NCN Nanotechnology 101 Series

Nanoelectronics 101

Mark Lundstrom
Purdue University
Network for Computational Nanotechnology
West Lafayette, IN USA

1) Introduction
2) Transistors
3) CMOS
4) Integrated Circuits
5) 21C Electronics?

1. The importance of transistors (and chips)

PCs

iPods

PDAs

1. The scale of things

1 meter	$\mathbf{1}$ millimeter	$\mathbf{1}$ micrometer	1 nanometer
$(1$ billion nm$)$	$(1$ million nm$)$	$(1$ thousand nm$)$	

people
things
ants
dust

cells
molecules
(e.g. DNA)

1. What is a billion?

A billion seconds ago it was 1959.

A billion minutes ago Jesus was alive.
A billion hours ago our ancestors were living in the StoneAge.
A billion days ago no-one walked on two feet on earth.

1. Vacuum tube electronics

Vacuum Tube

Edison effect (Edison, 1883) cathode rays (Thompson, 1897) diode (Fleming, ~1900)
triode (De Forest, 1906)
(1945, Mauchly and Echkert, U Penn)

http://en.wikipedia.org
ENIAC

18,000 vacuum tubes
1000 sq. feet of floor space
30 tons
150 KW
~50 vacuum tubes / day

2. Transistors

Field-Effect Transistor Lillienfield, 1925 Heil. 1935

"The transistor was probably the most important invention of the 20th century,"

Ira Flatow, Transistorized!
www.pbs.org/transistor

2. Transistors

http://www.etedeschi.ndirect.co.uk/early.sony.htm

2. Transistors

symbo
switch
amplifier
$v_{G}=\prod_{i}^{1}$

2. Transistors

$$
E=-q V
$$

electron energy vs. position

3. CMOS

$n-M O S: V_{G S}>0$
$\mathrm{p}-\mathrm{MOS}: \mathrm{V}_{\mathrm{GS}}<0$

3. CMOS

3. 2-input CMOS NAND gate

4. Integrated circuits
integrated circuit

Kilby and Noyce $(1958,1959)$

Intel 4004

Hoff and Faggin (1971)
~2200 transistors

4. Microelectronics

Silicon "chip"
($\sim 2 \mathrm{~cm} \times 2 \mathrm{~cm}$)

4. What if a chip were the size of New York City?

- Transistor gate length would be 4 cm .
- Feature edges would would be specified to the nearest mm.
- There would be $200,000 \mathrm{~km}$ of wires (total) on the 8 levels of metal.

From Bob Doering, Texas Instruments, Jan. 2004

4. Moore's Law

Gordon E. Moore

Co-founder, Intel Corporation

Electronics, vol. 38, April 19,1965

4. Moore's Law

more transistors per chip means: higher performance / lower cost

4. Transistor scaling

Each technology generation:
(device scaling)

$$
L \rightarrow L / \sqrt{2} \quad A \rightarrow A / 2
$$

Number of transistors per chip doubles (Moore's Law)

4. Nanoelectronics

Working at the length scale of 1-100 nm in order to create materials, devices, and systems with fundamentally new properties and functions because of their nanoscale size.
paraphrased from www.nano.gov

4. Transistor scaling

Each technology generation:
(device scaling)

$$
L \rightarrow L / \sqrt{2} \quad A \rightarrow A / 2
$$

Number of transistors per chip doubles (Moore's Law)

4. Scaling challenges

1) low voltage operation
2) high on-current
3) low off-current
4) series resistance
5) device variability

4. More than Transistors

4. The power crises

intel.

Power density will increase

4. Design challenges

1) power
2) interconnects
3) device variability
4) reliability
5) complexity

4. Exponential Growth

1	90 nm	$1 \mathrm{~B} /$ chip
2		2 B
3		4 B
4		8 B
5		16 B
6		32 B
7		64 B
8		128 B
10		256 B
11		512 B
12		1 T

4. Exponential Growth

from "Digital Immortal," by R.W. Lucky, New Republic, Nov. 8. 1999

4. Exponential Growth

$$
\begin{array}{|c|c|c|c|c|c|}
\hline \bullet & \circ & \ddots \cdot & & & \\
\hline & & & & & \\
\hline
\end{array}
$$

5. Beyone Silicon CMOS: Molecular electronics?

C_{60} on $\mathrm{Si}(100) 2 \times 1$

EXPERIMENTS GEOMETRY

THEORY

STM

Hersam, Datta, Purdue

5. Beyond Silicon CMOS: Molecular transistors?

Molecular Relay

S. Datta, A. Ghosh, P. Damle, T. Rakshit

Ghosh, Rakshit, Datta, Nanoletters 4, 565, 2004

5. Beyond Silicon CMOS: Carbon nanotube transistors?

McEuen et al., IEEE Trans. Nanotech., 1, 78, 2002.

Hongjie Dai group, Stanford

5. Beyond Silicon CMOS: Nanowire transistors?

5. Beyond transistors?

5. 21st Century Electronics

1) CMOS devices face serious challenges leakage, variations, interconnects, ...
2) Power dissipation limits device density not our ability to make devices small
3) CMOS will operate near ultimate limits
no transistor can be fundamentally better
4) CMOS will provide more devices than can be used increasingly, design will drive progress

5. 21st Century Electronics

5) New tools, assembly techniques, and understanding will help push CMOS to its limits
6) Beyond CMOS devices will add functionality to CMOS non-volatile memory, opto-electronics, sensing....
7) Beyond CMOS technology will address new markets macroelectronics, bio-medical devices, ...
8) Biology may provide inspiration for new technologies bottom-up assembly, human intelligence

Nanoelectronics 101

Questions?

