

ECE695: Reliability Physics of Nano-Transistors Lecture 31: Collecting and Plotting Data

Muhammad Ashraful Alam alam@purdue.edu

copyright 2011

This material is copyrighted by M. Alam under the following Creative Commons license:

Conditions for using these materials is described at http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline

I. Origin of data, Field Acceleration vs. Statistical Inference
2. Nonparametric information
3. Preparing data for projection: Hazen formula
4. Preparing data for projection: Kaplan formula
5. Conclusions

Where do data come from: TDDB Example

Small changes in the slope can be serious

Where do data come from: TDDB Example

Nonlinear projection for

Small errors can have serious consequences ... Generation of data is very costly ...

Issues with data

- Small errors can have serious consequences ...
- Generation of data is costly in terms of equipment, time, deadlines. Have to maximize information from small dataset.
- Often the dataset may be incomplete, the quality of the data nonuniform, and still we have to make the best decision possible.
- Often there could be competing hypothesis for a given distribution. Have to decide which one fits the data best. Based on the principles of Statistical decision theory.

Outline

I. Origin of data, Field Acceleration vs. Statistical Inference
2. Nonparametric information
3. Preparing data for projection: Hazen formula
4. Preparing data for projection: Kaplan formula
5. Conclusions

Moments of the Experimental Data (or discrete distribution)

Distribution-free statistical measure of data
$\langle\boldsymbol{t}\rangle=\frac{\sum_{j=1, N} \boldsymbol{t}_{\boldsymbol{j}}}{N} \quad \boldsymbol{s}^{2}=\frac{\sum_{\boldsymbol{j}=1, \mathrm{~N}}\left(\boldsymbol{t}_{\boldsymbol{j}}-\langle\boldsymbol{t}\rangle\right)^{2}}{N-1}$

Parameter-space

$$
\delta_{T_{K}}=\sqrt[k]{\frac{\sum_{j=1}^{N}\left(t_{i}-\langle t\rangle\right)^{k}}{N-k+1}}
$$

Similar to Fourier Series, First used by Brahe for Alpha Aretis Good for comparison, but not appropriate for projection

Population vs. Sample Distribution

Example Excel routines ...
STDEV (2.I, 3.5, 4.5, 5.6) $=1.488$
STDEVP $=(2.1,3.5,4.5,5.6)=1.2891$

Distribution of the Sample Statistic/Moment (e.g. Mean)

Sample Size $=20$
Number of samples=10k (from population)

$$
\begin{array}{cll}
\mu_{x}=\mu & \mathrm{Z}=(\mathrm{X}-\mu) /(\sigma / \sqrt{N)} & \mathrm{N}>30 \\
\sigma_{x}=\sigma / \sqrt{N} & \mathrm{Z}=(\mathrm{X}-\mu) /(s / \sqrt{N)} & \mathrm{N}<30
\end{array}
$$

Problem with Sample Moments Quantiles and robust data description

Box plot

		$\begin{aligned} & \text { q1 } \\ & \text { © } \end{aligned}$		$\stackrel{q}{0}_{\text {q3 }}^{0}$			
1	5	10	15	20	25	30	35

Removing Outliers:

The logic of 1.5 IQR in Box plot

Image from Wikipedia

Continuous distribution

John Tukey, Exploratory Data Analysis, 1977. Adison-Wesley

Removing outliers based on Chauvenet's

TBD (s)
560
540
570
550
560
660 ???
580
570
550

Criteria

I) Calculate average value of TBD... 571.1 sec .
2) Calculate sample variance $s=35.5 \mathrm{I} \mathrm{sec}$.

3) Find normalized variable $z=(660-57 I . I) / 35.5 I=2.5$
4) Calculate the tails of Normal distribution with $\mathrm{P}=\mathrm{P}(-\mathrm{inf}<\mathrm{z}<-2.5)+\mathrm{P}(\mathrm{inf}<\mathrm{z}<2.5)=0.01242$
5) Calculate $\mathrm{Np}=9 * 0.01242=0.1$
6) If the $N p<0.5$, throw away the datapoint.

Data Analysis with Excel, Les Kirkup, Cambridge University Press, p. I85,

Be careful about data rejection - repeat experiment if possible.

