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ABSTRACT 
 

Jeong, Changwook. Ph.D., Purdue University, August 2012.  Landauer Approach to 
Thermoelectrics. Major Professors: Mark S. Lundstrom and Muhammad A. Alam. 
 

Many efforts have been made to search for materials that maximize the thermoelectric 

(TE) figure of merit, ZT, but for decades, the improvement has been limited because of 

the interdependent material parameters that determine ZT. Recently, several 

breakthroughs have been reported by applying nanotechnology. To further enhance ZT, a 

clear understanding of electronic and thermal transport is necessary. The objectives of 

this thesis are: 1) to evaluate the electronic and thermal performance with a Landauer 

approach using full band electronic bandstructure and a full dispersion description of 

phonons, 2) to show how the Landauer treatment gives new insights to the understanding 

of thermoelectrics, and 3) to discuss possibilities for enhancing TE performance. We first 

present a Landauer approach for computing TE parameters using a full band electronic 

bandstructure. The full band results are related to the more common effective mass 

formalism. Next, a full dispersion description of phonons is used to calculate the thermal 

conductivities of bulk and thin films using a Landauer approach. It is shown that  

simplified dispersion models for phonons should be used with caution and that the 

Landauer approach provides a relatively simple (but accurate) technique to treat phonon 

transport from the ballistic to diffusive regimes. We also address the question of how to 

engineer the electronic structure to enhance the performance of a thermoelectric material 

by re-visiting from a Landauer perspective the question of what bandstructure produces 

the best thermoelectric device performance. Next, we explore the possibilities of 

increasing ZT through multi-barrier structures, quantum engineered graphene and 

molecules, high valley degeneracy, or by distorting the density-of-states.  Finally, we 

shift our attention to nanocomposite thermoelectric materials and discuss a new approach 

to model nanocomposite TE devices. Using polycrystalline graphene as a testbed of our 
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model, we study how grain boundaries affect the electronic performance of large-area 

polycrystalline graphene and propose the new approach of ‘percolation-doping by 

nanowires’ to beat the transparency-conductivity constraints.  
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1. INTRODUCTION 
As the world’s demand for energy increases, the availability for sustainable 

energy sources has become one of the biggest concerns regarding our future. Solar, wind, 

and fuel cell technologies have promised environmentally friendly and energy efficient 

power generation solutions. In addition to these technologies, the use of thermoelectric 

(TE) power generation to utilize waste heat in various situations such as vehicles, 

industrial process and homes could be an effective and reliable energy source. Also, the 

need for thermoelectric cooling in electronics where traditional convection based cooling 

technology is not viable, is significant. With increasing energy prices and TE technology 

developments, the field of thermoelectrics has recently received a lot of attention.  In 

Section 1.1, a brief history of thermoelectricity is presented. Section 1.2 addresses 

essential physics of thermoelectrics, the principles of thermoelectric energy conversion, 

and the key parameters that determine the device performance and applications.  Section 

1.3 provides a review of thermoelectric research from the 1950s - 1990s and summarizes 

recent achievements as well. Finally, the organization of the thesis and a list of associated 

publications are presented in Sections 1.4 and 1.5, respectively.  

 

1.1 A Brief History of Thermoelectrics 
Early 19th century scientists, Thomas Seebeck and Jean Peltier, discovered two 

phenomena that are the basis for today's TE industry. In 1821, Seebeck found that when a 

junction of two dissimilar conductors is placed in a temperature gradient, it produces a 

current, and the current deflects a magnetic compass placed next to it. Peltier, on the 

other hand, announced in 1833 that the temperature changes across a junction of two 

dissimilar metals when current flows. In 1838, Lenz explained that heat is either emitted 

or absorbed at the junction of the materials depending on the direction of current flow. It 

took a few more decades for William Thomson to understand thermodynamically that 

both phenomena were different manifestations of the same underlying physics and 
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predict the Kevlin (Thomson) relations. He also discovered a third TE effect, the 

Thomson effect. In 1911, Altenkirch created a satisfactory theory of thermoelectricity for 

refrigeration and power generation by introducing the figure of merit, Z. In 1931, 

Onsager proved rigorously Thomson’s findings in a thermodynamic sense and set the 

stage for further studies.  

It was only after 1950s’ advancements in semiconductor technology, however, 

that practical TE devices became feasible; the idea to use thermoelectrics as refrigerators 

was suggested by Ioffe [33].  With modern techniques, TE modules are now produced to 

deliver efficient solid state heat-pumping for both cooling and heating, as well as to 

generate DC power in various circumstances such as space probe and automobiles. New 

uses and markets for thermoelectrics continue to be developed.  

 

1.2 Thermoelectric Physics 
1.2.1 Thermoelectric Effects  

The conventional, basic theory of thermoelectricity is covered in many textbooks. 

In this section, we use a single level model with the Landauer transport theory to explain 

the Seebeck and Peltier effects and other related phenomena based on Refs. [26, 27]. 

According to the Landauer formalism, electrical current (I) and heat current (Iq) for a 

single level model (Fig. 1.1) are expressed as  

 

( )1 2
2 ,qI T f f
h

= −       (1.1a) 

( ) ( )1
1 2

2
,F

q

E E
I T f f

h
−

= − −     (1.1b) 

where h is the Planck constant, T  is the transmission across the device, E  is the 

energy level of single energy channel, 1FE  and 2FE  are the Fermi levels of the two 

contacts, and 1f  and 2f  are equilibrium Fermi-Dirac distributions for the contacts. 

Both electrical and heat currents are assumed to be positive along the direction from 

contact 2 to contact 1. The driving force of current flow is the difference in Fermi-Dirac 

distributions of contact 1 and contact 2, which can be created by either the voltage 



3 
 

 

difference ( VΔ ) or the temperature difference ( TΔ ) between the contacts. In an open-

circuit with a temperature gradient, current flow is zero when 1 2f f= .  Therefore, the 

following condition should be met:  

1 2 1 2

1 2 1 2

.F F F FE E E E E E
T T T T
− − −

= = −
−  

       (1.2) 

Hence, the Seebeck coefficient (S) is expressed in the linear response regime as   

( )1 2

1 2

.F F FE E q E EVS
T T T qT

− −Δ
≡ = = −
Δ −

     (1.3) 

From Eq. (1.1b), the rate of heat generation (+) or absorption (-), qI  at the junction 

when electrical current flows from is expressed as 

( ) ,q F
II E E
q

= − −        (1.4a) 

the Peltier coefficient () is  

( )1 .q FI E E
I q

−
Π ≡ = −       (1.4b) 

From Eqs. (1.3) and (1.5), the Kelvin relation arises naturally as 

.STΠ =         (1.4c) 

In 1855, a few decades after the discovery of these effects, William Thomson 

developed a unifying theory using thermodynamics arguments. The Thomson effect is 

that heat can be generated or absorbed by a homogeneous conductor if an electric current 

is passing through it and a temperature gradient is present at the same time. The total 

energy flux carried by phonons and electrons:  

dTQ I IV
dx

κ= Π + − ,        (1.5) 

where κ
 

is lattice thermal conductivity. The negative x-derivative of the energy flux 

gives the net energy accumulation, i.e. the rate of heating per unit length: 

dQ d dV d dTI I
dx dx dx dx dx

κ
Π  − = − − +  

 
,     (1.6a) 

where we assumed that the electric current is constant. Using  
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,dV dTI G SG
dx dx

= +        (1.6b) 

for the gradient of the potential in Eq. (1.6a) gives: 
2

,dQ dT I d dTI
dx dx G dx dx

τ κ − = − − +  
 

     (1.6c) 

where the first term is the Thomson effect and the Thomson coefficients () is given by  

,d S
dT

τ
Π

= −        (1.7) 

 

with .S SG G≡
 

From Eq. (1.4c), the Thomson coefficients is obtained to be   

.dST
dT

τ =        (1.8) 

Thermoelectric effects we discussed in this section can be applied to energy 

conversion between heat and electricity such as refrigeration and power generation. In the 

following section, we review the basic principles of refrigeration and power generation. 

 

1.2.2 Thermoelectric Energy Conversion and Applications  
Figure 1.1 shows schematic representations of TE devices and one level pictures 

for (b) power generation, and (c) refrigeration. The TE device is composed of two 

conductors, which are p-type and n-type conductors connected electrically in series and 

thermally in parallel. When there is a temperature difference as shown in Fig. 1.1(b), a 

voltage difference is generated. Electrons in N-type conductors move from the hot 

contacts to the cold contacts, whereas electrons in P-type conductors move from the cold 

to the hot contacts because of cold hotf f< in N-type and cold hotf f> in P-type at the 

channel energy level.  When the current flows in Fig. 1.1(c) by applying a bias, cooling 

occurs at the top contact. Electrons always flow from high EF to low EF and therefore 

electrons should absorb energy from the contacts in the middle (i.e. top contact).  

Cooling and generation capacities can be increased by segmenting (or cascading) 

multiple TE devices [36].  
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Fig. 1.1 The schematic diagram of (a) one level picture and TE devices for (b) power 
generation, and (c) refrigeration. The TE device is composed of p-type and n-type 
conductors connected electrically in series and thermally in parallel. The solid red and 
blue lines at the contacts in (b) denotes Fermi-Dirac distribution. The solid circles and 
arrows denote electrons and the direction of electron flow.  
 

Numerous applications of thermoelectric devices have been proposed and used. 

Thermoelectric technology, however, has low efficiency, and therefore has been limited 

to niche markets where high reliability, less maintenance, and small size are more 

important than magnitude of energy output. For example, TE devices have been used in 

all deep space probe missions to provide onboard power to space probes and have 

demonstrated high reliability [37]. Remote power units are another example [38].  In 

addition, TE devices have several cooling applications such as picnic cooler, laser diode 

cooling, cooling for lasers, microprocessor cooling, car seat and steering cooling as well 

as heating, ventilation and air-conditioning (HVAC) of vehicles. TE devices are being 

explored for waste heat recovery in vehicle, industry, power plant and incinerators [31, 

32], which will help alleviate the global energy and environmental problems because it 
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does not need to burn additional fossil fuel [38].  New possibilities such as on-chip 

cooling [41–43] and cryogenic refrigeration [44] are also being explored. 

Estimated worldwide production of thermoelectric devices in 2008 was around 25 

million units [38]. In 2009, the world market for commercial TE power generation and 

TE cooling were $30-50 M/yr and $200-250M/yr, respectively [45]. The technology has 

tremendous growth potential and is in accelerated development world-wide. HVAC 

applications of TE devices alone are estimated to save 4.5 Billion gals/year of fuel in US, 

and reduce the green house gases by 69.5 million metric tons of CO2 per year [46]. TE 

power generation from waste heat has also a large potential in the industrial sector. The 

industrial sector consumes 31% of the world’s energy. Much like vehicular energy, as 

much as 60% of energy converted to power is wasted [46]. Therefore, with increasing 

energy prices and TE technology developments, thermoelectrics could become 

competitive for industrial waste heat recovery in the near future.  

