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[Fabtech, 2006] 

Significant challenges lie ahead in the processing of 
DRAM cells to continue the trends down the road 
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Z-RAM Operations (Writing ‘1’) 
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Z-RAM Operations (Writing ‘0’) 
 

BL
2 

= 
0.

5V
 

 WL2 = 0V 

  WL1 = 1V 

BL
1 

= 
0V

 

   

   
‘1’ 

∆I1 

‘0’ 

    Gate Voltage 

‘neutral’ 

D
ra

in
 c

ur
re

nt
 

‘1’ ‘neutral’ ‘0’ Shortage of holes in body  
defines state ‘0’ 

BL
1 

= 
0V

 

ΔVth  = − εbody ΔVbody 

Alam  ECE-695 
 

7 



Noise 
Margin 

Retention 
Time 

Hold time [sec] 

N
um

be
r 

of
 H

ol
es

 
Sh

ift
 in

 b
od

y 
po

te
nt

ia
l [

V
] 

BL
2 

= 
0.

5V
 

WL2 = -1V 

  WL1 = 0V 
BL

1 
= 

0.
5V

 

0 / 1 

Noise margin is dominated by state ‘0’ in thin body Z-RAM 

ZRAM performance Metrics 

Time 
Junction  
leakage Shockley-Read-

Hall 
 generation 

Holding ‘0’ 

 
8 



Outline 

Alam  ECE-695 
 

9 
 

 
1. Introduction to ZRAM  

 
2. Soft Errors in Zero-capacitor RAM 

 
3. Soft Errors in in Flash memories 

 
4. Hard Errors and Anomalous leakage  in Flash memory 

 
5. Conclusions 

 
 



Single event upset in Z-RAM 
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Thinner body: 
 

•   Lesser Qcoll 
 

•   Greater Qstorage 
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Mitigating soft errors with tbody Scaling  
 Assuming α particle LET 6 – 10 fC/um 

Butt et al, IEEE Transaction of Nuclear Science, 2007 

Fisch et al,  
SOI Conf., 06 
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Flash memories 
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Experimental Setup 
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G. Just,  
IRPS, 2013. 



Possible charge loss mechanisms 

Alam  ECE-695 
 

16 



Charge loss and single event upset 
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Older vs. newer technologies 
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Transient simulation approach 

1. Energy Dynamics (Geant4 >10eV, Monte-Carlo < 10eV) 

2. Transport 3. Electrostatics 
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1. Energy dynamics: Ionization and initial 
relaxation (10eV –keVs) 

Geant4 – high energy particle physics based toolkit 
Used for the ionization and energy relaxation (~10eV – keVs) 

177 MeV Cl ion through FG cell 

ionization 
process in  
an atom 
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Energy dynamics (E<10 eV, t>3 fsec) 
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Sensitivity of FG cell generations  
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 Experiments: 
Cellere et al, JAP, 06 
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Simulation of cell response 
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Generation of permanent defects 

Full band ensemble Monte Carlo: 
 
• Solve the Boltzmann equation to get  
distributions as a function of time  
 
• Includes phonons scattering, ionized  
impurity scattering/impact ionization 
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Conclusions 
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1. The footprint of memory is growing rapidly with 
technology generation. However, memory is susceptible 
to radiation damage. 
 

2. ZRAM is a simplest memory that have very high density 
and is a likely successor of DRAM. Soft (reversible) errors 
in ZRAM is a significant concern. 
 

3. Flash memory does not have classical Soft errors arising 
from Poisson equation, but it has new kind of soft error 
arising from hot electron outflow. Error correction is 
necessary.  
 

4. Hard (irreversible) errors leads to SILC-like anomalous 
leakage and is a big reliability concern in Flash.  
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1. What is the difference between hard and soft error?  

2. What is typical charge loss mechanism for ZRAM ?  

3. The soft error in Flash memory is different from that of ZRAM. 

Explain.  

4. How do people accelerate radiation induced damage?  

5.  If carrier relaxation was faster than thermionic emission rate, 

would you expect soft errors in ZRAM or SRAM?  

6. What is that Geant software can do that traditional Monte 

Carlo software cannot?  
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