Stem and leaf display: Pre-histogram

Order data
44464749636466686872727576818488106

$$
n=17
$$

4 | $4679 \leftarrow$ Leaf
5 |
6|34688
$L=\left[10 \times \log _{10} n\right] \sim 13$
7 | 2256
$h_{n}=($ Range $/ \mathrm{L}$) to power of 10 (i.e. $4.77 \rightarrow 10)$
8| 148 $9 \mid$
10|6
Therefore, 40, 50, 60 ...90, 100 are stem values
Should use the same approach for histogram Histogram should not increase precision

Aside: Derivation of Scott's formula for histogram size

Minimize:

$$
\begin{aligned}
& \operatorname{MSE}(x)=\int E\left[f_{n}(x)-f(x)\right]^{2} d x \\
& h_{n}=\left\{\frac{6}{\int_{-\infty}^{\infty}\left[f^{\prime}(x)\right]^{2} d x}\right\}^{1 / 3} n^{-1 / 3}
\end{aligned}
$$

$$
h_{n}=3.49 \times s \times n^{-(1 / 3)}
$$

Freedman/Diaconis-1:

$$
h_{n}=1.66 \times s \times\left(\frac{\ln (n)}{n}\right)^{1 / 3}
$$

Freedman/Diaconis-2:

$$
h_{n}=2(I Q R)\left(\frac{1}{n}\right)^{1 / 3}
$$

Scott:

$$
h_{n}=3.49 \times s \times n^{-(1 / 3)}
$$

Choose any of these formula, but remain consistent

Drawing lines resistant to outliers

Time to fail
Divide the data into three groups, i.e.

$$
\begin{aligned}
& \text { For } n=3 k \quad(k, k, \text { and } k) \\
& \text { For } n=3 k+1(k, k+1, k) \\
& \text { For } n=3 k+2(k+1, k, k+1)
\end{aligned}
$$

Calculate the median (x, y) of each group.
Draw the line.

Drawing lines resistant to outliers

Time to fail

$$
\begin{aligned}
& y=b\left(x-x_{M}\right)+a \\
& b_{0}=\left(y_{R}-y_{L}\right) /\left(x_{R}-x_{L}\right) \\
& 3 a_{0}=\left[y_{L}-b_{0}\left(x_{L}-x_{M}\right)\right]+y_{M}+\left[y_{R}-b_{0}\left(x_{R}-x_{M}\right)\right] \\
& r_{i}=y_{i}-\left[a_{0}+b_{0}\left(x_{i}-x_{0}\right)\right] \\
& a_{1}=a_{0}+\gamma_{1} \quad b_{1}=b_{0}+\delta_{1} \\
& \text { Alam ECE 695 }
\end{aligned}
$$

Outline

I. Origin of data, Field Acceleration vs. Statistical Inference
2. Nonparametric information
3. Preparing data for projection: Hazen formula
4. Preparing data for projection: Kaplan formula
5. Conclusions

Problem of data plotting and numerical CDF

Assume you have 5 transistors and you have collected 5 breakdown times, $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}, \mathrm{t}_{5}$

How do we find the CDF?

$$
F_{i}=\frac{i}{n} \text { or } F_{i}=\frac{i}{n+1} ?
$$

$$
F_{1}=\frac{1}{6} \quad F_{2}=\frac{2}{6} \quad F_{3}=\frac{3}{6} \quad F_{4}=\frac{4}{6} \quad F_{5}=\frac{5}{6}
$$

$$
W=\ln \left(-\ln \left(1-\boldsymbol{F}_{\boldsymbol{i}}\right)\right)
$$

... there is a problem

(Failure time is statistical)

Assume you have 5 transistors and you have collected 5 breakdown times, $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}, \mathrm{t}_{5}$

How do we find the CDF?

Relationship among various formula

Need to represent it

Analogous to a congressman ...