The challenge to increasing applications and market size is to enhance efficiency 

of thermoelectric energy conversion. The efficiency is expressed by the figure of merit, 

ZT. The figure of merit is still smaller than the value required to compete with the 

conventional method, ZT > 3 [47].  The details of ZT will be discussed in the following 

section. 

 

1.2.3 Figure of Merit and the Coefficient of Performance  

The thermoelectric figure of merit, ZT = 2S Tσ κ , is defined as follows. 

Consider the n-type conductor in Fig. 1.1(b). When the current flows through the 

conductor, electrons carry heat from the top to the bottom cooling the top junction. When 

there is a temperature difference, TΔ , then heat flows back from the hot side to the cold 

side. There is another heat source, Joule heating, which occurs due to the conductor’s 

finite resistance. We assume that half of the Joule heating passes to the hot side while the 

other half transfers to the cold side [33]. Then the total heat current cooling at the top 

junction becomes 
2

2q
I RI I Tκ=Π − Δ − ,       (1.9) 
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where R is the conductor’s resistance. In Eq. (1.9), the first term is the Peltier cooling, the 

second term is the heat back flow, and the last term is the half of the total Joule heating. 

The qI  in Eq. (1.9) should be maximized to maximize cooling, and the optimum 

current, Î , is obtained as 

0qdI
I IR

dI
=Π − = ,     (1.10a) 

Î R=Π ,      (1.10b) 

and the maximum qI  becomes 

2

,max 2qI T
R

κ
Π

= − Δ .      (1.11) 

The maximum cooling occurs when ,maxqI = 0 so that TΔ  is maximized. Then the 

maximum temperature difference between the hot and cold side becomes 
2

max 2T RκΔ = Π .      (1.12) 

From the Kelvin relation in Eq. (1.6) and 1 Rσ = , the ZT is defined as 

( )
2

max 2 2
S T T TT ZTσ
κ

 
Δ = ≡ 

 
.    (1.13) 

It can be seen that ZT determins the maximum possible temperature difference in cooling 

devices. Alternatively, ZT = max2 T TΔ [48]. 

The ZT is related to the efficiencies of the thermoelectric refrigerator or heat 

engine. For the refrigerator, the efficiency is defined as the rate of heat removed from the 

cold side to the input power. The maximum possible efficiency is called the coefficient of 

performance (COP), and it is expressed in terms of ZT as [33] 

1
COP

1 1
m h cc

h c m

ZT T TT
T T ZT

+ −
=

− + +
,   (1.14) 

where hT  is the temperature at the hot side, cT  is the temperature at the cold side, and 

mT  = ( ) 2h cT T+ . Note that as mZT    in Eq. (1.14), the COP approaches the Carnot 
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limit, ( )c h cT T T− . The efficiency of a heat engine is the generated power divided by the 

heat flow from the hot source, and the maximum efficiency ( maxη ) is found as [33] 

max

1 1
1

mh c

h m c h

ZTT T
T ZT T T

η
+ −−

=
+ +

.   (1.15) 

Similarly, as mZT   , Eq. (1.15) gives the Carnot efficiency of ( )h c hT T T− . 

Therefore, ZT should be maximized to obtain high efficiency. Note that as discussed in 

Appendix F, the efficiency under the maximum power output condition is also crucial 

parameter.   

Cooling and generation capacities can be increased by segmentating multiple TE 

devices [36]. It was shown that materials with dissimilar compatibility factors cannot be 

combined by segmentation into an efficient thermoelectric generator [49], where the 

compatibility factor (s) is defined as, ( )1 1m ms ZT ST= + − . Therefore, in such 

segmented TE devices, control of the compatibility factor in addition to ZT is essential 

for efficient operation of a thermoelectric device, and thus will facilitate rational 

materials selection, device design, and the engineering of functionally graded materials.  

In the next section, we review important breakthroughs in thermoelectric 

researches over the past 6 decades and discuss why they have been successful. Other 

approaches that are being explored to further increase the performance are also reviewed. 

 

1.3 Thermoelectric Research  
1.3.1 Bismuth Telluride Alloys: 1950s - 1990s  
 In the 1950s, when the basic understanding of TE materials became established,  

the field of thermoelectric advanced rapidly after Ioffe’s observation that doped 

semiconductor are good TE materials [33].  Bismuth Telluride (Bi2Te3) was discovered 

and commercialized. It was the launch of TE industry. In addition to Bi2Te3, Lead 

Telluride (PbTe) and Bismuth Antimony (Bi-Sb) alloys were the best TE materials for 

refrigeration during the 1950s and 1960s.   
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The key factors that make Bi2Te3 a good thermoelectric material are a low lattice 

thermal conductivity and high power factors. The formation of solid solutions with iso-

structural compounds such as Bi2Te3 - Sb2Te3 - Bi2Se3, Bi-Sb, PbTe-SnTe, InSb-GaSb, 

Si-Ge increases the phonon scattering rate (alloy scattering) due to atomic mass and 

volume fluctuations. In addition, the high atomic mass is also related to the low sound 

velocity. These two factors lead to a low lattice thermal conductivity regardless of 

relatively large specific heat.  For good electronic performance, higher Seebeck 

coefficients and higher mobility at reasonable doping levels is important. Because Bi2Te3 

has six valleys in both the conduction and valence bands [2, 35], this allows higher S and 

 at the optimum power factor [45].  We will explain the TE performance of Bi2Te3 in 

more detail in Chapter 3.  

Over the following three decades 1960-1990, only incremental enhancements in 

ZT were made, and therefore the field received little attention with Bi2Te3 remaining the 

best TE material. Nevertheless, thermoelectrics proved to be competitive in niche 

applications such as NASA’s deep probe mission, laboratory equipment, and medical 

applications where the unique features of TE devices such as reliability, small size and 

precise temperature control are more important than cost and efficiency. 

 

1.3.2 Beyond Bismuth Telluride: after 1990s  
 Stimulated by strong support from the US Department of Defense in the early 

1990s, the research community was encouraged to see if the development in material 

science and nanotechnology can enhance the TE performance. As a result, various type of 

approaches were taken to develop new TE materials beyond bulk Bi2Te3. The most recent 

efforts to improve ZTs are to combine reducing lattice thermal conductivity such as 

nanocomposites with power factor enhancement by density of states engineering.  

Although the revival of interest in thermoelectrics in the early 1990s was 

stimulated by the predictions that independent control of S and  is possible by 

nanostructuring [42, 43] , recent experimental reports of high ZT [10,12, 44–49]  are 

attributed to suppressing the thermal conductivity, . The  is the sum of the electronic 

contribution, eκ , and the lattice thermal conductivity, lκ . In semiconductors, heat 
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transport tends to be more dominated by the lattice, so lκ  plays a critical role in 

thermoelectric performance. It has been reported experimentally [58] and theoretically 

[51, 52]  that lκ  can decrease by a few orders of magnitude in lower dimensional 

devices due to phonon confinement and increased boundary scattering. Phonon transport 

can be further suppressed by embedding nanoparticles in semiconductors [61]. Reducing 

lκ  is an effective way to increase ZT provided it does not degrade the electronic 

properties significantly. More detailed review of recent achievements in thermal 

conductivity reduction in bulk nanocomposite and nanostructured material will be given 

in Sec 1.4. 

Power Factor Engineering. In addition to the enhancements in nanostructures by 

improving the phonon part ( lκ ), there have been continuing efforts to increase the ZT of 

bulk materials because many thermoelectric applications require materials in large 

quantity. Another way to increase the ZT is improving the electronic part (power factor, 
2S σ ) and now the question of whether the electronic performance can be enhanced are 

being asked [8,62,63].   

Engineering DOS. Significant improvement in S have been predicted and reported 

for several different materials. For example, an enhanced S has been achieved by 

engineering the density-of-states (DOS) in bulk Tl-PbTe [8], LAST [(PbTe)1-

x(AgSbTe2)x] system [64], and La3-xTe4 [65]. The goal of DOS-engineering is to create 

resonant states of impurity in the conduction or valence bands, although most of impurity 

atoms introduce states in the band gap. In addition, giant Seebeck coefficients have been 

predicted for nanostructured graphene [66] as well as for appropriately engineered 

molecules [67]. These examples all seek to enhance performance by achieving a shaply-

peaked DOS around a narrow band of energy. Bandstructure engineering could also be 

achived by controlling strain of the sample. This approach has been very successful for 

enhancing the electronic performance of nano-transistors and is currently being explored 

to enhance TE performance [68–71]. DOS and strain engineering are similar because 

strain can adjust the location of the upper valleys with heavy mass and large valley 

degeneracies to maximize performance, in which the upper valleys play a role like 
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resonant states.  More details of DOS engineering to increase the performance will be 

discussed in Appendix A.  

Energy Filtering. The energy filtering effect has been proposed to improve the 

power factor. The principle is to introduce an energy barrier (or any type of scattering 

center) that can preferentially scatter low energy electrons to increase the Seebeck 

coefficient while maintaining good conductivity through high energy electrons. 

Theoretical calculation showed significant increases in ZT (as large as 100%) for 

perpendicular transport in superlattice. This is because the increase in mean carrier 

energy by energy filtering allows larger carrier density (heavier doping) while 

maintaining the same scattering rate by ionized impurity scattering process [72]. 

Experimentally, researchers have shown S can be increased by filtering out low energy 

electrons [73–75], but an improvement in power factors has been limited. These energy 

filtering effects could play a role in NC materials because the nanograin boundaries act 

energy barriers. 

Phonon Drag. The phonon drag effect is another way to achieve large S. The 

phonon drag Seebeck effect is the result of strong electron-phonon interactions. The 

phonon drag Seebeck effect occurs in the following way. The temperature gradient: 1) 

transfers momentum from phonon to electron by electron-phonon scattering, 2) which 

leads to larger electron flow to cold side, so that  3) a larger voltage is developed to 

make current flow zero in a open circuit condition, resulting in large Seebeck 

coefficients. When other phonon scattering mechanisms are more dominant than 

electron-phonon scattering, phonon momentum is relaxed through the dominant phonon 

scattering process so that phonon drag effect is negligible. Therefore, the phonon drag 

Seebeck effect is small for highly doped material (i.e., larger electron densities and 

phonon scattering by impurities.), high temperature (i.e., strong Umklapp scattering), and 

materials with low Debye temperature (i.e., strong Umklapp scattering). At normal 

operating temperature, therefore, the phonon drag effect is hard to observe under high 

doping conditions, which is usually the optimum condition. In low-dimensional 

structures, it is theoretically reported that the phonon-drag effect cannot improve the 

performance, although phonon-drag effect is enhanced [76]. Recent experiments, 
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however, suggest that the phonon-drag effect is enhanced to improve ZT in lower 

dimensions due to the modification of phonon modes [11, 69]. 

Attempts to search for new low temperature TE devices have been made because 

the ZT below room temperature becomes even less competitive. Strongly correlated 

electron systems are being pursued because giant Seebeck coefficients are observed in 

systems such as Kondo impurity systems, Kondo lattice systems, Kondo insulators, high 

critical transition temperature (TC) superconductors, and transition metal oxides [78] . As 

an example, FeSb2 exhibits more than an order of magnitude increase in S and PF than 

conventions TE materials at low temperature, though its physical origin still needs to be 

understood [36, 71, 72].  In the transition-metal oxides such as NaxCo2O4, enhancement 

in S is attributed to spin entropy due to strong electron-electron interaction [81]. 

