SELF-HEATING EFFECTS IN SOI DEVICES AND GAN HEMTS

Dragica Vasileska, ASU

Thanks to ...

Katerina Raleva, Stephen M. Goodnick, Mihail Nedjalkov, Arif Hossain, Balaji Padmanabhan, Manan Gada, Seung Kyung Yoo

Motivation Thermal Effects Previous Work Done in Thermal Modeling The ASU Model for Addressing Self-Heating Conclusions

Motivation

Transistor Scaling

Thermal Effects and Scaling

Transistor Scaling: Moore's Law

Gordon Moore "every 1.5 years complexity doubles"

www.intel.com

Transistor Scaling: Dennard's Law

Geometry & Supply voltage	L _g , W _g T _{ox,} V _{dd}	к	Scaling K: K=0.7 for example		
Drive current in saturation	l _d	к	$I_{d} = v_{sat}W_{g}C_{o}(V_{g}-V_{th}) \qquad C_{o}: \text{ gate C per unit area}$ $\longrightarrow W_{g}(t_{ox}^{-1})(V_{g}-V_{th}) = W_{g}t_{ox}^{-1}(V_{g}-V_{th}) = KK^{-1}K = K$		
l _d per unit W _g	I _d /μm	1	I_d per unit $W_g = I_d / W_g = 1$		
Gate capacitance	Cg	к	$C_g = \varepsilon_o \varepsilon_{ox} L_g W_g / t_{ox} \longrightarrow KK / K = K$		
Switching speed	τ	к	$\tau = C_g V_{dd} / I_d \longrightarrow KK / K = K$		
Clock frequency	f	1/K	$f = 1/\tau = 1/K$		
Chip area	A _{chip}	α	α : Scaling factor \longrightarrow In the past, $\alpha > 1$ for most cases		
Integration (# of Tr)	N	α/K²	$N \rightarrow \alpha/K^2 = 1/K^2$, when $\alpha = 1$		
Power per chip	Р	α	fNCV ² /2 \rightarrow K ⁻¹ (α K ⁻²)K(K ¹) ² = α = 1, when α =1		

R. Dennard, et al., IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, pp. 256-268, Oct. 1974.

Multi-Gate Transistors Implementation

Multi-Gate Fin Transistor:

- ++ Self Aligned structure for S/D
- -- Non-Planar structure

Multi-Gate Fin Transistor

More Than Moore and Beyond CMOS

ITRS-ERD vision of the role of Beyond CMOS and More than Moore elements to form future extended CMOS platforms (2010).

www.itrs.com

2020 and Beyond ...

- Advanced component technology + advanced system design
- Beyond CMOS + advanced More than Moore integration with More Moore For systems 2020 and beyond

Thermal Effects and Scaling

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Intel stock dropped 8%
 on the next day
- But attention to power is increasing

Thermal Design Power

- The thermal design power (TDP), sometimes called thermal design point, refers to the maximum amount of <u>power</u> the <u>cooling</u> <u>system</u> in a computer is required to <u>dissipate</u>.
- For example, a <u>laptop</u>'s <u>CPU</u> cooling system may be designed for a 20 <u>watt</u> TDP, which means that it can dissipate up to 20 watts of <u>heat</u> without exceeding the maximum junction temperature for the <u>computer chip</u>.

Thermal Effects

Electro-Thermal Effects

Thermo-Electric Effects

Analogy Between Electrical and Thermal Variables

Electro-Thermal Effects

Joule Heating:

- When an electric current flows through a solid or liquid with finite conductivity, electric energy is converted to heat through resistive losses in the material.
- The heat is generated on the microscale when the conduction electrons transfer energy to the conductors atoms through collisions.
- Joule heating is in some cases unwanted, and efforts are made to reduce it.
 - However, many applications rely on Joule heating;
 - some of these use the effect directly, such as cooking plates,
 - while other applications, such as microvalves for fluid control, use the effect indirectly through thermal expansion.

Why Electro-Thermal Effects in Devices?

