ECE695: Reliability Physics of Nano-Transistors Lecture 31: Collecting and Plotting Data Muhammad Ashraful Alam alam@purdue.edu #### copyright 2011 This material is copyrighted by M. Alam under the following Creative Commons license: Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5) Conditions for using these materials is described at http://creativecommons.org/licenses/by-nc-sa/2.5/ ### **Outline** - I. Origin of data, Field Acceleration vs. Statistical Inference - 2. Nonparametric information - 3. Preparing data for projection: Hazen formula - 4. Preparing data for projection: Kaplan formula - 5. Conclusions ### Where do data come from: TDDB Example Small changes in the slope can be serious ## Where do data come from: TDDB Example Small errors can have serious consequences ... Generation of data is very costly ... #### Issues with data - Small errors can have serious consequences ... - Generation of data is costly in terms of equipment, time, deadlines. Have to maximize information from small dataset. - Often the dataset may be incomplete, the quality of the data nonuniform, and still we have to make the best decision possible. - Often there could be competing hypothesis for a given distribution. Have to decide which one fits the data best. Based on the principles of Statistical decision theory. ### Outline - I. Origin of data, Field Acceleration vs. Statistical Inference - 2. Nonparametric information - 3. Preparing data for projection: Hazen formula - 4. Preparing data for projection: Kaplan formula - 5. Conclusions # Moments of the Experimental Data (or discrete distribution) Distribution-free statistical measure of data Parameter-space $$\langle t \rangle = \frac{\sum_{j=1,N} t_j}{N} \qquad s^2 = \frac{\sum_{j=1,N} (t_j - \langle t \rangle)^2}{N-1} \qquad \delta_{T_K} = \sqrt[k]{\frac{\sum_{j=1}^N (t_i - \langle t \rangle)^k}{N-k+1}}$$ Population Parameter Similar to Fourier Series, First used by Brahe for Alpha Aretis Good for comparison, but not appropriate for projection ## Population vs. Sample Distribution #### **Example Excel routines ...** STDEV (2.1, 3.5, 4.5, 5.6) = 1.488 STDEVP= (2.1,3.5,4.5,5.6) = 1.2891 # Distribution of the Sample Statistic/Moment (e.g. Mean) Sample Size = 20 Number of samples = 10k (from population) $$\mu_{x} = \mu \qquad \qquad Z=(X-\mu)/(\sigma/\sqrt{N}) \quad N>30$$ $$\sigma_{x} = \sigma/\sqrt{N} \qquad \qquad Z=(X-\mu)/(s/\sqrt{N}) \quad N<30$$ # Problem with Sample Moments Quantiles and robust data description # Box plot # Removing Outliers: The logic of 1.5 IQR in Box plot Image from Wikipedia Discrete Data Continuous distribution John Tukey, Exploratory Data Analysis, 1977. Adison-Wesley # Removing outliers based on Chauvenet's Criteria | TBD (s) | |---------| | 560 | | 540 | | 570 | | 550 | | 560 | | 660 ??? | | 580 | | 570 | | 550 | - 1) Calculate average value of TBD... 571.1 sec. - 2) Calculate sample variance s = 35.51 sec. - 3) Find normalized variable z = (660-571.1)/35.51=2.5 - 4) Calculate the tails of Normal distribution with p=P(-inf < z < -2.5) + P(inf < z < 2.5) = 0.01242 - 5) Calculate Np = 9*0.01242=0.1 - 6) If the Np<0.5, throw away the datapoint. Data Analysis with Excel, Les Kirkup, Cambridge University Press, p. 185, Be careful about data rejection – repeat experiment if possible. ### Stem and leaf display: Pre-histogram #### Order data 44 46 47 49 63 64 66 68 68 72 72 75 76 81 84 88 106 $$n=17$$ 4 | 4679 $$\leftarrow$$ Leaf 5 | 6 | 34688 $L = [10 \times \log_{10} n] \sim 13$ 7 | 2256 $h_n = (\text{Range/L}) \text{ to power of } 10 \text{ (i.e. } 4.77 \rightarrow 10)$ 8 | 148 Therefore, 40, 50, 60 ...90, 100 are stem values 9 | 10 | 6 Should use the same approach for histogram Histogram should not increase precision stem # Aside: Derivation of Scott's formula