As a new device concept, a thermionic device has been proposed and examined 

for refrigeration and power generation [48,82–85]. In thermionic devices, energy is 

transported by ballistic electrons injected over a potential barrier, whereas energy is 

transported by diffusive carriers in thermoelectric devices.  No clear experimental 

evidence of improved cooling performance, however, has been demonstrated.  

 

1.3.3 Evaluation of Thermoelectric Devices  
Electrical conductivity (carrier concentration, mobility) measurements are 

relatively easy and well developed in the semiconductor industry even for thin films. A 

variety of methods are used such as the four-point probe method, van der Pauw 

technique, and Hall measurements [86]. In the measurement of Seebeck coefficients, 

errors related to the sample dimensions are not present by definition. The key challenge is 

to determine correct temperature gradient across the sample. Among the individual 

parameters in the figure of merit, it is thermal conductivity that is the most difficult to 

measure with relatively high accuracy because both errors in determining the sample 

dimensions and temperature gradient are present. In particular, samples with low thermal 

conductivity are harder to measure because the heat loss can easily occur through other 

paths of low thermal resistivity such as leads and surrounding gas flow. The 3ω method 

is currently regarded as the best method available, though it requires careful sample 



13 
 

 

preparation [87]. Measurement of intrinsic thermal properties of low dimensional 

nanostructure such as nanowires and nanotubes with good accuracy are even more 

difficult with conventional method because of small sample size and large influence of 

thermal contact resistance. A special microdevice for thermal property measurements, 

therefore, was proposed [58].  Another technique that is widely used to directly obtain 

ZT of the bulk or thin film TE device is the Harman method or Z meter [88]. The Harman 

method utilizes the difference of response time of voltage developed by Joule effects and 

Peltier-Seebeck effects to applied current. Information from this technique should be 

compared to the measurements of the individual parameters [88–90].    

 

1.4 Nanocomposites Thermoelectrics  
Nanocomposite materials are currently receiving a lot of attention due to reports 

of increased ZT in materials systems that are easy to fabricate and possess good 

mechanical strength [20,27,91,92]. In this section, we review the field of nanocomposite 

(NC) thermoelectric materials. Nanocomposite materials encompass a large variety of 

systems, such as 1D, 2D, 3D crystalline materials, and amorphous materials made of 

dissimilar components and mixed at the nanometer scale. For thermoelectric (TE) 

applications, however, the term nanocomposite usually refers to two types of bulk 

nanostructured materials [27]: 1) materials with nanoparticles in a matrix (host) and 2) 

polycrystalline materials consisting of nanosized grains where neighboring grains could 

be different materials or the same materials. Topics surveyed in this review include: 1) 

the motivation for NCs, 2) key experimental accomplishments, 3) materials fabrication 

and properties, 4) electron and phonon transport, and 5) modeling approaches. Finally, 

we discuss challenges and what needs to be done in order to understand, model, and 

design NCs for TE applications. This section provides the background for Chapter 7 

where our modeling approach and some initial results are discussed.  

 

1.4.1 Motivation for Nanocomposite Thermoelectrics 

Increasing the TE figure of merit (FOM), 2
L LZT S Tσ κ= , involves increasing 

the power factor ( 2PF S σ= ) or decreasing the thermal conductivity (κ ), or both.  
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Nanocomposites have clearly demonstrated the ability to decrease thermal conductivity 

without significant adverse effects on the electrical performance [21, 83–85]. There are 

also reports of enhanced Seebeck coefficient at a constant conductivity [9, 67]. 

Consequently, there is significant promise that with proper design, nanocomposite TE 

materials could achieve very substantial enhancements in performance. 

Theoretical studies of thermal conductivity in superlattices and random 

nanostructures indicated that the primary cause of low lattice thermal conductivity is not 

a special, periodic geometry or a perfect interface, but the presence of interfaces with 

high density [84, 86]. Understanding of how thermal conductivity was reduced while not 

lowering electrical conductivity in the NCs, however, requires the spectral analysis of 

electron and phonon transport as we will discuss in Chap. 2, 3, and 4.  

The selective scattering of electrons and phonons in the NCs is possible mainly 

because the electrons that contribute to σ have larger wavelengths than the phonons that 

contribute to κ ph and interfaces are coherent or semi-coherent. First, the difference in 

wavelength spectrums for electrons and phonons makes it possible to introduce scattering 

center that strongly affect phonons and weakly affect electrons to achieve a phonon glass 

and electron crystal (PEGC) [94]. On top of that, the presence of interfaces and 

nanograins with a proper size can effectively scatter mid - to long - wavelength phonons, 

which are less scattered by alloy scattering thereby making it possible to achieve lower 

thermal conductivity than corresponding bulk samples.  Second, coherent or semi-

coherent interfaces increase scattering for phonons more than for electrons. This is due to 

the fact that local strain at semi-coherent or coherent boundaries effectively increases the 

scattering cross-section for phonons, while the coherent boundaries do not degrade 

electron flow significantly [20, 53, 88].     

 

1.4.2 Key Experimental Accomplishments 
Researchers have fabricated a type of bulk nanostructured materials with a simple 

fabrication processes such as thermal processing and powder metallurgy methods. In 

several material systems, such thermal processing methods have succeeded in obtaining 

ZTs as high as 2.2 at 800 K [94]. The powder metallurgy method has been applied to 
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many bulk materials such as BiSbTe alloy [96,97], Si/Ge alloy [98,99], and skutterudites 

[22,100] with the ZT greater than 1. Recent achievements by thermal processing and by 

powder metallurgy are well discussed in Ref. [20] and [101], respectively. Figure 1.2 

shows the maximum ZT vs. total thermal conductivity for recent nanostructured TE 

devices. The results for conventional TE bulk materials have also been included for 

comparison. It can be seen that recent enhancements in ZTs are mostly due to thermal 

conductivity reduction, while maintaining or not degrading much the power factor (PF). 

Thermal conductivity in the NCs is usually less temperature dependent comparing to the 

corresponding bulk materials because the phonon scattering rate by interfaces becomes 

more important than Umklapp scattering.  Due to a large degradation in electrical 

conductivity, however, all groups have not succeeded in making NCs with high ZT due to 

large degradation in electrical conductivity. Lan et al., [101] argued that this could be due 

to contamination by oxygen, moisture, and other environmental factor during the 

fabrication process. 

To further enhance the ZT, the question of whether the numerator of the ZT, the 

PF, can be enhanced is now being asked. Some successes have been reported with 

composite bands [8] and with nanocomposites [18]. Their results are labeled as “PF 

increase” in Fig. 1.2.  Currently, work on combining the concept of composite bands 

with NCs is underway [101].  Another strategy to increase the electronic performance is 

the use of energy filtering. Since grain boundaries can act as a potential barrier, the NCs 

expect to see the energy filtering effect – i.e., the Seebeck coefficient increase at the same 

carrier concentration.  The experimental demonstration of the effect is, however, rare.  

There have been reports in which a ZT increase results from enhancement of Seebeck 

coefficients by the energy filtering effect, not from increase in σ/κ ratio [67, 95, 96].  It 

was reported that the Seebeck coefficient of PbTe thin films increases as the grain size 

decreases, while the σ/κ ratio keep decreasing  [103].  The Seebeck coefficient vs. 

concentration was examined for PbTe thin films on different substrates, and it was 

observed that the S at the same concentration depended on the substrates [102].  It was 

argued that this occurs due to the different properties of grain boundaries which were 

determined by process condition and substrate. 
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Figure 1.2. The maximum ZT vs. total κ . The dashed line: PF = 40 µW/m2K2, T=300K; 
Conventional semiconductors used in IC industry (open diamonds): a1) Si 300K [1,2], 
a2) Si 1275K [1],  a3) Ge 300K [3], a4) GaAs 300K [4]; bulk TE materials used in TE 
devices  (open triangles): b1) p-Bi2Te3 300K [5], b2) p-BixSb2-xTe3 300K [6],  b3) n-
Si80Ge20 1275K [7], b4) PbTe 300K [8]); nanostructured materials fabricated by thin 
films processing (filled circle): c1) Si nanowire (NW) 300K [9], c2) Si NW 200K [10],  
c3) Bi2Te3/Sb2Te3 superlattice (SL) 300K [11], c4) PbTe/PbSeTe quantum dot (QD) SL 
300K [12] , c5) PbTe/PbSeTe QD SL 575K [13]; electronic structure engineered bulk 
materials (open star): d1) Tl-PbTe 773K [8]; partially filled skutterudites (filled square): 
d2) n-YbxCo4Sb12 600K [14]; bulk nanostructured materials fabricated by thermal 
processing (filled inverse triangles): e1) p-Na1-xPbmSbyTe2+m 650K [15], e2) p-PbxSn1-

xTe-PbS 642K [16],  e3) n-AgPbmSbTem+2 800K [17], e4) PbSbTe 700K [18], e5) p-
PbTe-SrTe 800K [19]; and powder metallurgy (filled triangles): f1) p-Bi2Te3 300K [20], 
f2) p-BixSb2-xTe3 475K [6],  f3) n-Si80Ge20 1275K [7], f4) Si 1275K [1], f5) n-LaTe 
1273K [21], f6) n-YbxCo4Sb12+y 800K [22]. Note that the report of ZT ~ 3.5 (c5) in Ref. 
[13] turned out to be an error due to inaccurate carrier concentration measurements. 
Examination of the Hall samples used in Ref. [13] indicated incorrect contact geometries, 
with pressed indium contacts that were large relative to the sample size and inset from the 
edges [23]. 
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Using fine particles with low conductivities and coarse particles with high 

conductivities, Zhao et al. [104] experimentally studied the effect of mixed grain sizes on 

TE performance for Bi2Te3 and showed the possibility of use of percolative transport to 

boost TE performance. It was seen that there was an optimum fraction of fine particles 

for maximum ZT and PF. They qualitatively attributed the characteristics to the 

percolative transport. They, however, found that σ/κ ratio decreases with weight fraction 

of fine particles because electrical conductivity is more rapidly decreasing with fine 

particles. So the main benefit came from the increase in Seebeck coefficient. The 

Seebeck coefficient at the same concentration was increased in comparison to bulk 

Bi2Te3, which was attributed to energy filtering effects by introducing fine particles – i.e. 

more potential barriers.  This experiment is hard to explain by conventional modeling 

approaches.  

To date, nanocomposite design has been empirical - based on trial and error [92, 

98, 99].  This is because our understanding of how grain boundaries scatter electrons 

and phonons is incomplete, and because grain and GB statistics are only known for 

specific instances. As a result, there is no physical model that can predict the performance 

of nanocomposites as a function of grain properties and GB statistics. There is, therefore, 

a critical need to develop a physics-based modeling approach and computational tools for 

the rational design of nanocomposite thermoelectric materials and devices.   Such an 

approach must begin by modeling the manufacturing processes used to produce 

nanocomposite materials, which we discuss next. 