Reason for Observation of Self-Heating

Fully depleted (FD) body

Material	k _{th} (₩/mK)		
Si	148		
Ge	60		
Silicides	40		
Si (10 nm)	13		
SiO ₂	1.4		

MUSTs in the Theoretical Model

E. Pop, R.W Dutton, K.E. Goodson, "<u>Analytic Band Monte Carlo Model for Electron</u> <u>Transport in Si Including Acoustic and Optical Phonon Dispersion</u>," J. Appl. Phys. **96**, 4998 (2004)

Implementation of Electro-Thermal Effects in Commercial Simulators

- Silvaco ATLAS implements Wachutka model for lattice heating which accounts for:
 - Joule heating
 - Cooling due to carrier generation and recombination
 - Peltier and Thomson effects

Wachutka, G.K., "Rigorous Thermodynamic Treatment of Heat Generation in Semiconductor Device Modeling", IEEE Trans., Computer-Aided Design Vol. 9, No. 11 (1990): 1141-1149.

Heat Generation Model

In the past, the heat generation model was simply:

$$H = (J_n + J_p) \bullet E$$

□ Presently:

Wachutka, G.K., "Rigorous Thermodynamic Treatment of Heat Generation in Semiconductor Device Modeling", *IEEE Trans.*, Computer-Aided Design Vol. 9, No. 11 (1990): 1141-1149.

Non-Isothermal Current Densities

When SILVACO GIGA module is being invoked, the electron and hole current densities are modified to account for spatially varying lattice temperatures:

$$J_{n} = -q\mu_{n}n\left(\nabla\phi_{n} + P_{n}\nabla T_{L}\right)$$
$$J_{p} = -q\mu_{p}p\left(\nabla\phi_{p} + P_{p}\nabla T_{L}\right)$$

□ Where P_n and P_p are absolute thermoelectric powers for electrons and holes and are calculated using:

$$P_n = -\frac{k_B}{Q} \left(\frac{5}{2} + \ln\left(\frac{N_c}{n}\right) + KSN + \zeta_n \right)$$
$$P_p = \frac{k_B}{Q} \left(\frac{5}{2} + \ln\left(\frac{N_v}{p}\right) + KSP + \zeta_p \right)$$

Wachutka, G.K., "Rigorous Thermodynamic Treatment of Heat Generation in Semiconductor Device Modeling", *IEEE Trans., Computer-Aided Design* Vol. 9, No. 11 (1990): 1141-1149.

Thermo-Electric Effects

When an electric current is passed through a conductor having a temperature gradient over its length, heat will be either absorbed by or expelled from the conductor.

> Thomson effect

Thermoelectric effect

Seebeck

effect

potentials, the electrochemical potential and the temperature.

Seebeck effect is coupling of two

Peltier illustrated that heat flux and electrical current can be coupled.

Peltier effect

Thermo-Electric Effects Explained

- When any two metals are connected together, a voltage is developed which is a function of the temperatures of the junctions and (mainly) the difference in temperatures.
- It was later found that the Seebeck voltage is the sum of two effects: the **Peltier effect**, and the **Thompson effect**.
 - The Peltier effect explains a voltage generated in a junction of two metal wires.
 - The Thompson effect explains a voltage generated by the temperature gradient in the wires.

Peltier Effect: ZT Factor Over the Years

$$ZT = S^2T \sigma/\kappa$$

- The ZT of a thermoelectric material is a dimensionless unit that is used to compare the efficiencies of various materials.
- ZT is determined by three physical parameters:
 - the thermopower S (also known as Seebeck factor),
 - the electrical conductivity σ , the thermal conductivity $k = k_e + k_{ph}$, where the k_e and k_{ph} are the thermal conductivities of electrons and phonons, respectively,
 - and the absolute temperature T

Analogy Between Electrical and Thermal Variables

$$J = \sigma E = -\sigma \frac{dV}{dx} \therefore current \ density$$
$$F = -\kappa \frac{dT}{dx} \therefore heat \ flux$$
$$\begin{cases} J \Leftrightarrow F \\ V \Leftrightarrow T \\ \sigma \Leftrightarrow \kappa \end{cases}$$

Previous Work Done in Thermal Modeling

Previous Work in Thermal Modeling

- Mostly, the previous work performed and related to thermal modeling can be split into:
 - Solutions of the Phonon Boltzmann Transport Equation
 - Analysis of self-heating effects in devices

Phonon BTE Solvers

- Peterson performed a Monte Carlo Simulation for phonons in the Debye approximation and using single relaxation time
- Mazumder and Majumdar followed Peterson approach but included the dispersion relation and the different acoustic polarization branches
 - Limit: The N and the U processes are not treated separately although they do not contribute the same way to the thermal conductivity

^{*} Peterson, R. B. (1994). "Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal." Journal of Heat Transfer, Vol. 116(4), pp. 815-822.

