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1. Recall: ON vs. OFF State HCI Degradation 

 
2. SiH vs. SiO bonds and theory of universal scaling 

 
3. Dielectric Breakdown during HCI 

 
4. Conclusions 



Recall: HCI degradation in non-logic transistors 
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Classical HCI … only ON state?! 

True only for logic transistor,  at relatively low operating voltage 
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Recall: OFF state HCI is possible, if …  

… large band-to-band tunneling at high VD 
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OR as parasitic degradation in accelerated tests of logic transistors 



Degradation mechanism  
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Electric field peaks at the surface leading to BTBT & Impact ionization 
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Heating of electrons generated by BTBT 

Impact Ionization of BTBT current generate hot carriers 
8 

Alam  ECE-695 

-4 

-2 

0  

2  

4  

6  

8  

C
B,

 V
B 

(V
) 

X (along the channel) (a.u.) 

BTBT 

= 

Hot hole 
E > 4.7eV 

Hot Electron 
E > 3.1eV 



Alam  ECE-695  
9 

 

 

1. ON vs. OFF State HCI Degradation 

 

2. SiH vs. SiO bonds and theory of universal scaling 

 

3. HCI by TDDB: Puzzle of the Weibull slope 

 

4. Conclusions 

Outline 



Generation & recovery of NOT in Off-state 

 Higher time exponents  No recovery 

Most of the bonds broken are Si-O …  
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Correlation of hot hole and NIT 

Lateral profiling of NIT correlates well with hot carrier profile by SMC 
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  Recall: voltage dependent constant t0 
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How to determine t0 …  
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1. Recall: ON vs. OFF State HCI Degradation 

 
2. SiH vs. SiO bonds and theory of universal scaling 

 
3. Dielectric Breakdown during HCI 

 
4. Conclusions 



HCI leads to dielectric breakdown! 
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Weibull slopes for NMOS and PMOS 
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Classical theory suggests 
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Number Weibull vs. time Weibull 
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Checking time exponent α (DeNMOS) 
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Proportional  
to  NBD 

Use CP or SILC for Number Weibull, TDB for time-Weibull 



Checking power exponent α (DePMOS) 
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Hypothesis: Perhaps xo is not the same! 
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Perhaps the breakdown paths are larger than oxide thickness 
 
Perhaps the path-lengths of NMOS and PMOS are different  
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Recall: Current ratio technique 
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Emission microscopy on L=10 µm nFETs confirms the BD position 
determination method. 

Locations close to S/D are challenging 
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Rational for S/D region exclusion 
1st SBD location 2nd SBD location 
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Location of 1st SBD spot 
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Determination of breakdown spot for a 
nonuniform potential profile 
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Position determination in 
non-uniform field 
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Correlated percolation and TDDB 

Same parameter set explains both set of data 
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Conclusions 

   Off state HCI degradation appears to be a general phenomena 
for wide variety of high voltage transistors, including LDMOS, 
DeNMOS, DePMOS, etc.   
 

    The degradation process follows the same universal relationship 
as has been discussed for classical ON-state degradation.  
 

   The remarkable fact is the off-state HCI often leads to TDDB 
which gives rise to many puzzling features.  
 

   Appropriate use of BD position and non-uniform percolation 
resolves the puzzles about Weibull slopes and power-exponents 
and in the process establishes percolation theory on solid footing.  
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Self-Test Questions 
1. In PMOS transistors ,which carriers is responsible for off-state HCI?  

2. What is the distinction between number-Weibull and time-Weibull? 

3. Which measurement is used to determine Number-Weibull? Name 

another technique that could do the same.  

4. What is ‘area-scaling’? Will area-scaling hold for off-state BD? 

5. What conditions – in general – must be satisfied for area scaling?  

6. How did the gate electric field profile influence percolation simulation?  

7. For universal curve, is the value of power exponent a fixed number? If 

not, what exponent should we choose and why?  
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