 

1.4.3 Manufacturing Processes and Materials Properties 
Cost-effective synthesis methods for TE devices are essential factors that drive 

current research. A variety of materials and synthesis methods have been proposed to 

introduce high density interfaces in bulk samples with relatively simple fabrication 

processes. Key features of the main techniques to prepare nanocomposite TE materials 

are summarized in Table 1.1 and compared to thin film processing methods [21, 100, 

101]. There are several requirements for the synthesis method [27]: 1) it should be a bulk 

process in which preparation conditions can easily be tuned for maximum ZT and 2) 
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thermodynamical stability is important. The two main approaches currently taken for 

developing NC TE materials are reported to produce stable NCs with high ZTs. For 

example, thermal stability tests on SiGe NCs shows no change in the thermal 

conductivity during a period of 1 year at 1275 K under vacuum [1]. 

 

Table 1.1. 

Summary of fabrication techniques for TE materials  

 Thin film processing Thermal processing Powder metallurgy 

technique 

• Sputtering 
• vapor deposition 
• molecular beam 

epitaxy 
• liquid phase epitaxy 
• atomic layer deposition 

• zone-metling 
• Czochralski 
• Bridgman 

• grinding, ball milling 
• wet chemical process 
• hot pressing 
• sintering (ex. SPS)  

Pros 

• small consumption of 
materials 

• high quality samples 
• low temperature 

process 

• high quality samples 
• good thermodynamics 

and crystallographic 
control 

• mechanical strength 
• low temperature 

process 
• low cost mass 

production 
• little phase diagram 

knowledge 
• overdoping beyond 

solubility limit 

Cons 

• need good phase 
diagram knowledge  

• high cost, slow 
• characterization 

• need good phase 
diagram knowledge 

• brittle 
• high doping difficult 

• highly dense samples 
difficult 

• poor crystallographic 
control 

 

 

The first approach for producing nanocomposite TE materials is based on 

nanograin (or nanoparticle) formation from melts by thermal processing. The nanoscale 

grains are self-formed by either nucleation and growth mechanisms or spinodal 
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decomposition (phase separation process without a nucleation step) or the so-called 

matrix encapsulation” technique. In the process, properties like grain size can be adjusted 

by tuning the process condition such as cooling profile [17, 21, 102]. Though thermal 

processing has several advantages such as high quality samples without pores, the 

method needs good phase diagram knowledge, and the samples tend to be brittle due to 

microcracks [20].  

The second method uses powder metallurgy (usually by ball milling + sintering 

process) to create nanograins. Nanosized crystalline powders of the chosen compound are 

prepared by grinding and ball milling or wet chemistry processing, then followed by hot 

pressing or sintering into bulk objects. More recently, spark plasma sintering (SPS) 

process has been widely adopted to achieve fast densification with minimal grain growth 

in a short sintering time [107]. The nanosized grains formed by thermal processing 

described above are usually nanoparticles in a matrix. This approach, however, creates 

extensive interfaces between the compacted nanoparticles.  The challenge, therefore, is 

to obtain highly dense samples because it is hard to completely remove oxides or 

organics at interfaces which are used in the sample preparation (grinding, milling or wet 

chemistry) [21, 91]. The benefits of this method are a relatively low cost process, more 

choices of materials, better mechanical properties, and improved isotropy [20].   

These efforts to develop the NCs fall into several approaches of tailored 

microstructural and interfacial control: (a) a polycrystalline microstructure with reduced 

grain size, (b) preferential alignment of grains along favorable transport directions, (c)  

nanocoated grains, (d) embedded nanoinclusions, and (f) lamellar/multilayer structures. 

Although each class could be realized by different choice of materials, it is important to 

find the best microstructure for a given properties of grain and grain boundaries to 

understand electrical and thermal transport in NCs. This can be only done by modeling 

studies but current modeling approaches cannot answer this question as will be discussed 

in next section.  

The size of nanoparticles in a host and nanograins in polycrystalline range from 

several nanometers to several microns, although nanometer sized inclusions are usually 

observed inside micrometer sized grain for samples with high ZT [92]. It has been 
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reported that grain boundaries between the host grain and the self-formed nanoparticles 

inside the host grain are semi-coherent or coherent GBs [85, 103, 104],  which are 

regarded as ideal interfaces to only suppress phonon transport. The NCs by power 

metallurgy, however, have achieved high ZT with random GBs between grains [101]. 

The microstructures as grain size and GBs and their properties are analyzed using a 

variety of measurement techniques [85, 105] depending on the scale of the microstructure 

of interest, the type of properties required, and local availability of the techniques. 

Analysis techniques include: 1) optical microscopy and scanning electron microscopy 

(SEM) for coarse scale observation, 2) transmission electron micrograph (TEM) or high 

resolution TEM (HRTEM) for high-magnification observation, 3) X-ray diffraction 

(XRD) pattern for the crystallographic structure and preferred orientation in 

polycrystalline or powdered bulk samples, and 4) electron backscattered diffraction 

(EBSD) for information about crystallographic structure and strain in a SEM or TEM in 

nanosized grains. The resulting 2D statistics about grain and GB for limited samples, 

however, are insufficient to predict the true 3D characteristics [113]. Although a number 

of methods are recently employed to investigate 3D microstructure [114], the 3D 

observations for NCs are not reported yet to our knowledge.  

Correlation between microstructure and bulk NCs are empirical partly due to the 

fact that the study of local properties of microstructure and its relation to bulk properties 

are rare for NCs.    Recent scanning tunneling microscopy (STM) measurement of 

electrical resistivity of a single GB showed that high angle GB (HAGB, or random GB)  

have almost universal resistivity and about 20 times greater resistivity than low angle GB 

(LAGB or coherent GB) of which resistivity is similar to grain itself [115,116]. 

Corresponding thermal conductivity measurements with sub-100 nm resolution are done 

for devices such as carbon nanotubes with scanning thermal microscopy (SThM) and 

scanning thermoreflectance microscopy [117].  Thermal conductance measurements at 

grain boundaries have not been reported, although the importance of GB scattering on 

thermal conductivity reduction was illustrated by indirect measurement for 

polycrystalline thin films with micrometer resolution [117]. Spatial measurement of the 

Seebeck coefficient with nanometer resolution was done in semiconductor p-n junctions 



21 
 

 

using scanning thermoelectric microprobe (SThEM) [118].  Studies of such local 

electrical and thermal properties for NCs are rare, but there is a report of local probing of 

the Seebeck coefficient for NCs with micrometer resolution [119]. 

 

1.4.4 Electron and Phonon Transport 
Understanding electron and phonon transport across interfaces is an essential 

prerequisite to modeling and controlling the overall properties of the polycrystalline 

structures. Electronic and thermal transport across grain boundaries have been great 

concerns for electronic materials. In 1970, Seto developed the first quantitative model for 

the electron transport in polycrystalline materials [120]. The model he suggested is 

charge-trapping model in which a GB is modeled as a potential barrier (Fig 1.3). This 

model is now widely accepted. In addition, the Mayadas-Shatzkes models [121] have 

been used to interpret experiments performed on polycrystalline films in terms of 

averaged reflectivity of GBs [108, 115]. For nanocomposite TE materials, similar 

approaches have been taken in which GBs are modeled as a symmetric Schottky barrier, 

a single barrier and a multi barriers [92, 98, 99]. 

 

  
Figure 1.3.  Schematic diagram of a potential barrier used for modeling a grain 
boundary where EB is a barrier height and LG is grain size. 

 

The acoustic mismatch model (AMM) and the diffusive mismatch model (DMM) 

have been used to estimate the thermal boundary resistance [123].  The AMM is limited 

to smooth surfaces and the low temperature regime because it assumes specular 

scattering, while the DMM provides good agreement at above room temperature. The key 
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assumption of the DMM is that the phonons suffer from diffusive and elastic scattering at 

the interface with transmission coefficient from material 1 to 2 given as [123]  

1 2 2, 2, 1, 1, 2, 2,( ) j j j j j j
j j j

T D D Dω υ υ υ→

 
= + 

 
    ,    (5.1)

 
where j is the phonon mode, jυ  the phonon velocity, and jD  the phonon density of 

states.  Starting from a Landauer approach with the same assumption, we can show that 

the transmission is equivalent to ( )1 2 2 1 2( ) ( ) ( ) ( )T M M Mω ω ω ω→ = + , as derived in 

Appendix D.  Note that 1 2 ( )T ω→ is 1/2 for interfaces between same materials in the 

DMM.   

The 2D analysis of microstructures has been done for NCs, so 3D observations for 

NCs are necessary for improved understanding of the mechanisms governing the 

properties and formation of interfaces.  The experimental measurement of local 

electrical and thermal properties at the interface will be required to clearly understand 

thermoelectric properties of interfaces as well as bulk NCs.  In the next section, we will 

review the conventional approach to model transport properties of NCs.  

 

1.4.5 Modeling Nanocomposite TE materials  
We first review general approaches to model thermoelectric transport. To treat the 

bulk materials, techniques like percolation theory, effective medium theory, and drift-

diffusion equations have been used. A study of thermoelectric properties of two 

components systems was done in the effective medium context and showed that the 

figure of merit can never exceed the largest value of that of any component [124], 

although power factor enhancement was predicted for a specific types of mixtures [125].  

A percolation study of two component systems have also been done and showed a 

difference between results from effective medium theory and percolative transport, 

without demonstrating improved performance [119, 120]. The general drift-diffusion 

equations including thermoelectric effects [128] have been also used to analyze internal 

cooling and thermal responses in devices such as deep submicron MOSFET [129], 

bipolar devices [130], and hetrojunction bipolar transistor (HBT) [131].  Recent 
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modeling efforts to understand the electronic and thermal properties are done with a 

variety of techniques with emphasis on microscopic modeling which include: 1) 

Boltzmann transport equation (BTE) for electrons [92, 98, 99, 125, 126] and phonons 

[134], 2) Monte Carlo (MC) simulations [135],  3) Molecular dynamics (MD) 

simulations [136], 4) modified effective medium theory [137], and 5) non-equilibrium 

Green’s function (NEGF) method [138], which we also used to examine the electronic 

performance of cross-plane superlattice devices. Another recent example of modeling Si1-

xGex NCs was done by Bera et al. [139]. They have implemented a BTE approach for 

both electron and phonon transport with the relaxation time approximation.  

While nanocomposites materials are beginning to yield promising results of ZT > 

1, most of the improvements come from low thermal conductivity, without corresponding 

enhancement in electronic performance.  Researchers have been so far trying to 

suppress the long wavelength phonons that contribute significantly to the thermal 

conduction, but are not affected by point defect and alloy scattering. This was achieved 

by introducing high-density interfaces with a larger characteristic length than that of a 

point defect, which doesn’t affect much electron flow due to the difference in wavelength 

spectrum between electrons and phonons.   A few achievements in electronic part have 

been experimentally reported [18]. 