Aside: Derivation of Hazen Formula

$$
\begin{aligned}
& F_{i}=\frac{i-\alpha}{n-2 \alpha+1} \\
& p=\text { Probable CDF location, } \\
& F_{i} \text {, of the i-th data } \\
& G=\binom{n}{i} p^{i}(1-p)^{n-i} \\
& g=\frac{d G}{d p}=i\binom{n}{i} p^{i-1}(1-p)^{n-i} \\
& \int_{0}^{F_{\text {Median }, i}} g(p) d p=1 / 2 \\
& \Rightarrow F_{\text {Median }, i}=\frac{i-\alpha}{n-2 \alpha+1} \quad(\alpha=0.3)
\end{aligned}
$$

Outline

I. Origin of data, Field Acceleration vs. Statistical Inference
2. Nonparametric information
3. Preparing data for projection: Hazen formula
4. Preparing data for projection: Kaplan formula
5. Conclusions

Censored data and imperfect sampling

$$
F_{i}=\frac{i-\alpha}{n-2 \alpha+1} \quad F_{i}=\frac{i}{n+1}
$$

$$
F_{1}=\frac{1}{6} \quad F_{2}=\frac{2}{6} \quad F_{3}=\frac{3}{6} \quad F_{4}=\frac{4}{6} \quad F_{5}=\frac{5}{6}
$$

With 4 data points now, most people would do

$$
\begin{gathered}
F_{1}=\frac{1}{5} \quad F_{2}=\frac{2}{5} \quad F_{3}^{*}=\frac{3}{5} \quad F_{4}^{*}=\frac{4}{5} \\
\ldots \text { but this would be wrong! }
\end{gathered}
$$

Hazen (approximate) formula for censored data

$$
\begin{aligned}
& F_{1}=\frac{1}{5} \\
& F_{2}=\frac{2}{5} \\
& F_{3}=\frac{2}{5} \longrightarrow \begin{array}{l}
\boldsymbol{F}_{\boldsymbol{i}}=\frac{\boldsymbol{i}}{\boldsymbol{n}+1} \\
\begin{array}{l}
\text { Loss of a sample } \\
\mathrm{N}=4 \\
\text { but the sample } \\
\text { did survive till } \\
\mathrm{t} 2 \ldots
\end{array} \\
F_{4}=\frac{3}{5}
\end{array} \\
& F_{5}=\frac{4}{5}
\end{aligned}
$$

5 data-points, same as before, but with effective reduction in sample size Past data affected by future problems ... does not seem correct

Kaplan-Meier (proper) Formula

$$
F_{i}=1-\left(\frac{n-\alpha+1}{n-2 \alpha+1}\right) \prod_{i=1}^{f}\left(\frac{n_{s i}+1-\alpha}{n_{s i}+2-\alpha}\right)
$$

Total number of samples
Number of surviving samples after time t_{i}

Assume $\alpha=0$, so that

$$
F_{i}=1-\prod_{i=1}^{f}\left(\frac{n_{s i}+1}{n_{s i}+2}\right)
$$

For uncensored traditional data ...

$$
\begin{aligned}
& F_{i}=1-\prod_{i=1}^{f}\left(\frac{n_{s i}+1}{n_{s i}+2}\right) \\
& F_{1}=1-\frac{5}{6}=\frac{1}{6} \\
& F_{2}=1-\left(\frac{5}{6}\right)-\left(\frac{4}{5}\right)=\frac{2}{6} \\
& F_{3}=1-\frac{5}{6}-\frac{4}{5}-\frac{3}{4}=\frac{3}{6} \\
& F_{4}=1-\frac{5}{6}-\frac{4}{5} \frac{3}{4} \frac{2}{3}=\frac{4}{6} \\
& F_{5}=1-\frac{5}{6}-\frac{4}{5} \frac{3}{3}-\frac{1}{2}=\frac{5}{6}
\end{aligned}
$$

For censored data

Assume that at time t_{3}, one sample is taken out of the experiments (censored)

$$
\begin{array}{l|}
F_{1}=1-\frac{4+1}{4+2}=\frac{1}{6} \\
F_{2}=1-\frac{4+1}{4+2} \frac{3+1}{3+2}=\frac{2}{6}
\end{array} \begin{gathered}
\begin{array}{c}
\mathrm{n}_{\text {si }} \\
\text { before } \mathrm{t}_{\mathrm{i}} \\
\mathrm{n}_{\text {si }} \\
\text { after } \mathrm{t}_{\mathrm{i}}
\end{array} \\
F_{3}=1-\frac{4+1}{4+2} \frac{3+1}{3+2}=\frac{2}{6} \\
F_{4}=1-\frac{4+1}{4+2} \frac{3+1}{3+2} \frac{1+1}{1+2}=1-\frac{5}{6} \frac{4}{5} \cdot \frac{2}{3}=\frac{5}{9} \\
F_{5}=1-\frac{5}{6} \frac{4}{3} \frac{2}{2}=\frac{7}{9} \longleftarrow 3 / 4 \mathrm{mi}
\end{gathered}
$$

