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Evolution Trend for DRAM
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Significant challenges lie ahead in the processing of

DRAM cells to continue the trends down the road
[Fabtech, 2006]
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1 Transistor-1 Capacitor (1T-1C) Cell
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/-RAM Operations (Writing ‘1’)
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Z-RAM Operations (Writing ‘0’)
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/RAM performance Metrics

WLI =0V @ 300 | |
> | _O ||1||
in & T
o o s 400 i
n _ _ |
— ‘ /1 ‘ I & Retention
0 E | < >
| = |
o wL2=-1v <
HoldingfQ’ - v o
(ol 0 G
\s | I . . -8 Z _
RO ERIREN . N 8 =
{.:f—w c g _
Time o o
R ,._.mjunction = 8 ]
v A
, Shockley-Read-\ leakage or
-01 1 1 1 1
Hall 107 10° 10° 10" 10" 10

generation Hold time [sec]

Noise margin is dominated by state ‘0’ in thin body Z-RAM .



Outline

Introduction to ZRAM

Soft Errors in Zero-capacitor RAM

Soft Errors in in Flash memories

Hard Errors and Anomalous leakage in Flash memory

Conclusions

Alam ECE-695



Single event upset in Z-RAM
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Mitigating soft errors with t, ., scaling
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Mitigating soft errors with t,, Scaling

Assuming a particle LET 6 — 10 fC/um
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Flash memories
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Experimental Setup
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Figure 1. Layout (left) and die (right) of the ANNA test chip (area
9.230x7.044mm?) fabnicated by STMicroelectronics in CMOS 90 nm
technology. The memory array is segmented into 32 blocks of 4 Mbits or 128
sectors of 1 Mbits (total capacity of 128 Mbits per chip).
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Figure 5. Global view of one of the ASTEP experimental room showing. in the
2 3 4 5 6 ? 8 9 10 foreground, six wafers of flash memories stored on the ground duning their
exposition to natural radiation on the ASTEP platform and. in the background,
a real-time test setup based on 40nm SRAM cireuits [9].
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Figure 7. Comparison between the two distributions of V1 values measured at tg
and at tg +12 months for population of programmed memory cells exposed to
natural radiation on the ASTEP platform.



Possible charge loss mechanisms
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Charge loss and single event upset
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Older vs. newer technologies
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Transient simulation approach

|. Energy Dynamics
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1. Energy dynamics: lonization and initial
relaxation (10eV —keVs)

1’77 MeV Cl ion through FG cell
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Geant4 — high energy particle physics based toolkit
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Electron distribution

Energy dynamics (E<10 eV, t>3 fsec)

Lt~ 50fse

Tt ~ 300fsec

0

2 4 6
Energy [eV]

Average energy

| Loss due €
| phonons

oss due to emission

0 2(|)0 400
Time [fsec]

Energy relaxation due to phonon scattering and carriers’ emission over oxide

Alam ECE-695

21



Sensitivity of FG cell generations
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Simulation of cell response
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Figure 12. Distributions of V1 values computed by TIARA-G4 NVM for a
population of 100.000 memory cells before and after iurradiation with
atmospheric neutrons.
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Generation of permanent defects
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Conclusions

. The footprint of memory is growing rapidly with
technology generation. However, memory is susceptible
to radiation damage.

. ZRAM is a simplest memory that have very high density
and is a likely successor of DRAM. Soft (reversible) errors
in ZRAM is a significant concern.

Flash memory does not have classical Soft errors arising
from Poisson equation, but it has new kind of soft error
arising from hot electron outflow. Error correction is
necessary.

Hard (irreversible) errors leads to SILC-like anomalous
leakage and is a big reliability concern in Flash.
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Review Questions

. What is the difference between hard and soft error?

. What is typical charge loss mechanism for ZRAM ?
. The soft error in Flash memory is different from that of ZRAM.
Explain.

How do people accelerate radiation induced damage!

If carrier relaxation was faster than thermionic emission rate,

would you expect soft errors in ZRAM or SRAM!?

. What is that Geant software can do that traditional Monte

Carlo software cannot!?
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