

In this example, the third bonding step completed successfully after six at-
tempts, forming a bond between atoms 36 and 123, which were separated by
a distance of 3.18 Å.

At the end of the polymerization, a footer is written to the output summariz-
ing the number of bonds successfully created and the completion percentage
of the polymerization.

3.5 Notes

Below is a list of notes about the polymerization codes that may be useful
for using and/or modifying them:

1. It is important that all force field coefficients needed during the poly-
merization are provided in the original data file. This includes any new
data types (atom, bond, angle, dihedral, and imporper) that are added
to the system during a polymerization step. This can be observed, for
instance, by comparison of the data files for the polystyrene repeat unit
in Example 1 and the pair of repeat units in Example 3. If terms are
missing, the polymerization step will quit with an error.

2. In the polymerization scripts, all system information (atoms, bonding,
coefficients, etc.) is stored in variables and arrays (i.e., $numAtoms and
@atomType). Generally, arrays of atom or bonding information is stored
by the unique ID of the atom, bond, angle, etc.

28

3. The identification of the closest pair of linkers in the system is per-
formed in the findPair subroutine. From there, all bonding criteria
are checked for each pair, the checks for which can be performed in a
separate subroutine (i.e., alignment). Any new bonding criteria im-
plemented in Polymatic, should be included here.

4. After identification of the closest pair of linkers, all updates to the sys-
tem information and connectivity are made in the makeUpdates sub-
routine. When a new bond is added, all possible angles, dihedrals, and
impropers resulting from the new bonding are also automatically added
to the system definition.

5. The Polymatic input script is read in the readPolymInput subroutine.
If new commands for the input script are implemented, they should be
added here.

6. Polymerization steps are implemented only for cubic simulation cells
with periodic boundary conditions in all dimensions. Updated are re-
quired if other system setups are desired.

7. The way the algorithm is implemented in polym loop.sh, it is possible
to restart a polymerization from any bond step. To do so, the bonds

variable in the script should be set to the number of the last bond
completed, instead of 0.

8. The polymerization loop script (polym loop.sh) is setup to run en-
ergy minimization and molecular dynamics simulations in LAMMPS
using the setup for the High Performance Computing resources at Penn
State. Modifications should be made to the lines in the script calling
LAMMPS to be consistent with the setup being used, including the
energyMin and molDyn functions, as well as the initial loading of the
LAMMPS module at the end of the file paths section.

9. New data files are obtained after an energy minimization or molecular
dynamics simulation in LAMMPS using the restart2data tool. It is not
provided with the Polymatic distribution, but can be found with the
additional tools in the LAMMPS distribution. Note that the version of
the restart2data tool should be consistent with the version of LAMMPS
being used for the simulation.

29

http://rcc.its.psu.edu/resources/hpc/
http://lammps.sandia.gov/doc/Section_tools.html#restart

3.6 Examples

Three examples are provided here for using the polymerization codes. The
first example (Example 3) performs a single polymerization step for pol-
ystyrene using the basic functionality of Polymatic. The second example
(Example 4) performs a single polymerization step for PIM-1 with the more
advanced functionalities. It also provides an instance in which a polymer-
ization step is not successfully completed. The last example (Example 5)
illustrates a full simulated polymerization of polycarbonate.

Example 3: This example will perform a single polymerization step on
two nearby polystyrene repeat units, which are illustrated in Figure 4a. The
closest pair of linker atoms is specified by blue and red beads connected by
a dashed line, with atom types ‘Lc1’ and ‘Lc2’, respectively.

The original system is provided in data.lmps, where artificial charges have
already been added to the linker atoms (±0.3 e), and the types file in
types.txt. The input script (polym.in) specifies the linker atoms, the artifi-
cial charges, and a cutoff radius of 6 Å. The polymerization step is performed
with the command:

./polym.pl -i data.lmps -t types.txt -s polym.in -o new.lmps

On successful completion of the polymerization step, the following is output
to the command prompt (out):

Pair: 3.20 A (23,8)

This signifies that a bond has been made between atoms 23 and 8 at a
separation distance of 3.20 Å, as shown in Figure 4b. The atom types are
changed to their new values (‘c1’ and ‘c2’, respectively) and artificial charges
are removed from the pair.

Note that atom types ‘Lc1’ and ‘Lc2’ are specified as duplicates of ‘c1’ and
‘c2’ to provide unique types for use in the polymerization step. Changing
the atoms types (e.g., from ‘Lc1’ to ‘c1’) after a successful polymerization
attempt is necessary to ensure that these atoms do not participate in further
polymerization steps.

30

Figure 4. Illustration of two nearby repeat units of polystyrene and PIM-1
before (a,c) and after (b,d) a polymerization step.

