ECE 595, Section 10 Numerical Simulations Lecture 34: Applications of FiniteDifference Time-Domain Simulations

Prof. Peter Bermel April 5, 2013

Recap from Wednesday

- Introduction to FDTD
- Special features of MEEP:
 - Perfectly matched layers
 - Subpixel averaging
 - Symmetry
 - Scheme (programmable) interface

Outline

- Recap from Wednesday
- Periodic and randomly textured light-trapping structures
 - Overview
 - Experimental motivation
 - Computational setup
 - Simulated field evolution
 - Absorption spectra
- Front coatings
- Correlated random structures

Example: Simulating Si PV Absorption

Different Geometric Light Trapping Approaches for Commercial µc-Si Cells

Treatment #1	Sand blast	Abrasion etch	Bead coat
Treatment #2	HF etch	HF etch	(used in our samples)
Feature depth	10-100 μm	500 nm	500 nm
Feature width	10 μm	1-5 μm	500 nm

M.J. Keevers et al., "10% Efficient CSG Minimodules,"

Computational Set-up

silicon

metal grating

- Thickness of film = our experimental samples (1.47 μm)
- Four geometries tested
- Random texturing:
 - Uniform height distribution over 500 nm
 - Distance between features varies
- Photonic crystal:
 - Reflection captured by metal
 - Diffraction captured by grating (optimized for this thickness)

Varying spacing between features

20 periods

Varying spacing between features: absorption

Sharp spectral features smoothed out with greater # periods and feature spacing

Propagation of Light in Planar Geometry

Light In

Silicon

Propagation of Light in Textured Geometry (no backing)

Texturing

Silicon

Propagation of Light in Textured Geometry + Metal Grating

Texturing

Light In

Four configurations tested in experimental measurements

Greatest overall performance with combined structures, which combines 2 sets of spectral features

Four configurations tested in experimental measurements

Structure	Simulation (%)	Experiment (%)
Planar, no back	11	10
Planar, PhC back*	37	75
Textured, no back [†]	33	55
Textured, PhC back [†]	54	78

^{*} Discrepancy most pronounced for photonic crystal structure with planar surface: possible causes?

[†] Errors roughly equal

Calculated Absorption Spectrum for 2 µm µc-Si

Efficiency Enhancement of Period Structures

For optimized parameters, 2D grating efficiency enhancement ranges from 7% at 128 μm up to 35% at 2 μm

Example: Front Coatings for Thin-Film Si PV

 For thin films, adding front layers mainly improves blue/UV response

Efficiency vs. thickness and # of layers

layers	0 → 1	1→2	2->3
t=2 mm	39.9%	3.6%	0.6%
t=256 mm	42.2%	6.1%	1.4%

wafer-based cells see greater improvements with each successive layer

Example: Correlated Randomness

Combine gratings for each wavelength

Combine periodicity with texturing in systematic fashion

homogeneous

inhomogeneous

A.N. Bloch & P. Sheng, US Patent 4,683,160 (1987) X. Sheng *et al.*, *Opt. Express* **19**, A841 (2011)

Correlated Randomness in 2D

For n=3.46 and 33% bandwidth (e.g., 500-700 nm)

Angle-Sensitive Solar Absorbers

enhancement factor $F/\pi n$

X. Sheng et al., Opt. Express 19, A841 (2011)

X. Wang et al., "Approaching the Shockley-Queisser Limit in GaAs Solar Cells", IEEE J. Photovolt. (2013).

Next Class

- Is on Monday, April 8
- Next time: we will discuss using finitedifference time domain software: MEEP
- Suggested reference: MEEP tutorial, http://jdj.mit.edu/wiki/index.php/Meep Tutorial