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Lecture outline for dielectric breakdown
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Breakdown in thick dielectrics: water tree

Outer electrode

Dielectric insulator

(e.g., polyethylene) S P s

Inner electrode —__ [/ [ 4 - - - - -
Tiny pore or crack R Sl

Electrical treeing

Semiconducting

polymer sheaths N N\ Ry - - - 00 -0 - -

Cable jacket

(a) (b)

Electrical breakdown by treeing

{formation of discharge channels) in a

ow-density polyethylene insulation

when a 50 Hz, 20 kV (rms) voltage is

applied for 200 minutes to an

e|F;droc|e embedded in the insulation.
SOURCE: J. W. Billing and D. J.
Groves, Proceedings of the Institution
of Electrical Engineers, 212, 1974,
p. 1451,
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Breakdown in thick dielectrics

Coaxial cable connector with traces of corona discharge; electrical treeing.
SOURCE: M. Mayer and G.H. Schroder , “Coaxial 30 kV Connectors for the
RG220/U Cable: 20 Years of Operational Experience”lEEE Electrical Insulation
Magazine ,Vol. 1 6, March/April 200Q,4 Edebigare 6. (© IEEE, 2000)



Breakdown in thick dielectrics

Tree and bush type electrical discharge structures

(a) Voltage,V = 160 kV, gap spacing d = 0.06 m at various times.

(b) Dense bush discharge structure, V = 300 kV, d = 0.06 m at various times.
SOURCE.:V. Lopatin, M.D. Noskov, R. Badent, K. Kist,A.]. Swab, “Positive Discharge
Development in Insulating Oil: Optical Observation and Simulation” |IEEE Trans. on Dielec
and Elec. Insulation Vol. 5, No. 2, 1998, PA%nﬁ IEEE%@ 2.(©IEEE, 1998)
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Dielectric breakdown in everyday life

Lightning Unrolling a scotch tape

Putterman,
Nature, 2008
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Tesla coils ...
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Breakdown in thick vs. thin oxides

V. <E Ballistic transport
A 7% Hot contact

Contact dictates BD

\ Diffusive transport
Dominated by bulk

Contact insignificant

b |
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Paschen’s law (experiment)

~a(PxL)
Plane parallel BD |n(P X |_) 1c
capacitor Va
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Many gases show this breakdown behavior ....
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Stages of ionization and breakdown
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(1) Basics of field ionization

Energy flux balance ...
E-E
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gEv =

Energy balance ...
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(2) Avalanche: initiation

d +ve ion
_n — — al ol oL
o =on n(x)=ne +y| ng (e 1) [e +...
Cathode oL
factor B n,c
1-y(e” -1)

At breakdown, even noise is

The numerator diverges ...

In(l+1j ~ gl
v

v depends on geometry ...
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(2) Avalanche: breakdown voltage

lonization coefficient and pressure ....

Pe pr
A [/ "\
—3E, /29t _AP
OLBD"‘NXG 0i =480 ~BiP><e AP(LVep)

and breakdown condition ...

In(1+ 1] ~ Ol L = B.P x g A7(HVeo) |
Y

Implies Paschen’s law ...

v APxL v a(PxL)

BD —

In(B,P x L)—In{ln(l+y‘1)} "® In(PxL)+c
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(2) Paschen’s law (experiment)
_a(PxL)
" In(PxL)+c

a and ¢ material constants

10°¢

Insignificant ionization

Too many collisions
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(stage 3) Spatial dynamics at breakdown

Lichtenberg figures Niemeyer, PRL,52(12), 1984.

Discharged f |
via a point—~

centers7 /' /

PMMA: Pre charged
by 3-5 MeV electrons

Fractal dimension ~ |.6-1.7

One of the great successes itfundet’standing BD in 1980s ...
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Algorithm for fractal model of breakdown

=1

1 ¥ Pattern grows stepwise

+ (=0 for all discharged points

+ Solve Poisson equation at every
time-step

+ One step is selected at each step

E(i' k')

Y E

P(i,k >i' k') =

(I) =0 Repeat

Niemeyer, PRL,52(12), 1 984.
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FIG. 1. Time-integrated photograph of a surface
leader discharge (Lichtenberg figure) on'a 2-mm glass
plate in 0.3-MPa SF;. Applied voltage pulse: 30 kVx1
us (Ref. 5). This experiment corresponds to an equipo-
tential channel system growing in a plane with radial elec-
trode.

