

ECE695: Reliability Physics of Nano-Transistors Lecture 37: Effect of Radiation Induced Charge -- Soft Errors

Muhammad Ashraful Alam alam@purdue.edu

Copyright 2013

This material is copyrighted by M. Alam under the following Creative Commons license:

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline

- I. Sources of radiation
- 2. Basics of charge generation and perturbation of potential
- 3. Charges and junctions
- 4. Conclusions

Outline

Sources of Radiation

Cosmic Ray

•4/17 Satellite yrs

- •Telestar I < Iyr
- •I fail/flight
- Exponential with altitude

Source 1: Cosmic Ray (above atmosphere)

- 92% proton, 6% alpha (or, 70% proton, 30% neutron)
- 2% pion, muon, positron, Li, B, e, B, Pb, Fe(1% to earth, physics testbed)
- I/cm² integrated above IGeV, inconsequential

lsotropic:

- ρ×d=4.2 g/cm²
- ρ (space; C,N,O) ~1.7x10⁻²⁶ g/cm³
- •Distance = $c \times time$
- Scattering time
- ~ 300 million-years (equivalent from Lab Expt).
- Isotropy indicates vast distances!

Sources 2: Solar Wind

- 2000 I millions/cm²-sec < IGeV (anisotropic)
- 1859: burned telegraph wire, forest fire;
- 1989: Blackout in North-Eastern America; 11k/19k Satellites lost contact
- I 365 W/cm² at surface, 450 reaches earth, 300 reaches surface. Particles reach earth in 4 days

Asymmetry of Solar Wind

Measurement

Simulation

http://spp.astro.umd.edu/Rb_eduation/index.htm

Alam ECE-695

Altitude Dependent Radiation Flux

Original – Hess Nobel Prize Full curve – Pfotzer curve

Altitude Dependent Radiation Flux

Brian solid slab model:

Atomic weight 14.48 Atomic number 7.22 Ionization 92.8 eV – reminiscent of Nitrogen

Bethe formula for energy loss: dE/dx ~ ln(E)/E (see Lec. 38) Empirical Model: $I_{2} = I_{1} \exp\left(\frac{A_{1}(@ H_{1} - A_{2} @ H_{2})}{L}\right)$ $A = 1033 - (0.03648H) + (4.26 \times 10^{-7} H^{2}) \text{ g/cm}^{2}$ $L_{e} = 100 \text{ g/cm}^{2}, L_{p} = 110 \text{ g/cm}^{2}$ $L_{n} = 148 \text{ g/cm}^{2}, L_{\mu} = 520 \text{ g/cm}^{2}$

Example1: Denver, H = 5280 ft $A_1(H = 0) = 1033$ $A_2(H = 5280) = 862$ $I @ 5280 ft = \exp(1033 - 862) / 148) = 3.4$

Example2: At 1.5km (Airlines): 100x increase

Radiation Intensity at the Earth Level

Number is high, but cannot break anything (LET, dE/dx small)

Sources of Radiation 3: Packaging

Earth Sources

Thermal Neutron in BPSG

Proton on Li – Thermal Neutron

Alpha particle fluxes (#/cm²-hr)

Processed Wafers	0.0009
Cu Metal (thick)	0.0019
Al Metal (thick)	0.0014
Mold compound	0.024-0.002
Underfill	0.002-0.0009
Pb-solders	7.2 -0.002
Ceramic package	0.0011

Slow particles from IC are devastating, previously did not survive

Sources of Radiation: Packaging

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 1, NO. 1, MARCH 2001

Soft Errors in Advanced Semiconductor Devices—Part I: The Three Radiation Sources

Robert C. Baumann, Senior Member, IEEE

TABLE I THE URANIUM SERIES

Species	Half-life	Mode	Energy (MeV)
U-238	4.47x10 ⁹ yrs	α	4,196(77), 4.149(23)
Th-234	24.1 days	β	
Pa-234	6.69 hrs	β	
U-234	2.45x10 ⁵ yrs	α	4.774(72),4.723(28)
Th-230	7.54x10 ⁴ yrs	α	4.688(74),4.621(26)
Ra-226	1.60x10 ³ yrs	α	4.785(95), 4.602(5)
Rn-222	3.82 days	α	5.490
Po-218	3.05 min	α	6.002
Pb-214	26.8 min	β	
Bi-214	19.7 min	β	
Po-214	164 usec	α	7.687
Pb-210	22.3 yrs	β	
Bi-210	5.01 days	β	
Po-210	138.4 days	α	5.305
Pb-206	Stable		

THE THORIUM SERIES				
life	Mode			

TABLE II

Species	Half-life	Mode	Energy (MeV)
Th-232	1.41x10 ¹⁰ yrs	α	4.016(77), 3.957(23)
Ra-228	5.76 yrs	β	
Ac-228	6.13 hrs	β	
Th-228	1.91 yrs	α	5.426(71), 5.343(29)
Ra-224	3.66 days	α	5.686(94), 5.449(6)
Rn-220	55.6 sec	α	6.288
Po-216	0.15 sec	α	6.779
Pb-212	10.64 hrs	β	
Bi-212	60.60 min	β (64)	
Bi-212	2.251	α(36)	6.336(57), 6.297(43)
		V	
Po-212	0.30 usec	α	8.785
Pb-208	stable		
		v	
TI-208	3.05 min	β	
Pb-208	stable		

Charge generated

17

Outline

- I. Sources of radiation
- 2. Charge generation and potential fluctuation
- 3. Junctions and critical charges
- 4. Conclusions