^{*} Mazumder, S. and Majumdar, A. (2001). "Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization." *Journal of Heat Transfer*, Vol.123(4), pp. 749-759.

Phonon BTE Solvers, Cont'd

□ *Lacroix* further generalized the model:

By incorporation of N and U processes

Transient conditions are also being considered

Lacroix, D., Joulain, K. and Lemonnier, D. (2005). "Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales." *Physical Review B*, Vol. 72(6), pp. 064305/1-11.

Modeling Self-Heating in Devices

Work of Eric Pop, Goodson, Robert Dutton

- Non-parabolic model with analytical phonon dispersion
- study heat transfer and energy conversion processes at nanoscales. Applications include semiconductor devices and packaging, thermoelectric and photonic energy conversion, and microfluidic heat exchangers.

Work of Kelsall and Sadi

Nanoscale transistors, GaN HEMTs

The ASU Model to Addressing Self-Heating

Theoretical Model

Application of the Model to Modeling of:

- FD SOI Devices, Dual Gate Structures, SOD and SOAIN Devices
- Nanowire Transistors
- GaN HEMTs

Theoretical Model

$$\begin{split} &\left(\frac{\partial}{\partial t} + v_e(\mathbf{k}) \cdot \nabla_r + \frac{e}{\hbar} E(\mathbf{r}) \cdot \nabla_k\right) f = \sum_{\mathbf{q}} \left\{ W_{e,\mathbf{q}}^{\mathbf{k}+\mathbf{q} \to \mathbf{k}} + W_{a,-\mathbf{q}}^{\mathbf{k}+\mathbf{q} \to \mathbf{k}} - W_{e,-\mathbf{q}}^{\mathbf{k} \to \mathbf{k}+\mathbf{q}} - W_{a,\mathbf{q}}^{\mathbf{k} \to \mathbf{k}+\mathbf{q}} \right\} \\ &\left(\frac{\partial}{\partial t} + v_p(q) \cdot \nabla_r\right) g = \sum_{\mathbf{k}} \left\{ W_{e,\mathbf{q}}^{\mathbf{k}+\mathbf{q} \to \mathbf{k}} - W_{a,\mathbf{q}}^{\mathbf{k} \to \mathbf{k}+\mathbf{q}} \right\} + \left(\frac{\partial g}{\partial t}\right)_{p-p} \end{split}$$

J. Lai and A. Majumdar, "Concurent thermal and electrical modeling of submicrometer silicon devices", J. Appl. Phys., Vol. 79, 7353 (1996).

$$\begin{split} C_{LO} \, \frac{\partial T_{LO}}{\partial t} &= \frac{3nk_B}{2} \left(\frac{T_e - T_L}{\tau_{e-LO}} \right) + \frac{nm^* v_d^2}{2\tau_{e-LO}} - C_{LO} \left(\frac{T_{LO} - T_A}{\tau_{LO-A}} \right), \\ C_A \, \frac{\partial T_A}{\partial t} &= \nabla \cdot \left(k_A \nabla T_A \right) + C_{LO} \left(\frac{T_{LO} - T_A}{\tau_{LO-A}} \right) + \frac{3nk_B}{2} \left(\frac{T_e - T_L}{\tau_{e-L}} \right). \end{split}$$

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling Thermal Effects in Nanodevices, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.

Theoretical Model ...

Heat Diffusion

Gain term due to optical phonons Gain term due to electrons (omitted if acoustic phonon scattering is treated as elastic scattering process)

Theoretical Model ...

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling Thermal Effects in Nanodevices, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.

Theoretical Model ...

Gummel cycles

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling Thermal Effects in Nanodevices, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.

Theoretical Model: Thermal Conductivity

Solid transmit thermal energy by two modes , either one of which, or both, may operate.

- In all solids, energy may be transferred by means of elastic vibrations of the lattice moving through the crystal in the form of waves.
- 2. In some solids , notably metals , <u>free electrons</u> moving through the lattice also carry energy in a manner similar to thermal conduction by a True gas phase .