for histogram size #### Minimize: $$MSE(x) = \int E[f_n(x) - f(x)]^2 dx$$ $$h_n = \left\{ \frac{6}{\int\limits_{-\infty}^{\infty} \left[f'(x) \right]^2 dx} \right\}^{1/3}$$ $$h_n = 3.49 \times s \times n^{-(1/3)}$$ #### Freedman/Diaconis-1: $$h_n = 1.66 \times s \times \left(\frac{\ln(n)}{n}\right)^{1/3}$$ Freedman/Diaconis-2: $$h_n = 2(IQR) \left(\frac{1}{n}\right)^{1/3}$$ Scott: $$h_n = 3.49 \times s \times n^{-(1/3)}$$ Choose any of these formula, but remain consistent ## Drawing lines resistant to outliers Time to fail Divide the data into three groups, i.e. For n=3k (k, k, and k) For n=3k+1 (k, k+1, k) For n=3k+2 (k+1, k, k+1) Calculate the median (x, y) of each group. Draw the line. # Drawing lines resistant to outliers Time to fail $$y = b(x - x_M) + a$$ $$b_0 = (y_R - y_L) / (x_R - x_L)$$ $$3a_0 = [y_L - b_0(x_L - x_M)] + y_M + [y_R - b_0(x_R - x_M)]$$ $$r_i = y_i - [a_0 + b_0(x_i - x_0)]$$ $$a_1 = a_0 + \gamma_1 \quad b_1 = b_0 + \delta_1$$ Alam FCE 695 18 ### **Outline** - I. Origin of data, Field Acceleration vs. Statistical Inference - 2. Nonparametric information - 3. Preparing data for projection: Hazen formula - 4. Preparing data for projection: Kaplan formula - 5. Conclusions ### Problem of data plotting and numerical CDF F Assume you have 5 transistors and you have collected 5 breakdown times, $t_1,t_2,t_3,\,t_4,t_5$ How do we find the CDF? $$F_i = \frac{i}{n}$$ or $F_i = \frac{i}{n+1}$? $$F_1 = \frac{1}{6}$$ $F_2 = \frac{2}{6}$ $F_3 = \frac{3}{6}$ $F_4 = \frac{4}{6}$ $F_5 = \frac{5}{6}$ $$\boldsymbol{W} = \ln(-\ln(1 - \boldsymbol{F}_i))$$ # ... there is a problem (Failure time is statistical) Assume you have 5 transistors and you have collected 5 breakdown times, t_1 , t_2 , t_3 , t_4 , t_5 How do we find the CDF? $$F_i = \frac{i - \alpha}{n - 2\alpha + 1}$$ $$\boldsymbol{W} = \ln(-\ln(1 - \boldsymbol{F}_i))$$ ## Relationship among various formula Analogous to a congressman ... #### Aside: Derivation of Hazen Formula ### **Outline** - I. Origin of data, Field Acceleration vs. Statistical Inference - 2. Nonparametric information - 3. Preparing data for projection: Hazen formula - 4. Preparing data for projection: Kaplan formula - Conclusions ## Censored data and imperfect sampling $$F_i = \frac{i - \alpha}{n - 2\alpha + 1} \qquad F_i = \frac{i}{n + 1}$$ $$F_i = \frac{\iota}{n+1}$$ $$F_1 = \frac{1}{6}$$ $F_2 = \frac{2}{6}$ $F_3 = \frac{3}{6}$ $F_4 = \frac{4}{6}$ $F_5 = \frac{5}{6}$ With 4 data points now, most people would do $$F_1 = \frac{1}{5}$$ $F_2 = \frac{2}{5}$ $F_3^* = \frac{3}{5}$ $F_4^* = \frac{4}{5}$... but this would be wrong! # Hazen (approximate) formula for censored data $$F_1 = \frac{1}{5}$$ $$F_i = \frac{i}{n+1}$$ $$F_2 = \frac{2}{5}$$ $$F_3 = \frac{2}{5}$$ $$F_4 = \frac{3}{5}$$ $$F_5 = \frac{4}{5}$$ $$F_i = \frac{i}{n+1}$$ $$F_$$ 5 data-points, same as before, but with effective reduction in sample size Past data affected by future problems ... does not seem correct # Kaplan-Meier (proper) Formula $$F_{i} = 1 - \left(\frac{n - \alpha + 1}{n - 2\alpha + 1}\right) \prod_{i=1}^{f} \left(\frac{n_{si} + 1 - \alpha}{n_{si} + 2 - \alpha}\right)$$ Total number of samples Number of surviving samples after time t_i Assume α =0, so that $$F_{i} = 1 - \prod_{i=1}^{f} \left(\frac{n_{si} + 1}{n_{si} + 2} \right)$$ #### For uncensored traditional data ... $$F_i = 1 - \prod_{i=1}^f \left(\frac{n_{si} + 1}{n_{si} + 2} \right)$$ $$F_1 = 1 - \frac{5}{6} = \frac{1}{6}$$ $$F_2 = 1 - \left(\frac{5}{6}\right) \left(\frac{4}{5}\right) = \frac{2}{6}$$ $$F_3 = 1 - \frac{5}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} = \frac{3}{6}$$ $$F_4 = 1 - \frac{5}{6} \frac{4}{5} \frac{3}{4} \frac{2}{3} = \frac{4}{6}$$ $$F_5 = 1 - \frac{5}{6} \frac{4}{5} \frac{3}{4} \frac{2}{3} \frac{1}{2} = \frac{5}{6}$$ | n _{si}