To simulate electronic properties, the BTE has been used with relaxation time 

approximation (RTA).  The shape of GBs was modeled as rectangular potential barriers 

[105] or was calculated by solving Poisson equations [92, 99, 125, 126].  Then, the 

scattering rate was calculated using the Fermi golden rule in the Born approximation [92, 

125], transmission formalism [98, 99], and the partial wave technique [133].  For the 

electronic dispersion relations, parabolic band or Kane model is usually used.  Although 

results from these model are in a good agreement with experiments, the models require 

several fitting parameters, such as the GB potential and constants related to screening and 

depletion at the GBs in addition to average grain size ( GBl ).   

These existing models, however, do not consider several factors that may be 

important to understand the electronic transport for NCs, such as shapes of grains, 3D 

distribution of the GBs, types of GBs and associated properties, and quantum mechanical 
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effects such as tunneling through thin GBs and the confinement effect of nanometer sized 

grain.  Morevoer, energy relaxation hasn’t been considered in previous studies, but it is 

important to take it into account to properly treat energy filtering effect as we discussed 

in Sec. 1.4.4.  

For phonon transport in NCs, the phonon BTE [134] and MC simulations [127, 

128] have been used to evaluate the geometrical effect on thermal conductivity with an 

assumption of average phonon mean-free-paths and periodic boundary conditions.  The 

Rayleigh scattering model [73], acoustic Mie scattering model [140], and a standard 

boundary scattering rate, 1
GB s GBlτ υ− =  in the Debye model [99] were used to calculate 

the thermal conductivity for NCs with the phonon BTE. A modified effective medium 

theory, which takes interfaces into account, was also proposed [137] and used [106] to 

analytically calculate the thermal conductivity. As pointed out in Ref. [27], existing 

models are insufficient to investigate a desirable type of interface to selectively scatter 

phonons and the effect of size distribution of nanoparticles. 

The limitations of current models are partly due to the fact that the models ignore 

the statistics of grains and GBs and associated properties as well as their configurations in 

3D. Therefore, microstructure-aware modeling informed by associated properties is 

required. Existing models for NCs haven’t employed the DMM to predict the phonon 

scattering rate or MFP at interfaces, although the charge trapping model was generally 

used for electrical properties. Theoretical efforts to predict electrical and thermal 

properties at interface should continue with experimental efforts. 

 

1.5 Thesis Outline  
As discussed in the previous section, ZT can be increased by improving the 

electronic part (increasing the power factor) or the phonon part (decreasing lκ ). In the 

first two chapters, we set the theorectical framework to evaluate the electronic (Chapter 2) 

and thermal (Chapter 3) performance of bulk diffusive samples with a Landauer approach 

using full band electronic bandstructure and a full dispersion description of phonons. 

Then, we extend the Landauer approach to understand the physics of ballistic and quasi-
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ballistic thermal conduction and to explain the reduced lκ  of thin films (Chapter 4). In 

the following two chapters, we explore the possibilities to enhance the electronic 

performance of thermoelectric devices. In Chapter 5, we revisit the question of what 

bandstructure produces the best thermoelectric performance and discuss the prospects of 

increasing ZT through high valley degeneracy or by distorting the density-of-states from a 

Landauer perspective. In Chapter 6, we examine electronic performance for several 

different materials such as molecules and graphene. In Chapter 7, we shift our attention to 

nanocomposite thermoelectric materials and develop computational framework for 

modeling the electronic performance of the polycrystalline materials with realistic 

statistics of grain and grain boundaries. Note that all the symbols and abbreviations are 

defined and consistent within each chapter. A brief summary of the discussions of each 

chapter is listed below. 

In Chapter 2, using a full band description of electronic bandstructure, the 

Landauer approach to diffusive transport is mathematically related to the solution of the 

Boltzmann transport equation, and expressions for the thermoelectric parameters in both 

formalisms are presented.  Quantum mechanical and semiclassical techniques to obtain 

from a full description of the bandstructure, E(k), the density of modes in the Landauer 

approach or the transport distribution in the Boltzmann solution are compared and 

thermoelectric transport coefficients are evaluated. Several example calculations for 

representative bulk materials are presented, and the full band results are related to the 

more common effective mass formalism. Finally, given a full E(k) for a crystal, a 

procedure to extract an accurate, effective mass level description is presented.  

In Chapter 3, using a full dispersion description of phonons and a full band 

description of electronic bandstructure, both the electronic and thermal performance for 

Si and Bi2Te3 thermoelectric materials are examined using a Landauer approach.  The 

relation of classical kinetic theory to the Landauer approach for phonon transport is 

clarified. The use of simplified dispersion models is discussed and it is shown that a 

simple effective mass (parabolic dispersion) works well for electrons but a simple Debye 

model (linear dispersion) for phonons should be used with caution. A technique to extract 

a well-defined average phonon mean-free-path from the measured thermal conductivity 
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and given phonon-dispersion is presented. We show that this mean-free-path has strong 

physical significance and explain why it differs greatly from commonly-used estimates.  

In Chapter 4, the question of what fraction of the total heat flow is transported by 

phonons with different mean-free-paths is addressed using a Landauer approach with a 

full dispersion description of phonons to evaluate the thermal conductivities of bulk and 

thin film silicon. For bulk Si, the results reproduce those of a recent molecular dynamic 

treatment showing that about 50% of the heat conduction is carried by phonons with a 

mean-free-path greater than about one micrometer. For the in-plane thermal conductivity 

of thin Si films, we find that about 50% of the heat is carried by phonons with mean-free-

paths shorter than in the bulk. When the film thickness is smaller than ~0.2 mµ , 50% of 

the heat is carried by phonons with mean-free-paths longer than the film thickness.  The 

cross-plane thermal conductivity of thin-films, where quasi-ballistic phonon transport 

becomes important, is also examined.  For ballistic transport, the results reduce to the 

well-known Casimir limit (i.e., the blackbody radiation law for phonons) [141]. These 

results shed light on phonon transport in bulk and thin-film silicon and demonstrate that 

the Landauer approach provides a relatively simple but accurate technique to treat 

phonon transport from the ballistic to diffusive regimes. 

In Chapter 5, the question of what bandstructure produces the best thermoelectric 

device performance is revisited from a Landauer perspective. We find that a delta-

function transport distribution function (TDF) results in operation at the Mahan-Sofo 

upper limit for the thermoelectric figure-of-merit, ZT. We show, however, the upper limit 

itself depends on the bandwidth (BW) of the dispersion, and therefore a finite BW 

dispersion produces a higher ZT when the lattice thermal conductivity is finite. Including 

a realistic model for scattering profoundly changes the results. Instead of a narrow band, 

we find that a broad BW is best. The prospects of increasing ZT through high valley 

degeneracy or by distorting the density-of-states are discussed from a Landauer 

perspective.  We conclude that while there is no simple answer to the question of what 

bandstructure produces the best thermoelectric performance, the important considerations 

can be expressed in terms of three parameters derived from the bandstructure – the 

density-of-states, the number of channels, and the mean-free-path. 
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In Chapter 6, we address the question of how to engineer the electronic structure 

to enhance the performance of a thermoelectric material.  We examines electronic TE 

performance for several different materials. It was shown that most materials, even those 

for which giant Seebeck coefficients have been predicted, display a similar monotonic 

behavior of S vs. EF that is expected from conventional thermoelectric theory. Using III-

V alloy semiconductors as a model system, we demonstrated a promise of composite 

energy bands because of the non-monotonic S behavior, which maintains high S at high 

carrier densities resulting in high PF. Our findings show quantitatively how barriers in 

cross-plane superlattices degrade the electrical performance, (i.e., power factor) due to 

quantum mechanical effects, and that  PF of multi barrier structures is no better than a 

single barrier TE device. 

In Chapter 7, we shift our attention to nanocomposite thermoelectric materials and 

a new approach to model nanocomposite (NC) TE devices is discussed. As a testbed of 

our model, recent experimental work on polycrystalline graphene is used.  How grain 

boundaries affect the electronic performance of large-area polycrystalline graphene is 

investigated. We also demonstrate that a composite based on poly-crystalline graphene 

and a sub-percolating network of metallic nanowires offers a simple and effective route 

to reduced resistance while maintaining high transmittance. This new approach of 

‘percolation-doping by nanowires’  has the potential to beat the transparency-

conductivity constraints of existing materials and may be suitable for broad applications 

in photovoltaics, flexible electronics, and displays. 

Finally, in Chapter 8, we summarize the thesis and suggest a few possible 

directions for future research. 

 

1.6 List of Associated Publications  
The following publications are associated with the work reported in this thesis. 

Chapter 2 

• C. Jeong, R. Kim, M. Luisier, S. Datta, and M. S. Lundstrom, “On Landauer 

versus Boltzmann and full band versus effective mass evaluation of 

thermoelectric transport coefficients,” J. Appl. Phys., 107, 023707 (2010).   



28 
 

 

• M. Lundstrom and C. Jeong, "Near-equilibrium Transport: Fundamentals and 

Applications,” (Lectures from nanoscience: A Lecture notes series),  World 

Scientific Pub, to appear in 2012 

 

Chapter 3:   

• C. Jeong, S. Datta, and M. S. Lundstrom, “Landauer vs. Boltzmann and Full 

Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity,” J. 

Appl. Phys., 109, 073718-8 (2011) 

• M. Lundstrom and C. Jeong, "Near-equilibrium Transport: Fundamentals and 

Applications,” (Lectures from nanoscience: A Lecture notes series),  World 

Scientific Pub, to appear in 2012 

 

Chapter 4:   

• C. Jeong, S. Datta, and M. S. Lundstrom, “Thermal Conductivity of Bulk and 

Thin-Film Silicon: A Landauer Approach," J. Appl. Phys., 111, 093708 (2012). 

  

Chapter 5:   

• C.  Jeong, R. Kim, and M. S. Lundstrom, “On the Best Bandstructure for 

Thermoelectric Performance: A Landauer Perspective," J. Appl. Phys. 111, 

113707 (2012). 

 

Chapter 6:   

• C. Jeong, and M. S. Lundstrom, “On Electronic Structure Engineering and 

Thermoelectric Performance,”  J. Elec. Mater., 40, 738-743 (2011) 

• C. Jeong, Gerhard Klimeck, and M. S. Lundstrom, “Computational Study of the 

Electronic Performance of Cross-Plane Superlattice Peltier Devices,” Mater. Res. 

Soc. Proc., 1314, DOI:10.1557/opl.2011.509 (2011) 

 

 

 



29 
 

 

 

Chapter 7:   

• C. Jeong, Pradeep Nair, Mohammad Khan, Mark Lundstrom, and Ashraf Alam, 

“Prospects for Nanowire-doped Polycrystalline Graphene Films for 

Ultratransparent, Highly Conductive Electrodes,”  Nano Lett., 11, 5020, (2011). 

 

Other publications during the academic program (not discussed in this thesis):   

• C. Jeong, D.A. Antoniadis, and M.S. Lundstrom, “On Backscattering and 

Mobility in Nanoscale Silicon MOSFETs,” IEEE Trans. Electron Devices, vol. 

56,  no. 11,  pp. 2762-2769,  Nov.  2009.   

• C. Jeong, and M. S. Lundstrom, “Analysis of Thermal Conduatanc of Ballistic 

Point Contacts," Appl. Phys. Lett. 100, 233109 (2012). 