Outline

Generation of Electron-Hole Pairs

$$\sum_{i} \varepsilon_{i}(\omega) = \frac{q^{2}P_{0}^{2}\sqrt{\mu(\hbar\omega - E_{g})}}{\pi m_{0}^{2}\omega^{2}\hbar^{3}} \qquad P_{0}^{2} = \frac{m_{0}E_{g}}{2} \left(\frac{m_{0}}{m_{c}} - 1\right) \frac{3E_{g} + 3\Delta}{3E_{g} + 2\Delta}$$

$$\prod_{ph} = \frac{I_{0}(e^{-\alpha x} - 1)}{c'} = n = p$$

$$\alpha_{dir} = \frac{q^{2}(2\mu)^{3/2}\sqrt{(\hbar\omega - E_{g})}}{nch^{2}m_{e}}$$

$$= 2 \times 10^{4}\sqrt{(\hbar\omega - E_{g})} cm^{-1}$$

$$\alpha_{indir} = \frac{4}{3} \frac{q^{2}\mu^{5/2}(\hbar\omega - E_{g})^{3/2}}{nch^{2}m_{e}m_{h}hv}$$

$$= 1.3 \times 10^{4} \frac{(\hbar\omega - E_{g})^{3/2}}{hv} cm^{-1}$$

Intrinsic structure: particle strike

Assume that the incident flux is 1.6 fC/micron=10¹⁵/sec/micron, Or 10²⁷ photon /cm³/sec is the incident density Flux= $10^{27}x0.1x10^{-4} = 10^{22}$ photon /cm²/sec = 6.4 nC/cm²/sec (same number of e-h pair) n_i=10¹⁰ /cm³, no recombination

Importance of Electrostatics

- I. Sources of radiation
- 2. Charge generation and potential fluctuation
- 3. Junctions and critical charges
- 4. Conclusions

For p-n junction: even with very low lifetime

 $N_{A} = N_{D} = 10^{18} / \text{cm}^{3}$

Minority carrier lifetime, $\tau = 10^{-12} \sec$ => L_D (estimated) = $\sqrt{(6.5 \text{ cm}^2/\text{sec} * 10^{-12} \text{ sec})} \sim 0.025 \mu \text{m}$

Photo generated e-h pairs at Junctions

$$-\frac{d^2 V}{dx^2} = \frac{dE}{dx} = \frac{q}{\varepsilon} \left(p - n + N_D - N_A \right)$$

Electron/hole densities

Potential before and after radiation

E- field before and after radiation

Alam ECE-695

Critical Charge: Qcrit

dx

Е

Critical charge in devices

Circuit design and modeling for soft errors

A. KleinOsowski E. H. Cannon P. Oldiges L. Wissel

Figure 1

Modeled structure of a 65-nm SOI technology n-FET. (BOX: buried oxide.)

Figure 3

(a) Method for connecting injected current pulse into circuit simulation for SOI $Q_{\rm crit}$ modeling. (b) Current pulse wave shape used for circuit modeling.

Critical Charge in circuits

Figure 2

(a) Typical six-transistor SRAM circuit. (b) Evolution of the node voltages for an alpha-particle strike in an off-state n-FET pull-down device (N1) of a 65-nm SOI SRAM cell at $V_{\rm dd} = 0.9$ V. (SEU: single-event upset.)

Figure 6

(a) Alpha-particle sensitivity for 90-nm bulk technology SRAM: measurements with a Th-232 foil and Monte Carlo simulations. (b) 150-MeV proton sensitivity for 90-nm bulk technology SRAM: measurements in a proton beam and Monte Carlo simulations. (Reproduced from [8].)

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

Alam ECE-695

Conclusions

- I. Soft error is related to generation of electron-hole pairs that perturbs the electrostatics and temporarily destroys the logic state of the devices.
- 2. Soft error is reversible: memory can be rewritten; the logic state can be recomputed.
- 3. The asymmetry of electron hole transport (either due to difference in mobility, doping, or junction) that causes soft errors.
- Soft errors can be mitigated by clever device design as well as redundant circuit approaches. The solutions are costly – therefore DARPA and NASA uses special radiation hardened components.
- 5. The story of Icarus and the role radiation damage!

References

R.C. Bauman wrote an wonderful review on packing related soft-errors, see Soft errors in Advanced Semiconductor Devices, TDMR, 1, 1, 2001.

IBM Journal of Research and Development has published two special issues on radiation induced damage. They contain wonderful sources of information.

The following book gives a very good introductory overview of the physics of soft errors" SER – History, Trends, and Challenges, A guide for designing with memory Ics, J. F. Ziegler and H. Puchner, Cypress. 2004. A number of figures are taken from various sources:

http://www.meyerinst.com/html/oem/infocus/default.htm (package) Lfm.mit.edu (nuclear explosion) http://www.military-heat.com/tag/jet/page/2/ (Fighter jet) www.wired.com (Sun)

Iracus picture taken from http://wings.avkids.com/Book/Myth/Images/icarus_03.j Pg

Review Questions

- I. How does Earth's magnetic field deflect charged particles? What is its consequences for geography-specific radiation damage?
- 2. What is a Pfotzer curve. How is it used?
- 3. What does the isotropy of radiation say about the origin of galactic radiation sources?
- 4. A special type of high-energy particle was used to validate Einstein's theory of relativity. Are those particles radiation concern for ICs?
- 5. Nuclear reaction from *packaging* leads to large number of upsets. Why?
- 6. Can soft-error occur in a intrinsic CNT? Why or why not?
- 7. Define "critical charge". Is it a property of a device or a property of the radiation source?