Thermal Conductivity:
$$k = k_e + k_p$$

Thermal Conductivity

$$\boldsymbol{k_p} = \frac{1}{3} \boldsymbol{C} \boldsymbol{v} \boldsymbol{I}$$
Phonon *mfp*
Specific heat
Sound velocity

Specific heat :If $T > \Theta$, $C \sim constant$ If $T << \Theta$, $C \sim T^d$ (d: dimension)

Mean free path:
$$\frac{1}{l} = \frac{1}{l_{st}} + \frac{1}{l_{um}}$$

Static scattering (phonon -- defect, boundary): $I_{st} \sim constant$

Umklapp phonon scattering: $I_{UM} \sim e^{\Theta/T}$

Thermal Conductivity of Thin Films

Analytical Model for Thin Films

$$\kappa(z) = \kappa_0(T) \int_0^{\pi/2} \sin^3 \theta \left\{ 1 - \exp\left(-\frac{a}{2\lambda(T)\cos\theta}\right) \cosh\left(\frac{a - 2z}{2\lambda(T)\cos\theta}\right) \right\} d\theta$$

 $\lambda(T) = \lambda_0 (300/T)$

$$\kappa_0(T) = \frac{135}{a+bT+cT^2} \quad \text{W/m/K}$$

• E. H. Sondheimer, "The Mean Free Path of Electrons in Metals", Advances in Physics, Vol. 1, no. 1, Jan. 1952, reprinted in Advances in Physics, Vol. 50, pp. 499-537, 2001.

• M. Asheghi,, M. N. Touzelbaev., K. E. Goodson, Y. K. Leung, and S. S. Wong., "Temperature Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates," ASME Journal of Heat Transfer, Vol.120, pp. 30-33, 1998.

Theoretical Model – Phonon Dispersions

QUADRATIC FIT TO PHONON DISPER- SIONS		ω_o (10 ¹³ rad/s)	υ _s (10 ⁵ cm/s)	c 10 ⁻³ cm ² /s
	LA	0.00	9.01	-2.00
	TA	0.00	5.23	-2.26
	LO	9.88	0.00	-1.60
	ТО	10.20	-2.57	1.11

E. Pop, R.W Dutton, K.E. Goodson, "<u>Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion</u>," J. Appl. Phys. **96**, 4998 (2004)
Phonon Dispersions: Proof of Concept

Drift Velocity in Silicon at T=77K

Mobility at T=77K

Phonon Dispersions: Proof of Concept

Drift Velocity in Silicon at T=300K

Mobility at T=300K

FULLY DEPLETED SOI DEVICES

Lake Powell, Arizona

Simulation Results: FD SOI Devices

□ 25 nm Channel Length Device

K. Raleva, D. Vasileska, S. M. Goodnick and T. Dzekov, "Modeling thermal effects in nano-devices", Journal of Computational Electronics, DOI 10.1007/s10825-008-0189-3 © Springer Science+Business Media LLC 2008, J. Computational Electronics, Vol. 7, pp. 226-230 (2008).

Carriers are in the velocity overshoot

Heat Dissipation Across Technology Nodes

Parameter is the temperature on the Gate Electrode.

Neumann Boundary Conditions are imposed at the Artificial Boun-daries and the Source and Drain contacts

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.

Can We Lower Self-Heating Effects?

Dual-Gate Devices
SOI vs. SOD vs. SOAIN

S.M. Goodnick, D. Vasileska, K. Raleva, "Is Dual Gate Device Better From a Thermal Perspective?", *Proceedings of 2008 SISPAD Conference*, pp. 125 - 128.

K. Raleva, D. Vasileska, S. M. Goodnick, Is SOD Technology the Solution to Heating Problems in SOI Devices?, Electron Device Letters, IEEE, Volume 29, Issue 6, June 2008 Page(s):621 - 624.

Dual-Gate SOI Devices

S.M. Goodnick, D. Vasileska, K. Raleva, "Is Dual Gate Device Better From a Thermal Perspective?", Proceedings of the 2008 SISPAD Conference, pp. 125 - 128.

A Closer Look ...

Single gate lattice temperature profile

Dual gate lattice temperature profile Where Does the Benefit of the DG Structure Come From?