• R. Kim, C. Jeong, and M. S. Lundstrom, “On momentum conservation and 

thermionic emission cooling,” J. Appl. Phys. 107, 054502 (2010).   

• A. Paul, S. Salamat, C. Jeong, G. Klimeck, and M. S.  Lundstrom, “An Efficient 

Algorithm to Calculate Intrinsic Thermoelectric parameters based on Landauer 

Approach,” J. Comp. Elect. 11, 56–66 (2012) 

• R.Chen, S. R. Das, C. Jeong, D. B. Janes, M. A. Alam, “Exclusive Electrical 

Determination of High-Resistance Grain-Boundaries in poly-Graphene,” 

presented at the 2012 Deveice Research Conference (DRC). 

 

 

 
 
  

 

 
 
 
 
 
 



30 
 

 

 

2. LANDAUER VS. BOLTZMANN APPROACH FOR ELECTRONS 
The contents of Chapter 2 have been extracted and revised from the following 

publication: C. Jeong, R. Kim, M. Luisier, S. Datta, and M. Lundstrom, “On Landauer vs. 

Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport 

Coefficients,” J. Appl. Phys., 107, 023707 (2010). 

In this chapter, using a full band description of electronic bandstructure, the Landauer 

approach to diffusive transport is mathematically related to the solution of the Boltzmann 

transport equation, and expressions for the thermoelectric parameters in both formalisms 

are presented.  Quantum mechanical and semiclassical techniques to obtain from a full 

description of the bandstructure, E(k), the density of modes in the Landauer approach or 

the transport distribution in the Boltzmann solution are compared and thermoelectric 

transport coefficients are evaluated. Several example calculations for representative bulk 

materials are presented, and the full band results are related to the more common 

effective mass formalism. Finally, given a full E(k) for a crystal, a procedure to extract an 

accurate, effective mass level description is presented. 

 

2.1 Introduction  
Much experimental and theoretical effort has been directed at improving the 

thermoelectric (TE) figure of merit, ZT =   S
2GT K , where T is the temperature, S is the 

Seebeck coefficient, G is the electrical conductance, and K is the thermal conductance, 

which is the sum of the electronic contribution,  Ke , and the lattice thermal conductance, 

 Kl . Careful tradeoffs are needed to obtain high ZT. Recent experimental reports of high 

ZT[9,11,52–57]  are attributed to suppressing the lattice thermal conductivity, and now 

the question of whether the electronic performance can be enhanced is being 

asked[8,62,63].  New materials[36,52,142–144], new structures (e.g. nanowires[50,145–

154], quantum wells[51,53,155], superlattices[12,41,62,63,68,74,145,156–159], and 



31 
 

 

nanocomposites [54,55,160–162]), and strain engineering[68–71], which has been so 

successful for enhancing the electronic performance of nanotransistors, are all being 

explored.  To address these opportunities, thermoelectric coefficients must be related to 

an accurate description of the electronic structure of the material. 

Thermoelectric parameters are usually evaluated by solving the Boltzmann 

Transport Equation (BTE)[163].  For low temperature thermoelectrics in mesoscopic 

structures, the Landauer approach is commonly used[164,165].  The Landauer approach 

applies to high temperature diffusive samples as well, and it provides an alternative 

formulation that can be insightful[166].  One objectives for this chapter are to discuss 

the mathematical relation between the Landauer and Boltzmann approaches when using a 

full description of the electronic bandstructure and to relate the full band calculations to 

effective mass level descriptions 

In both the Landauer and Boltzmann approaches the thermoelectric parameters 

are related to the electronic structure of the material.  The effective mass approach is 

widely-used to analyze experiments and to design devices.  For more complex materials, 

full band treatments (ab initio or empirical tight binding) have been used [142,167–176]. 

It is still not clear, however, exactly how full band treatments relate to effective mass 

level treatments – especially for complex bandstructures.  Another objective of this 

chapter is to discuss the evaluation of thermoelectric parameters from a full band 

perspective and to show that the results are easily related to an effective mass level 

description.  

The chapter is organized as follows.  In Sec. 2.2, we present a brief summary of 

the Landauer formalism and relate it to the more common approach that begins with the 

BTE.  We also present two methods for evaluating the transport distribution in the 

Landauer approach from a full band description of the electronic structure.  In Sec. 2.3, 

tight binding simulation results are presented for the conduction and valence bands of 

germanium (Ge), gallium arsenide (GaAs), and bismuth telluride (Bi2Te3). The results are 

discussed within the Landauer framework in Sec. 2.4, as is the relation of the rigorous 

approach to the effective mass approach.  Our conclusions are summarized in Sec. 2.5. 
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2.2 Approach  
The Landauer formalism in the linear response regime gives the electrical 

conductance, Seebeck coefficient, and the thermal conductance for zero electric current 

as[177,178] 

  G = 2q2 h( )I0    [1/]     (2.1) 

  
S = kB −q( ) 

I1

I0

   [V/K]     (2.2) 

  Ke = TL 2kB
2 h( ) I2 − I1

2 I0{ } [W/K],    (2.3) 

where  

  
I j =

E − EF

kBTL








j

T (E) −
∂f0

∂E





−∞

+∞

 dE ,      (2.4) 

with 

    ( ) ( ) ( )T E T E M E= ,       (2.5) 

being the transmission[165], and ( )M E  the density of modes[179].  For a conductor of 

length, L, and mean-free-path for backscattering, 
 
λ E( ) , 

 
T E( )= λ E( ) L        (2.6) 

 in the diffusive limit[179]. For some common scattering mechanisms, 
 
λ E( )  can 

be expressed in power law form as 
  
λ E( ) = λ0 E kBT( )r

, where 0λ  is a constant, 

E  is the kinetic energy, and r is a characteristic exponent describing a specific scattering 

process. 

Thermoelectric transport coefficients are more commonly obtained by solving the 

Boltzmann equation in the relaxation time approximation and expressed in terms of an 

integral like eqn. (2.4) with the transmission replaced by the so-called transport 

distribution according to [166] 

   ( ) ( ) ( )
2

( ) L LE M E T E M E
h h

λΣ = =      (2.7) 
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A solution of the Boltzmann equation gives [163] 

    ( ) ( )2( ) x k
k

E E Eυ τ δΣ = −       (2.8) 

where τ  is the momentum relaxation time. Equation (2.7) relates the solution of the 

Boltzmann equation in the relaxation time approximation to the Landauer formalism. 

By making the definition 

    
( )

( )

x k
k

x
k

k

E E

E E

υ δ
υ

δ

−

≡
−







      (2.9) 

eqn. (2.8) can be expressed as 

   ( ) ( ) ( )
2 2
x x

x x k
kx x

E D E E E
υ τ υ τ

υ υ δ
υ υ

= = −    (2.10) 

where ( ) ( )k
k

D E E Eδ= −  is the density of states. 

Finally, according to eqn. (2.7), we find 

   
  
M E( )=

h
2L

υx
k
 δ E − Ek( )     (2.11) 

 

and 

   
  
λ E( ) = 2

υx
2τ

υx

       (2.12) 

Equation (2.11) is a well-known result that relates the density of modes in the Landauer 

formalism to the bandstructure [165,179]. Equation (2.12) is a new results that define an 

appropriately defined mean-free-path (the mean-free-path for backscattering) so that the 

Landauer results agree with the Boltzmann equation in the relaxation time approximation. 

Assuming isotropic energy bands, eqn. (2.12) can be evaluated in one-dimension (1D), 

two-dimensions (2D), and three-dimensions (3D) to find 

( ) ( ) ( )2E E Eλ υ τ=   (1D)   (2.13a) 

( ) ( ) ( ) ( )2E E Eλ π υ τ=
 
 (2D)   (2.13b) 
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( ) ( ) ( ) ( )4 3E E Eλ υ τ=   (3D)   (2.13c) 

In practice, a constant scattering time is often assumed for the Boltzmann equation, but 

this is hard to justify.  In the Landauer approach, a constant mean-free-path simplifies 

calculations and can be justified in 3D for parabolic bands when the scattering rate is 

proportional to the density of states. 

The discussion above shows that ( )M E  is essentially the carrier velocity times 

the density-of-states.  If we consider a single parabolic conduction band, 2 2 *2E k m= 

, then ( )M E for 3D is  

  
M E( )= A

mDOM
*

2π 2 E      (2.14) 

where the density-of-modes effective mass( *
DOMm )is just   m*  for a single, spherical 

band. (Results for 1D and 2D are given in Ref. [166])  For ellipsoidal energy bands, eqn. 

(2.11) can be evaluated for each equivalent ellipsoid to find * * *
DOM y zm m m=  with the 

direction of current flow being along the x-direction. This example shows that M(E) is 

related to the density-of-states in the 2D plane transverse to the transport direction.  The 

contributions for each equivalent ellipsoid are then summed.  For the conduction band 

of silicon, the result is 
  mDOM

* = 2mt
* + 4 mt

*ml
*  which is 2.04 m0.  Recall that the 

density of states effective mass is 
  mDOS

* = 62/3 ml mt
2( )1/3

= 1.06m0 .   This example shows 

that the density-of-modes and density-of-states effective masses can be quite different. 

The density of states and the density of modes effective mass in the Landuaer approach 

are analogous to the density of states and the conductivity effective mass in the 

Boltzmann approach. Finally, for non-parabolic bands with Kane’s dispersion 

relation[180], ( ) 2 2 *1 2E E k mα+ = , ( )M E for 3D becomes  

( ) ( )
*

2 1
2

mM E A E Eα
π

= +


,    (2.15) 

where α  is the non-parabolicity parameter. These analytical results will be our 

reference against which we compare the numerical results to be presented later. 
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Two procedures are available to numerically evaluate ( )M E .  Firstly, ( )M E  

can be calculated by counting bands for a given bandstructure, because we can express 

eqn. (2.11) as [179,181] 

( ) ( )k
k

M E E E
⊥

⊥

= Θ − ,    (2.16) 

where Θ  is the unit step function and k⊥ refers to k states perpendicular to the transport 

direction (i.e., transverse modes). Equation (2.16) is simply a count of the bands that 

cross the energy of interest and provides a computationally simple way to obtain M(E) 

from a given E(k).   Similar expressions have been used to numerically evaluate the 

density of modes for phonon transport from a given dispersion relations[182]. A 

MATLAB® script that implements this calculation for Ge is available[183].  

An alternative to counting the number of available bands at a given energy 

consists of calculating the transmission coefficient through a given structure as function 

of the injection energy. In the non-equilibrium Green’s function formalism[179], ( )T E  

is 

    ( )†
1 2 ( )T E Tr G G= Γ Γ     (2.17) 

where G is the retarded Green’s function and  
†

1,2 1,2 1,2( )Γ = Σ −Σi      (2.18) 

where 1,2Σ  are the contact self-energies. This approach works for bulk thermoelectrics, 

but it also allows us to obtain the TE parameters for quantum-engineered structures for 

which the electronic structure may be very different from the bulk. 

