NCN Nanotechnology 101 Series

Nanoelectronics 101

Mark Lundstrom
Purdue University
Network for Computational Nanotechnology
West Lafayette, IN USA

- 1) Introduction
- 2) Transistors
- 3) CMOS
- 4) Integrated Circuits
- 5) 21C Electronics?

1. The importance of transistors (and chips)

supercomputers

PCs

iPods

cell phones

PDAs

1. The scale of things

1. What is a billion?

A billion seconds ago it was 1959.

A billion minutes ago Jesus was alive.

A billion hours ago our ancestors were living in the StoneAge.

A billion days ago no-one walked on two feet on earth.

1. Vacuum tube electronics

Vacuum Tube

Edison effect (Edison, 1883) cathode rays (Thompson, 1897) diode (Fleming, ~1900) triode (De Forest, 1906)

ENIAC

(1945, Mauchly and Echkert, U Penn)

http://en.wikipedia.org

18,000 vacuum tubes
1000 sq. feet of floor space
30 tons
150 KW
~50 vacuum tubes / day

Field-Effect Transistor Lillienfield, 1925 Heil. 1935

"The transistor was probably the most important invention of the 20th century,"

Ira Flatow, Transistorized! www.pbs.org/transistor

Bardeen, Schockley, and Brattain, 1947

copyright: Lucent / Bell Lab

transistors

Sony TR-63 6-transistor shirt pocket radio 1957

http://www.etedeschi.ndirect.co.uk/early.sony.htm

symbo

switch

amplifier

3. CMOS

n-MOS: $V_{GS} > 0$

p-MOS: $V_{GS} < 0$

3. CMOS

"transfer characteristic"

3. 2-input CMOS NAND gate

4. Integrated circuits

integrated circuit

Kilby and Noyce (1958, 1959)

Intel 4004

Hoff and Faggin (1971)

~2200 transistors

4. Microelectronics

4. What if a chip were the size of New York City?

- Transistor gate length would be 4 cm.
- Feature edges would would be specified to the nearest mm.
- There would be 200,000 km of wires (total) on the 8 levels of metal.

4. Moore's Law

Gordon E. Moore Co-founder, Intel Corporation

Electronics, vol. 38, April 19,1965

4. Moore's Law

more transistors per chip means: higher performance / lower cost

4. Transistor scaling

Each technology generation:

$$L \rightarrow L/\sqrt{2}$$
 $A \rightarrow A/2$

Number of transistors per chip doubles

(Moore's Law)

(device scaling)

4. Nanoelectronics

Working at the length scale of 1-100 nm in order to create materials, devices, and systems with fundamentally new properties and functions because of their nanoscale size.

paraphrased from www.nano.gov

4. Transistor scaling

Each technology generation:

$$L \rightarrow L/\sqrt{2}$$
 $A \rightarrow A/2$

Number of transistors per chip doubles

(Moore's Law)

(device scaling)

4. Scaling challenges

- 1) low voltage operation
- 2) high on-current
- 3) low off-current
- 4) series resistance
- 5) device variability

4. More than Transistors

4. The power crises

4. Design challenges

- 1) power
- 2) interconnects
- 3) device variability
- 4) reliability
- 5) complexity

4. Exponential Growth

1	90 nm	1B/chip
2		2B
3		4B
4		8B
5		16B
6		32B
7		64B
8		128B
10		256B
11		512B
12		1T

4. Exponential Growth

from "Digital Immortal," by R.W. Lucky, New Republic, Nov. 8. 1999

4. Exponential Growth

5. Beyone Silicon CMOS: Molecular electronics?

(Liang and Ghosh)

5. Beyond Silicon CMOS: Molecular transistors?

S. Datta, A. Ghosh, P. Damle, T. Rakshit

Ghosh, Rakshit, Datta, Nanoletters 4, 565, 2004

5. Beyond Silicon CMOS: Carbon nanotube transistors?

Hongjie Dai group, Stanford

5. Beyond Silicon CMOS: Nanowire transistors?

Samuelson Group Lund

5. Beyond transistors?

5. 21st Century Electronics

- 1) CMOS devices face serious challenges leakage, variations, interconnects, ...
- 2) Power dissipation limits device density not our ability to make devices small
- 3) CMOS will operate near ultimate limits no transistor can be fundamentally better
- 4) CMOS will provide more devices than can be used increasingly, design will drive progress

5. 21st Century Electronics

- 5) New tools, assembly techniques, and understanding will help push CMOS to its limits
- 6) Beyond CMOS devices will add functionality to CMOS non-volatile memory, opto-electronics, sensing....
- 7) Beyond CMOS technology will address new markets macroelectronics, bio-medical devices, ...
- 8) Biology may provide inspiration for new technologies bottom-up assembly, human intelligence

Nanoelectronics 101

Questions?