$\mathrm{n}_{\text {si }}$ before t_{i}	5	4	3	2	1
$\mathrm{n}_{\text {si }}$ after t_{i}	4	3	2	1	0

Summary

Method	$\mathrm{T}=\mathrm{I}$	$\mathrm{T}=2$	$\mathrm{~T}=3$	$\mathrm{~T}=4$	$\mathrm{~T}=5$
Hazen's Formula	$\mathrm{I} / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$
Hazen's Formula with one sample missing	$\mathrm{I} / 5$	$2 / 5$	Missing Sample	$3 / 5$	$4 / 5$
Kaplan-Meier Method	$\mathrm{I} / 6$	$2 / 6$	Missing Sample	$5 / 9$	$7 / 9$

Larger sample

Assume time for oxide breakdown... (or test for cancer drug)
6,6,6,6*, $7,9^{*}, I 0,10^{*}, I I^{*}, I 3, I 6,17^{*}, 19^{*}, 20^{*}, 22,23,25^{*}, 32^{*}, 34^{*}, 35^{*}$
(* data stopped)
$F_{1}, F_{2}, F_{3}, S_{1}, F_{4}, S_{2}, F_{5}, S_{3}, S_{4}, F_{6}, F_{7}, S_{5}, S_{6}, \ldots$
Samples before 21 2019 I8 17 12
$R_{1}=20 / 21$,
$R_{2}=19 / 20 *(20 / 2 I)$
$\mathrm{R}_{3}=0.857$
$R_{4}=R_{3} *(16 / 17)=0.8067$..
$R_{5}=R_{4}^{*}(14 / I 5)=0.753$
$F_{i}=1-\prod_{i=1}^{f}\left(\frac{n_{s i}+1}{n_{s i}+2}\right)=1-R_{i}$
Dramatically different plot

Conclusions

I. Treat your data with respect! They have stories to tell. A photon on your window may have the memory of a galaxy.
2. Focus on non-parametric data analysis. Simple nonparametric estimates like mean, standard deviation, median are all useful indicators that helps selecting appropriate distribution functions.
3. Non parametric plotting of distribution function is very important. Censored and uncensored data have very different plotting approaches. Outliers distort, therefore, median-based techniques is often useful.

References

- D. C. Hoaglen, F. Mosteller, and J.W. Tukey, "Understanding Robust and Exploratory Data Analysis", Wiley Interscience, 1983. Explains the importance of Median based analysis when the dataset is small and the quality cannot be guaranteed.
- Linda C. Wolsterholme, "Reliability Modeling - A Statistical Approach, Chapman Hall, CRC, 1999. Chapter 1-7 has excellent summary of 'Goodness of Fit" analysis.
- R.H. Myers and D.C. Montgomery, "Response Surface Methodology", Wiley Interscience, 2002. This book discusses design of experiment in great detail.
- An excellent textbook that covers many topics discussed in this Lectures is Applied Statstics and Proability for Engineers, $3^{\text {rd }}$ Edision, D.C. Montgomery and G. C. Runger, Wiley, 2003.
- J. Stuart Hunter had a Television Series on Statistics and some of the lectures are now posted at Nanohub. You can search under his name or get started by following link http://www.youtube.com/watch?v=AVUAt0Q ly 60

Review Questions

I. What is the difference between parametric estimation vs. non-parametric estimation?
2. What principle did Tacho Brahe's approach assume?
3. What is the difference between population and sample? When we collect data for TDDB or NBTI, what type of data are we collecting?
4. What problem does Hazen formula avoid regarding $\mathrm{Fi}=\mathrm{i} / \mathrm{n}$? How is this justified?
5. What is the problem of Hazen formula with respect to censored data?
6. Can you think of a situation where data censoring may be necessary for NBTI test?
7. What is the difference between an outlier vs. a censored data?
8. Do I need to know what the physical distribution is before using Hazen or Kaplan formula? Why or why not?