For our calculations, we have developed a multi-dimensional quantum transport 

simulator based on different flavors of the nearest-neighbor tight-binding model. It solves 

Schrödinger equation in the Wave Function (WF) formalism, which in the ballistic limit 

is equivalent to the Non-equilibrium Green’s Function (NEGF), but computationally 

much more efficient [184]. To obtain the bulk transmission coefficient ( )T E , a small 

device structure composed of two to three unit cells is constructed, two semi-infinite 

contacts are attached to both ends of the simulation domain, and electrons and holes are 
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injected and collected from these contacts. This procedure is repeated for different 

energies and wave vectors so that the entire Brillouin Zone of the considered 

semiconductor material is spanned. We integrate the resulting transmission coefficient 

over its momentum-dependence at a given energy to evaluate ( )T E .  

To evaluate M(E) beyond the effective mass approximation, an accurate 

description of the electronic structure is needed.  Materials like Si, Ge, or GaAs have 

been parameterized in the nearest-neighbor tight-binding (TB) model by several 

groups[185–187] with different levels of approximation (e.g. sp3s* [188] and sp3d5s* [187] 

models) for many years. More exotic materials like Bi2Te3 have been parameterized 

[167,168]. A comparison with energy bands obtained from Density Functional Theory 

(DFT) shows that a nearest-neighbor sp3d5s* tight-binding approach with spin-orbit 

coupling is required to capture the essential characteristics of the Bi2Te3 bandstructure 

[168]. Hence, we have extended our quantum transport simulator described above to 

include the rhombohedral crystal lattice and to calculate transmission coefficients through 

such structures. 

 

2.3 Results 
In this section, we illustrate the techniques discussed in Sec. 2.2 and show how full 

band calculations are related to effective mass calculations. A few materials that are good 

illustrations (not necessarily good TE materials) are compared: a) Ge to compare 3 

approaches to compute the density of modes - counting bands, NEGF-TB model, 

effective mass approximation (EMA) – which should all agree rather well since the Ge 

conduction bands are nearly parabolic,  b)  Ge valence band to see if  we can use an 

effective mass description for the valence band, c)  GaAs to illustrate the effect of non-

parabolicity, and  d)   Bi2Te3  because it is commonly used thermoelectric with a 

more complex bandstructure. 

Figure 1 shows the density of modes, ( )M E  for the Ge conduction band as 

computed by 3 different approaches. Counting bands gives exactly the same ( )M E

obtained by NEGF-TB model. As shown in Fig. 2.1, the EMA expression for ( )M E
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(eqn. (2.14)) provides a good fit to the full band calculation near the conduction band 

edge.  Full band calculations of the density of states, ( )D E and ( )M E  for Ge, GaAs, 

and Bi2Te3  are shown in Fig. 2.2. Around the band edge, the linear density of modes (

( )M E ) vs. energy expected from eqn. (2.14) is observed for all materials considered – 

even for the highly warped valence band.  In the bulk, ( )M E  varies linearly with E 

because both ( )D E  and ( )Eυ  are proportional to E . A linear behavior of the 

“transport distribution” ( )EΣ vs. E has previously been observed[169], but the transport 

distribution varies as 
 
D E( ) times 

  υ
2 E( ), so it is not expected to be exactly linear 

when the relaxation time,τ , is assumed to be constant . 

To show the relation between full band calculation and the EMA, a “density-of-

modes” effective mass ( *
DOMm ) was extracted from the numerically evaluated ( )M E  

using eqn. (2.14) and compared to the analytical *
DOMm with number of valleys and 

transport direction being accounted for. The results are listed in Table 2.1. The 

discrepancy is no larger than 10% for conduction band, while it is about a factor of 2 for 

valence band.    

As shown in Fig. 2.3 for the conduction band of GaAs, a better fit can be obtained 

when non-parabolicity is accounted for, and the discrepancy between extracted *
DOMm  

and analytic one reduced from 10% to 2%.  As listed in Table 1 and discussed in Sec. 

2.2, the “density-of-states” effective masses are clearly different from the density-of-

modes effective masses - except for GaAs, where the Gamma valley is the conduction 

band minimum. Finally, note that although there is no simple relation between the light 

and heavy hole effective masses and the numerically extracted *
DOMm for the valence 

band, a constant *
DOMm provides a good fit to ( )T E .  

 



 

Fig. 2.1. (a) Comparison of the number of 
approaches for Germanium (Ge): NEGF
(EMA), and counting bands. The 
M(E) from the NEFG-TB model. (b)  Illus
dispersion relation for Ge. Dotted line is guide to eye. 

 

 
 

 

. (a) Comparison of the number of modes, ( )M E , computed by 3 different 
approaches for Germanium (Ge): NEGF-TB model, Effective Mass Approximation 
(EMA), and counting bands. The M(E) from counting bands (dashed line) is on top of 

TB model. (b)  Illustration of bands counting method for specific 
dispersion relation for Ge. Dotted line is guide to eye.  
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

, computed by 3 different 
TB model, Effective Mass Approximation 

from counting bands (dashed line) is on top of 
tration of bands counting method for specific 



 

Fig. 2.2. Full band calculations of the density of states (
(M) for Ge, GaAs, and Bi
shows M(E) near the conduction band edge for GaAs.

 

 

. Full band calculations of the density of states (DOS) and the number of modes 
) for Ge, GaAs, and Bi2Te3. The midgap is located at E = 0. The inset in Fig. 2.2(b) 

near the conduction band edge for GaAs. 
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) and the number of modes 
0. The inset in Fig. 2.2(b) 
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Table 2.1. 
Analytic “density-of-modes” and  full band NEGF-TB simulation.  For comparison, 
“density-of-states” effective masses ( *

DOSm ) are also listed. The transport direction is 

along the x direction. The electron (m
e
) and hole effective masses (m

lh
, m

hh
) in the device 

coordinate (x, y, z) are used for analytic effective mass calculations and are given in units 
of the free electron mass. The ‘heavy-hole’ effective masses (Ge: 0.35 and GaAs: 0.51) 
assume spherical symmetry[189,190]. The extracted ‘heavy-hole’ effective mass for Ge 
and GaAs has a strong anisotropy (Ge: 0.17 [100], 0.37 [110], 0.53 [111], and GaAs:  
0.38 [100], 0.66 [110], 0.84 [111]). CB denotes conduction band and VB denotes valence 
band.   The top three shaded rows are for the conduction bands and generally show 
good agreement between analytic and numerically extracted values.  The bottom three 
rows for the valence band (VB) generally show a much larger discrepancy.  The two 
columns at the right (enclosed in dashed lines) show that analytic and numerically 
extracted density-of-states effective masses generally agree reasonably well, but the 
density-of-states effective masses are typically much lower than the density of modes 
effective masses. 
 

 

  

Material  

*
DOMm  *

DOSm  

Analytic   Extracted Analytic   Extracted 

Ge CB   1.24   0.56 0.51 

GaAs CB   0.073 0.066 0.063 

Bi2Te3  

CB 
 1.17 0.23 0.28 

Ge VB  1.63 0.35 0.32 

GaAs VB  0.97 0.52 0.39 

Bi2Te3 

VB  
 3.53 0.36 0.41 

4 1.18e e
yy zzm m =

=0.066yym

2 4 1.18e e e e
xx zz yy zzm m m m+ =

0.37lh hh
yy yym m+ =

0.59lh hh
yy yym m+ =

2 4 1.39h h h h
xx zz yy zzm m m m+ =



 

 

Fig. 2.3.  Comparison of fitting based on parabolic dispersion relation with fitting based 
on Kane dispersion relation.  Non
0.64[191]. Above 1eV, L
valley.  
 

2.4 Discussion 
In this section, thermoelectric properties will be evaluated and interpreted within 

the Landauer framework.  Figure 

eqn. (2.2) to experiments. The results are plotted vs. reduced Fermi level (

( )F F C BE E k Tη = − ), and we assume that the scattering rate (

density-of-states, i.e. phonon scattering is dominant

mean-free-path,  λ0 .   The Seebeck coefficient (eqn. (2.2)) is independent of 

results clearly demonstrate that 

of *
DOMm ). In the effective mass approximation, the Seebeck coefficient in 3D is 

( ) ( )(3 12D B r F r F FS k q r= − + − 

the Fermi level and on r,

The Seebeck coefficient depends weakly on electronic structure but more strongly on 

 

 

Comparison of fitting based on parabolic dispersion relation with fitting based 
on Kane dispersion relation.  Non-parabolicity parameter α used for GaAs is 

L valleys contribute to the number of modes in addition to 

In this section, thermoelectric properties will be evaluated and interpreted within 

the Landauer framework.  Figure 2.4 compares calculated Seebeck coefficients (

periments. The results are plotted vs. reduced Fermi level (

), and we assume that the scattering rate (1 τ ) is proportional to the 

states, i.e. phonon scattering is dominant[5] , which is equivalent to a constant 

.   The Seebeck coefficient (eqn. (2.2)) is independent of 

results clearly demonstrate that S is nearly independent of electronic band structure (i.e., 

). In the effective mass approximation, the Seebeck coefficient in 3D is 

( ) ( ) )3 1D B r F r F Fη η η+= − + −   , which depends only on the location of 

r, where r is the characteristic exponent that describes scatteri

The Seebeck coefficient depends weakly on electronic structure but more strongly on 
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Comparison of fitting based on parabolic dispersion relation with fitting based 
used for GaAs is 

modes in addition to Γ

In this section, thermoelectric properties will be evaluated and interpreted within 

4 compares calculated Seebeck coefficients (S) using 

periments. The results are plotted vs. reduced Fermi level (

) is proportional to the 

is equivalent to a constant 

.   The Seebeck coefficient (eqn. (2.2)) is independent of 0λ . The 

is nearly independent of electronic band structure (i.e., 

). In the effective mass approximation, the Seebeck coefficient in 3D is 

, which depends only on the location of 

is the characteristic exponent that describes scattering.  

The Seebeck coefficient depends weakly on electronic structure but more strongly on 



 

scattering. Ioffe, for example, pointed out the possibility of making use of ionized 

impurity scattering (r = 2) to improve 

 

Fig. 2.4. Calculated Seebeck coefficients (S) using eqn. (2) and experiments
[4,5,192,193] as a function of reduced Fermi level (
that scattering rate (1 τ ) is proportional to the density
dominant[5].  The reduction of Seebeck coefficient around 
attributed to the bipolar conduction due to its relatively small bandgap (0.162 eV).

 

The constant mean

data for electrical conductivity (

the same as the common approach in which the unknown relaxation time,

a constant [69,168,169,194]

systems with crystal anisotropy

2PF S G= ) and electronic thermal conductivity (

(2.1-2.3).  The thermoelect

calculated values of PF and  

conductivity, lκ [5]. Figure 

conduction and valence band, respectively. Figure 

vs. Fermi level to experiments for Ge, GaAs and Bi

with experiments. (The parameters

 

scattering. Ioffe, for example, pointed out the possibility of making use of ionized 

= 2) to improve S [33].   

ated Seebeck coefficients (S) using eqn. (2) and experiments
as a function of reduced Fermi level ( ( )F F C BE E k Tη = −

) is proportional to the density-of-states, i.e. phonon scattering is 
.  The reduction of Seebeck coefficient around Fη = −

ed to the bipolar conduction due to its relatively small bandgap (0.162 eV).