25nm FD SOI nMOSFET Gate Bottom of Current Current the BOX Type of temperatu (mA/um)decrease simulation (%) temperatu isothermal 300K 300K 1.9428 thermal 300K 300K 1.7644 9.18 thermal 400K 300K 1.6641 14.35 thermal 600K 300K 1.4995 22.82

25nm DG SOI nMOSFET

25nm DG SOI nMOSFET (Vgate-top=Vgate-bottom=1.2V; Vdrain=1.2V; Vsource=0V; Vsubstrate=0V)						
Type of simulation	Top gate temperature	Bottom gate temperature	Bottom of the BOX temperature	Current (mA/um)	Current decrease (%)	
isothermal	300K	300K	300K	3.0682	/	
thermal	300K	300K	300K	2.7882	9.13	
thermal	400K	400K	300K	2.6274	14.37	
thermal	600K	600K	300K	2.3153	24.54	

For almost the same Current degradation DG devices offer **1.5-1.7** times more current

SOI vs. SOD vs. SOAIN

Silicon-On-Diamond and Silicon-On-Aluminum Nitride (SOAIN) Technologies as viable alternatives to Silicon-On-Insulator Devices

Standard Si technology

BOX Material	Dielectric constant	K _{th} (W/mK)
SiO ₂	3.9	1.38
Diamond	5.68	2000
AIN	9.14	272

SOD technology

Current Degradation

	Device width=3um (without substrate)			Device width=3um (with substrate)			
Device	Current (mA/um) isothermal	Average Current (mA/um) thermal	Current Decrease (%)	Current (mA/um) isothermal	Average Current (mA/um) thermal	Current Decrease (%)	
SOI	1.82	1.70	7.05	1.82	1.70	7.05	
SOAIN	1.85	1.82	1.55	1.88	1.84	2.18	
SOD	1.84	1.81	1.41	1.84	1.82	1.08	

K. Raleva, D. Vasileska, S. M. Goodnick, Is SOD Technology the Solution to Heating Problems in SOI Devices?, Electron Device Letters, IEEE, Volume 29, Issue 6, June 2008 Page(s):621 - 624.

Heat Spreading

NANOWIRE TRANSISTORS

Lake Powell, Arizona

Nanowires – The Role of the Contacts

D. Vasileska, A. Hossain and S. M. Goodnick, ECS Transactions, Volume 31, No. 1, pp. 83-91 (September 2010).

Nanowires – Unintentional Dopant

Gate Contact

SINGLE IMPURITY IMPACT

GUMMEL CYCLE	No impurity case [μΑ/μΑ]	Source Edge [μΑ/μΑ]	1 nm Towards Drain [μΑ/μΑ]
1	4154	4122	4075
3	4068	4030	3974
5	4052	4035	3968
Degradation	N/A	0.47%	2.12%
		\uparrow	1

Screening of the source charges Reduces the impact of the negative trap.

Maximal impact

Unintentional Dopant

GaN HEMTS

Rainbow Bridge, Arizona

Why GaN HEMTs?

Promising Microwave Power Device

Simulation Results: GaN HEMTs

□ Why GaN HEMTs?

Where Gallium Nitride Outstrips Other Semiconductor Materials

Semiconductor (commonly used compounds)			Gallium arsenide (AlGaAs/	Indium phosphide (InAIAs/	Silicon	Gallium nitride
Characteristic	Unit	Silicon	InGaAs)	InGaAs) ^a	carbide	(Alban)
Bandgap	eV	1.1	1.42	1.35	3.26	3.49
Electron mobility at 300 K	cm2/Vs	1500	8500	5400	700	1000- 2000
Saturated (peak) electron velocity	X10 ⁷ cm/s	1.0 (1.0)	1.3 (2,1)	1.0 (2.3)	2.0 (2.0)	1.3 (2.1)
Critical breakdown field	MV/cm	0.3	0.4	0.5	3.0	3.0
Thermal conductivity	W/cm+K	1.5	0.5	0.7	4.5	>1.5
Relative dielectric constant	ε _τ	11.8	12.8	12.5	10.0	9.0

^a The compounds are loosely known as indium-based.

Problems With GaN HEMTs

Current Collapse induced in GaN HEMT device characteristics as a result of shortterm (~10 hours) DC bias stress.

Trapping of hot electrons by trap/defect sites in the AlGaN buffer layer as well as GaN substrate reduces the net polarization charge.

> J. A. del Alamo and J. Joh, GaN HEMT reliability, Microelectronics Reliability, Volume 49, Issues 9-11, September-November 2009, Pages 1200-1206.