31

A data file with the updated connectivity is also provided (new.lmps). Com-
parison of this file with the original system (data.lmps) indicates the new
bond, angles, dihedrals, and impropers in their respective sections. The
headers of the files provide the update counts of each:

data.lmps # new.lmps

32 atoms 32 atoms

32 bonds 33 bonds

48 angles 54 angles

64 dihedrals 79 dihedrals

16 impropers 22 impropers

Example 4: This example will perform a single polymerization step on two
nearby PIM-1 repeat units, which are illustrated in Figure 4c. The closest
pair of linker atoms is specified by blue and red beads connected by a black
dashed line, with atom types ‘Lcp’ and ‘Loc’, respectively. Other atoms
called in the input script commands are specified by green beads, and the
additional bond required for the PIM-1 polymerization step is signified by
the gray dashed line.

The original system is provided in data.lmps, where artificial charges have
already been added to the linker atoms (±0.3 e), and the types file in
types.txt. The input script (polym.in) specifies the linker atoms, the ar-
tificial charges, a cutoff radius of 6 Å, the extra bond, the alignment checks,
and the connectivity and atom types sections. The polymerization step is
performed with the command:

./polym.pl -i data.lmps -t types.txt -s polym.in -o new.lmps

On successful completion of the polymerization step, the following is output
to the command prompt (out):

Pair: 2.73 A (1,85)

Extra bond: (2,86)

This signifies that a bonds have been made between atoms 1 and 85 (separa-
tion distance of 2.73 Å) and between atoms 2 and 86, as shown in Figure 4d.
Additionally, the atom types are changed to their new values (‘cp’ and ‘oc’,
respectively) and artificial charges are removed from the pair.

32

Note that atom types ‘Lcp’ and ‘Loc’ are specified as duplicates of ‘cp’ and
‘oc’ to provide unique types for use in the polymerization step. Changing
the atoms types (e.g., from ‘Lcp’ to ‘cp’) after a successful polymerization
attempt is necessary to ensure that these atoms do not participate in further
polymerization steps.

Furthermore, atom type ‘cp0’ is defined as a duplicate of ‘cp’ for atoms 5
and 8 in the atom types section of the input script to allow for a unique
connectivity definition. Otherwise, when identifying the atoms bonded to
atom 5, for example, it would be impossible to distinguish between atoms 8
and 9, which would typically both be of type ‘cp’.

A data file with the updated connectivity is also provided (new.lmps). Com-
parison of this file with the original system (data.lmps) indicates the new
bonds, angles, dihedrals, and impropers in their respective sections. The
headers of the files provide the update counts of each:

data.lmps # new.lmps

110 atoms 110 atoms

120 bonds 122 bonds

216 angles 222 angles

346 dihedrals 361 dihedrals

104 impropers 106 impropers

Example 5: This example will perform the entire simulated polymerization
algorithm on a periodic system of 40 polycarbonate repeat units, which are
illustrated in Figure 5a.

In the base directory, the original system is provided in data.lmps, and
the types file in types.txt. Additionally, the Polymatic input script, the
LAMMPS input scripts, and the polymerization scripts are located in a direc-
tory called scripts. The input script (polym.in) specifies the linker atoms,
the artificial charges, and a cutoff radius of 6 Å, while the LAMMPS input
scripts specify the parameters for the energy minimization and molecular
dynamics simulations.

The parameters of the polymerization are set in the ‘User parameters’ section
of the polym loop.sh script, which specify that 39 total bonds are to be

33

Figure 5. Illustration of a system of (a) 40 repeat units of polycarbonate
and (b) the polymer chains after the Polymatic simulated polymerization is
performed.

34

formed (bondsTotal=39), with cycles of 5 bonds (bondsCycle=5), a period
of 3 cycles for the type 2 cycle MD simulations (cycleMd=3), and a maximum
of 25 bond attempts (mdMax=25). File paths to all the necessary scripts are
also given in the ‘File paths’ section of the script. The polymerization is
performed with the command:

./polym_loop.sh

The final system of the polymerization is written to the LAMMPS data file
final.lmps, which is illustrated in Figure 5b. Note that intermediate files
are also generated during the polymerization, as discussed in Section 3.4.4,
but are not included with the example files in the this distribution.

In addition to the new files generated, output is written to the command
prompt summarizing the polymerization (out). This includes the parame-
ters, the output for each polymerization step (as discussed in Section 3.2.5),
and a summary of the run. In this example, 37 of 39 bonds were completed,
resulting in a 95% completion.

Note: The input and output files for these three examples are provided
with the Polymatic distribution in directories Example3, Example4, and
Example5.

35

	Introduction
	About Polymatic
	Included Files
	GNU Distribution Notice
	Citation
	Publications Using Polymatic
	Acknowledgments

	Random Packing
	About
	Syntax
	Output
	Notes
	Examples

	Simulated Polymerization
	About
	Polymerization Step
	About
	Syntax
	Types File
	Input Script
	Output

	Initialization and Finalization
	About
	Syntax
	Output

	Polymerization Loop
	About
	Syntax
	Variables and Input Scripts
	Setup and Output

	Notes
	Examples