before t _i | 5 | 4 | 3 | 2 | I | |--|---|---|---|---|---| | n _{si}
after t _i | 4 | 3 | 2 | I | 0 | Same as before ... #### For censored data Assume that at time t_{3} , one sample is taken out of the experiments (censored) $$F_1 = 1 - \frac{4+1}{4+2} = \frac{1}{6}$$ $$F_2 = 1 - \frac{4+1}{4+2} = \frac{3+1}{3+2} = \frac{2}{6}$$ | | | V | | | | |--|---|----------|---|---|---| | n _{si}
before t _i | 5 | 4 | 3 | 2 | I | | n _{si}
after t _i | 4 | 3 | 2 | I | 0 | $$F_3 = 1 - \frac{4+1}{4+2} \cdot \frac{3+1}{3+2} = \frac{2}{6}$$ $$F_4 = 1 - \frac{4+1}{4+2} \frac{3+1}{3+2} \frac{1+1}{1+2} = 1 - \frac{5}{6} \frac{4}{5} \cdot \frac{2}{3} = \frac{5}{9}$$ $$F_5 = 1 - \frac{5}{6} \frac{4}{5} \frac{2}{3} \frac{1}{2} = \frac{7}{9}$$ missing ... # Summary | Method | T=I | T=2 | T=3 | T=4 | T=5 | |--|-----|-----|-------------------|-----|-----| | Hazen's
Formula | 1/6 | 2/6 | 3/6 | 4/6 | 5/6 | | Hazen's
Formula with
one sample
missing | 1/5 | 2/5 | Missing
Sample | 3/5 | 4/5 | | Kaplan-Meier
Method | 1/6 | 2/6 | Missing
Sample | 5/9 | 7/9 | ### Larger sample Assume time for oxide breakdown... (or test for cancer drug) 6,6,6,6*,7,9*,10,10*,11*,13,16,17*,19*, 20*,22,23,25*,32*,34*,35* (* data stopped) $$F_1, F_2, F_3, S_1, F_4, S_2, F_5, S_3, S_4, F_6, F_7, S_5, S_6, \dots$$ Samples before 21 20 19 18 17 12 Samples after (n_s) 20 19 18 17 16 11 $$F_i = 1 - \prod_{i=1}^f \left(\frac{n_{si} + 1}{n_{si} + 2}\right) = 1 - R_i$$ $$R_1=20/2I$$, $R_2=19/20*(20/2I)$ $R_3=0.857$ $R_4=R_3*(16/17)=0.8067$.. $R_5=R_4*(14/15)=0.753$ Dramatically different plot ### **Conclusions** - I. Treat your data with respect! They have stories to tell. A photon on your window may have the memory of a galaxy. - Focus on non-parametric data analysis. Simple nonparametric estimates like mean, standard deviation, median are all useful indicators that helps selecting appropriate distribution functions. - 3. Non parametric plotting of distribution function is very important. Censored and uncensored data have very different plotting approaches. Outliers distort, therefore, median-based techniques is often useful. ### References - D. C. Hoaglen, F. Mosteller, and J.W. Tukey, "Understanding Robust and Exploratory Data Analysis", Wiley Interscience, 1983. Explains the importance of Median based analysis when the dataset is small and the quality cannot be guaranteed. - Linda C. Wolsterholme, "Reliability Modeling A Statistical Approach, Chapman Hall, CRC, 1999. Chapter 1-7 has excellent summary of 'Goodness of Fit" analysis. - R. H. Myers and D.C. Montgomery, "Response Surface Methodology", Wiley Interscience, 2002. This book discusses design of experiment in great detail. - An excellent textbook that covers many topics discussed in this Lectures is Applied Statistics and Proability for Engineers, 3rd Edision, D.C. Montgomery and G. C. Runger, Wiley, 2003. J. Stuart Hunter had a Television Series on Statistics and some of the lectures are now posted at Nanohub. You can search under his name or get started by following link http://www.youtube.com/watch?v=AVUAt0Qly60 33 ### **Review Questions** - I. What is the difference between parametric estimation vs. non-parametric estimation? - 2. What principle did Tacho Brahe's approach assume? - 3. What is the difference between population and sample? When we collect data for TDDB or NBTI, what type of data are we collecting? - 4. What problem does Hazen formula avoid regarding Fi=i/n? How is this justified? - 5. What is the problem of Hazen formula with respect to censored data? - 6. Can you think of a situation where data censoring may be necessary for NBTI test? - 7. What is the difference between an outlier vs. a censored data? - 8. Do I need to know what the physical distribution is before using Hazen or Kaplan formula? Why or why not?