Problems With GaN HEMTs ...

MODELING REQUIREMENTS

INCORPORATION OF ELECTROMECHANICAL

SELF-HEATING EFFECT

GaN HEMTs Basics

Wurtzite AlGaN/GaN Ga-face N-face Ga 0001 0001 Substrate Substrate

AlGaN/GaN grown on sapphire by MOCVD is always Ga-faced, but material grown by MBE can have either Ga- or N-faced surface depending on the existence of AIN nucleation layer.

GaN HEMTs Basics ...

Spontaneous and Piezoelectric Polarization Charge

What is different in GaN HEMTs ...

Large sheet electron densities

heterostructures vs. Al content x

Electro-mechanical coupling model developed at ASU

Energy relaxation processes

Acoustic and optical phonon bath

Energy balance Equation Solver for Phonons

Optical Phonon Lifetime \rightarrow function of carrier density n(i,j)

Carrier density dependant phonon lifetimes results in an indirect dependence of the choice of SCATTERING MECHANISM on the CARRIER DENSITIES

Flow-chart of Electro-thermal simulator

Exchange of variables between solvers

Modifications to our existing Monte Carlo Simulator

- <u>Temperature dependent Scattering Tables.</u>
- <u>Averaging and smoothing of electron density</u>, drift velocity and electron energy for solving phonon balance equations.
- <u>Density dependent phonon lifetimes</u> analytical model fitted to experimental values.

Simulated structure

← 0.25 um →

Gate

J. A. del Alamo structure

Source

I_d-V_G Characteristic

$I_d - V_d$ characteristic

K. T. Tsen, et al., Appl. Physc. Lett. vol. 89, 112111, 2006.
Electron temperature map

Acoustic phonon temperature map

Current collapse

Supporting Evidence: $I_d - V_d$ curve

Mechanism responsible for current collapse

Electric Field Profile in the device with (a) 0.05 µm and (b) 0.4 µm shield lengths respectively

Vertical component of the Electric field at the gate drain edge Vs. field plate length

0.1

0.8

0.7

0.6

0.5

Distance along the Length of the Device (um)

0.4

0.3

0.2

0.1

300

0

Electric Field Profile in the device for a shield length of 0.1 µm (a) 20 nm and (b) 60 nm shield dielectric lengths respectively

Electric Field Profile in the device for a shield length of 0.4 µm (a) 20 nm and (b) 60 nm shield dielectric lengths respectively

Vertical component of the Electric field at the gate drain edge Vs. shield dielectric thickness for varying field plate length

• As the shield length increases, the electric field near the critical gate-drain edge reduces. This is because, as the shield electrode length increases, it spreads the electric field over a wider region.

• As the shield dielectric thickness increases, its ability to capacitively couple the electric field with the structure reduces. This results in increase in the electric field near the gate drain edge for a given shield plate length.

• As the field near the gate-drain edge reduces, the potential for electron trapping in the defect sites also reduces and improves the reliability performance of the device structure.

• We clearly observe from the electric cutline that as the field plate length is increased the electric field at the gate edge is reduced.

• We also observe that the electric field at the shield edge keeps increasing as its length increases. This is due to the fact that the edge of the shield plate is getting closer to the drain electrode.

Effective Electric field in the AlGaN Layer for various field plate lengths

PROPOSED RESEARCH AT ASU

Proposed Tasks

- Creation of regional scattering tables near the PITS and CRACKS
- Formulation of DEFORMATION POTENTIAL THEORY from results obtained with first principle calculations

Proposed Research ...

- Develop theoretical understanding for the formation of cracks in GaN HEMTs
- Approach:
 - Semiconductor device simulation to get the electric field profiles in the critical device region
 - Use these external fields into the molecular dynamics calculations to see if they are sufficient to nucleate a crack or a permanent defect

Thanks to Tsvetanka Zheleva and the Financial Support From ARL.

- Self-heating effects are important factor that must be accounted for as they limit device lifetime
- In ultra-nanoscale devices, due to the ballistic transport of the carriers, the heat dissipation occurs at the contacts (thermal Landauer picture)
- In GaN HEMTs heat plays considerable role with respect of the observation of the current collapse phenomena by modifying the vertical electric fields

Lake Ohrid, Republic of Macedonia

Conclusions

Thanks to ...

Army Research Laboratory

National Science Foundation