Niemeyer, PRL52(12), 1984.

FIG. 2. Illustration of the stochastic model we intro-
duce to simulate dielectric breakdown on a lattice. The
central point represents one of the electrodes while the
other electrode is modeled as a circle at large enough dis-
tance. The discharge pattern is indicated by the black
dots connected with thick lines and it is considered equi-
potential (¢ =0). The dashed bonds indicate all the pos-
sible growth processes. The probability for each of these
processes is proportional to the local electric field (see
text).



(4) Temporal dynamics of breakdown

N

Xenon gas
discharge

(N

t=40.0 us

t=260pus  t=27.5ps

Wagenaars et al., PRL, 98, 075002, 2007. Alam ECE-695
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(4) Temporal dynamics by Stark spectroscopy

N2V
V O Wagenaars et al.,
O @) PRL, 98, 075002, 2007.
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Breakdown in bulk solid dielectric

Momentum balance ...

mv 0 = v = qEt
T m O\ £m
Energy balance . L~ h(xlo > -
m N
qEv = £- E h(x)o / \
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Theory vs. experiment:
small bandgap solids

) J.M. Meek and D.]. Craggs, Electrical Breakdown of Gases (Oxford U.P, London, 1953)
2) S.M.Sze, Physics of Semiconducting Devices (Wiley, New York, 1969)

t: | m¥im, | hw, Es Es Reference
(eV) (eV) | (predicted) | (observed)

0.17 0013 0.025 25x102  4x]|02 (1)
036 002 003 86x102  [x]0? (1)
0.66 022 0.037 1108 2)
112 032 0063 3.7xI05  3x[0° 2)
143 035 0035 3.7xI05  3x]0° 2)

~5% | 0° (1)
224 035 005 55x]0°  5x|0° 2)

~10%10° (1)

Reasonable correspondence between theory and experiments for
Alam ECE-695
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Theory vs. experiment:

large bandgap solids

) J.M. Meek and D.J. Craggs, Electrical Breakdown of Gases (Oxford U.P, London, 1953)
2) M. Lenzlinger and E.H. Snow, . Appl. Phys. (40, 287) (1969)
3) C.M.Osburn and E.|.Weitzmann, . Electrochem. Soc. (119, 603) (1972)

Ee Reference | hw, (eV) Es
eV) (predicted) (observed) (predicted)
dS

1.7x107  2x106 (1) 0.038  4.1x]08

26  1.7x107  2x]0¢ (1) 0.03 3.6% 106

33 22x107  4x]Q8 (1) 0.07 6.4% 108

9.0  6.Ix107  9x]08 (2,3) 0.12 | 4% 107

NFlN 80  55x107  1.6x10¢ (1) 0.024  6.2x]08

Poorer correspondence between theory and

experiments for very larger-gap materials ....
27



Conclusions

Q Dielectric breakdown has a long history and broad range of
physical and technological applications

0 TDDB is important for thick and thin dielectrics, but the
physics of breakdown is very different.

 Correlated breakdown in thick dielectric could be
understood in terms of Paschen’s model — although the spatial
and temporal details requires generalizations.

0 While the model is excellent for small bandgap
semiconductors, large bandgap materials often require
assumption of pre-existing defects.
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Review Questions

Mention a few differences between thick and thin oxide breakdown.

Is breakdown in thick oxides contact dominated? Can | use AHI theory
here!?

How does the Paschen’s cascade initiate?

What does it mean to have a fractal dimension of 1.7 for 2D breakdown!?
Why does the number suggest spatial correlation ?

What is a color center? How does color center help us visualize
breakdown in polymers?

Explain physically the origin of the minimum breakdown voltage for gas
dielectric?

Is gas dielectric breakdown reversible? What about solid dielectric BD?
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