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Recall: HCI degradation in non-logic transistors
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Classical HCI ... only ON state?!
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True only for logic transistor, at relatively low operating voltage
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Recall: OFF state HCl is possible, if ...

| V;~0

... large band-to-band tunneling at high VD

OR as parasitic degradation in accelerated tests of logic transistors
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Electric field peaks at the surface leading to BTBT & Impact ionization
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Heating of electrons generated by BTBT
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Impact lonization of BTBT current generate hot carriers
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Generation & recovery of N, in Off-state

; - ' ' 1
O 27C 6V 8@ Stress I Relax
| @ 105C 8@ ] |

7.0V

F 0.72

AICP (a.u.)
AICP (a. u.)

L av,
1
1

PP BRI EEPEPEPTTrT BT '
100 100 100 100 10" 0 T_1000 2000
Time () ime (s)
Higher time exponents No recovery

Most of the bonds broken are Si-O ...
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Correlation of hot hole and N ;
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Lateral profiling of N, correlates well with hot carrier profile by SMC
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Recall: voltage dependent constant t,
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t,(Ve,Vp) t*(\/G Vo)
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HCI leads to dielectric breakdown!
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In(-In(1-F))

Weibull slopes for NMOS and PMOS

DePMOS
B=2.31
DeNMOS
B=1.66

TBD (a.u.)

Classical theory suggests
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Xo,PMOS VS. Xo,NMOS
aO,PMOS VS. aO,NMOS

Oy pmos VS g nmvos

There is a problem here, a test for percolation theory !
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Number Weibull vs. time Weibull
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&ICP (a.u.)

Checking time exponent a. (DeNMOQOS)

Use CP or SILC for Number Weibull, TDB for time-Weibull
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Verified, nothing wrong with exponent!
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Checking power exponent a (DePMOQOS)
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Again, nothing wrong with exponent!
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Hypothesis: Perhaps x_ is not the same!

DeNMOS DeNMOS

Y (a.u.)
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X (a.u.)

Perhaps the breakdown paths are larger than oxide thickness

Perhaps the path-lengths of NMOS and PMOS are different
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Recall: Current ratio technique
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Locations close to S/D are challenging
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Emission microscopy on L=10 um nFETs confirms the BD position

determination method.
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(Normalized wrt L)

Rational for S/D region exclusion
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Determination of breakdown spot for a

CB(a.u.)

nonuniform potential profile
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Experiment (LHS) and simulation (RHS) locates BD spot
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Position determination in
non-uniform field

DeNMOS DePMOS
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Breakdown occurred in DePMOS slightly further down
in the channel compared to DeNMOS
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Correlated percolation and TDDB
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Same parameter set explains both set of data
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Conclusions

 Off state HCI degradation appears to be a general phenomena

for wide variety of high voltage transistors, including LDMQOS,
DeNMOS, DePMOS, etc.

(d The degradation process follows the same universal relationship
as has been discussed for classical ON-state degradation.

(J The remarkable fact is the off-state HCI often leads to TDDB
which gives rise to many puzzling features.

d Appropriate use of BD position and non-uniform percolation
resolves the puzzles about Weibull slopes and power-exponents

and in the process establishes percolation theory on solid footing.
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Self-Test Questions

In PMOS transistors ,which carriers is responsible for off-state HCI?
What is the distinction between number-Weibull and time-Weibull?

Which measurement is used to determine Number-Weibull? Name

another technique that could do the same.

What is ‘area-scaling’? Will area-scaling hold for off-state BD?

What conditions — in general — must be satisfied for area scaling?

How did the gate electric field profile influence percolation simulation?

For universal curve, is the value of power exponent a fixed number? If

not, what exponent should we choose and why?
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