The constant mean-free-path was adjusted to give the best match to experimental 

data for electrical conductivity (σ ) with its corresponding S. This appro

the same as the common approach in which the unknown relaxation time,

[69,168,169,194], which actually turned out to be good approximation even for 

systems with crystal anisotropy[169,194].  With the best fit 0λ , the power factor (

) and electronic thermal conductivity ( eκ ) were then evaluated using eqn. 

3).  The thermoelectric figure of merit, ZT was computed at 300 K using 

and  eκ  and the experimentally determined the lattice thermal 

. Figure 2.5 shows well-fitted results for Bi2Te3 with 

conduction and valence band, respectively. Figure 2.6 compares the calculated 

vs. Fermi level to experiments for Ge, GaAs and Bi2Te3.  Calculated results agree well 

with experiments. (The parameters used in these calculations are summarized in Table 
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scattering. Ioffe, for example, pointed out the possibility of making use of ionized 

 

ated Seebeck coefficients (S) using eqn. (2) and experiments 
F F C BE E k T ). We assumed 

states, i.e. phonon scattering is 
2= − for Bi2Te3 is 

ed to the bipolar conduction due to its relatively small bandgap (0.162 eV). 

path was adjusted to give the best match to experimental 

. This approach is essentially 

the same as the common approach in which the unknown relaxation time,τ , is treated as 

, which actually turned out to be good approximation even for 

, the power factor (

) were then evaluated using eqn. 

was computed at 300 K using 

and the experimentally determined the lattice thermal 

with 0 18, 4λ = nm for 

6 compares the calculated PF and ZT 

.  Calculated results agree well 

used in these calculations are summarized in Table 



 

2.2.)  These results show that the Landauer approach gives essentially the same 

accuracy as the BTE approach (although the use of a constant mean

justify than the use of a constant 

benefit of being readily extendable to ballistic (e.g. thermionic) and to quantum

engineered structures.   

 

 

Fig. 2.5.  Comparison of the simulated and experimentally
Bi2Te3 assuming a constant mean
bands. Thermal conductivity is the sum of the electronic and lattice thermal conductivity. 
Used parameters are listed in Table 

 

 

 

 

 

 

2.)  These results show that the Landauer approach gives essentially the same 

accuracy as the BTE approach (although the use of a constant mean-free

justify than the use of a constant relaxation time).  The Landauer approach has the 

benefit of being readily extendable to ballistic (e.g. thermionic) and to quantum

 

 

.  Comparison of the simulated and experimentally[5] measured 
assuming a constant mean-free-path, 0 18, 4λ = nm for conduction and valence 

bands. Thermal conductivity is the sum of the electronic and lattice thermal conductivity. 
Used parameters are listed in Table 2.2.   
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2.)  These results show that the Landauer approach gives essentially the same 

free-path is easier to 

relaxation time).  The Landauer approach has the 

benefit of being readily extendable to ballistic (e.g. thermionic) and to quantum-

measured S, G, and  for 
nm for conduction and valence 

bands. Thermal conductivity is the sum of the electronic and lattice thermal conductivity. 
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Table 2.2. 

Summary of parameters used in Figure 2.6: fitted 0 ( )nmλ parameters, experimental 
lattice thermal conductivity 1 1( )l Wm Kκ − − . In the power law form of the mean free path, 

  
λ E( ) = λ0 E kBT( )r

 , r is 0 since we assumed that phonon scattering is dominant. 

 

Material    

Ge CB/VB  29/9.5 58 

GaAs CB/VB  110/39 55 

Bi2Te3 CB/VB 18/4 1.5 

 

 

We now consider the effective mass level treatment of this problem.  To calculate 

TE coefficients and analyze measured TE data within the EMA, two effective masses are 

needed: 1) *
DOMm  for ( )M E  calculation 2) *

DOSm to obtain the reduced Fermi-level (

( )F F C BE E k Tη = − ) from measured carrier concentration. In the EMA,  

( ) ( )
( )

1
3D

2 r FB
F

r F

rkS
q

η
η

η
+ +

= − −  
 




    (2.19) 

( ) ( )
*2

3D 0 2
2 2

2
DOM B

r F
m k TqG r

h
λ η

π
= Γ +




 
  (2.20) 

( ) ( ) ( ) ( ) ( )
( )

2 2*2
1

,3D 0 22

22 3 3
2

r FDOM BB
e r F

r F

rm k Tk qK T r r
q h

η
λ η

π η
+

+

 + 
= Γ + + −       




  
(2.21) 

where ( )jΓ is the Gamma function, the Fermi-Dirac integral of order j is defined as 

( ) ( ) ( )
0

1 1 1 Fxj
j F j dx x e ηη

∞ −= Γ + × +  [195],  r is the characteristic exponent 

describing a specific scattering mechanism, and the parameter 0λ  is determined by 

comparison with experiments.  Figures 2.5 and 2.7 show that effective mass theory 

provides a good agreement with full band atomistic simulation results.  

0λ lκ



 

Fig. 2.6.  Calculated and measured PF and ZT as function of the Fermi level. Used 
parameters are listed in Table 2.2. 
 

Because the valence bands are coupled and warped, it is difficult to p

from the values of the heavy

large discrepancy between the expected and numerically extracted values.  From the 

Luttinger-Kohn model, the valence band near the 

( )
2

2 2 4 2 2 2 2 2 2 2

2V x y y z x z
x

E k E k k k k k k k k
m

Ak B k C k k k k k k

− = ± + − + +

= ± + + +



where  iγ  are the Luttinger parameters and  A, B, and C are constants.

From the definition of density of modes, eqn. (2.11),

( )M E vs. E relation and then find analytical expression for 

 

 

.  Calculated and measured PF and ZT as function of the Fermi level. Used 
parameters are listed in Table 2.2.   

Because the valence bands are coupled and warped, it is difficult to p

from the values of the heavy- and light- hole effective masses.  Indeed, Table 1 shows a 

large discrepancy between the expected and numerically extracted values.  From the 

Kohn model, the valence band near the Γ  point can be expressed as

2 2 4 2 2 2 2 2 2 2 2
1 2 3 2

2 2 4 2 2 2 2 2 2 2

4 12( )( )

( )

V x y y z x z
x

x y y z x z

E k E k k k k k k k k

Ak B k C k k k k k k

γ γ γ γ − = ± + − + + 

= ± + + +



are the Luttinger parameters and  A, B, and C are constants.

From the definition of density of modes, eqn. (2.11), it is hard to derive analytically the 

vs. E relation and then find analytical expression for *
DOMm . But based on the 
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.  Calculated and measured PF and ZT as function of the Fermi level. Used 

Because the valence bands are coupled and warped, it is difficult to predict *
DOMm  

hole effective masses.  Indeed, Table 1 shows a 

large discrepancy between the expected and numerically extracted values.  From the 

point can be expressed as[196],  

2 2 4 2 2 2 2 2 2 2 24 12( )( )V x y y z x zE k E k k k k k k k k 
   (2.22) 

are the Luttinger parameters and  A, B, and C are constants. 

it is hard to derive analytically the 

. But based on the 



 

counting bands approach, we can readily see why the extracted 

larger than expected one from EMA. 

 

Fig. 2.7. Comparison of EMA with full
coefficient (S), electrical conductivity (
plotted  from 0 to 400 V/K ,  0 to 4E6 

 

 

Figure 2.8(a) shows that the conduction band of GaAs is nearly parabolic near the 

Γ point. According to the counting bands approach, e.g. eqn. (2.16), each band gives one 

conducting mode for electrons at a specific energy, 

dispersion relation.  In other words, effective mass approximation assumes that each 

band gives one conducting channel for an injected electron having a specific wave 

vectors and energy E. When the bands are nearly parabolic, the analytic 

well with the *
DOMm  extracted from full band calculation, as we can see for the 

conduction band in Table 1. 

If we assume parabolic bands for 

the Γ  point,  the *
DOMm

two times less than the value extracted from full band calculation a

 

counting bands approach, we can readily see why the extracted *
DOMm  is

larger than expected one from EMA.  

 

. Comparison of EMA with full-band calculation for Ge. On the 
), electrical conductivity (G) and thermal conductivity by electron( 

V/K ,  0 to 4E6 –1m–1, and 0 to  40 W m–1 K

8(a) shows that the conduction band of GaAs is nearly parabolic near the 

point. According to the counting bands approach, e.g. eqn. (2.16), each band gives one 

ing mode for electrons at a specific energy, E, due to parabolic behavior of 

dispersion relation.  In other words, effective mass approximation assumes that each 

band gives one conducting channel for an injected electron having a specific wave 

. When the bands are nearly parabolic, the analytic 

extracted from full band calculation, as we can see for the 

conduction band in Table 1.  

If we assume parabolic bands for the valence band (heavy- and light hole) close to 

DOM is expressed as *
DOM lh hhm m m= + ,  which  is approximately 

two times less than the value extracted from full band calculation as shown in Table 1. As 
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is about two times 

band calculation for Ge. On the y axis, Seebeck 
) and thermal conductivity by electron( e ) are 

K–1.   

8(a) shows that the conduction band of GaAs is nearly parabolic near the 

point. According to the counting bands approach, e.g. eqn. (2.16), each band gives one 

, due to parabolic behavior of 

dispersion relation.  In other words, effective mass approximation assumes that each 

band gives one conducting channel for an injected electron having a specific wave 

. When the bands are nearly parabolic, the analytic *
DOMm agrees 

extracted from full band calculation, as we can see for the 

and light hole) close to 

,  which  is approximately 

s shown in Table 1. As 



 

clearly shown in the Fig. 2.

contribute at least two conducting channels at a specific energy. The parabolic band 

assumption, however, gives one conducting channel per band and

underestimates the density of modes for holes. Warped valence bands provide more 

conducting modes. 

 

Fig. 2.8. Energy dispersion relation showing the lowest (a) conduction bands and (b) 
valence bands of GaAs.  ( y axis ranges from E

0f E−∂ ∂ spread about 5k
positive moving electrons at specific energy for an electron moving with a positive 
velocity. In the valence bands, most of the
two conducting channels per energy

 

Using this argument, we may also explain qualitatively the question of why  
*
DOMm  is different between Ge and GaAs even though the valence bands look sim

Including results for Si and InAs valence bands, the hole ‘density

mass, *
DOMm extracted from full band calculations for Si, Ge, GaAs, and InAs are given 

as, 2.40m0 >1.63m0 >0.97m

warping can be judged from the values of 

parameter. For 3 2γ γ= ,  eqn. (2.22) yields two parabolic bands (heavy

hole).  From the tabulated value

are  17 > 0.76> 0.62 > 0.20  for Si, Ge, GaAs, and InAs, respectively.  This shows 

 

Fig. 2.8(b), most of bands for holes (especially for heavy

contribute at least two conducting channels at a specific energy. The parabolic band 

assumption, however, gives one conducting channel per band and

underestimates the density of modes for holes. Warped valence bands provide more 

. Energy dispersion relation showing the lowest (a) conduction bands and (b) 
valence bands of GaAs.  ( y axis ranges from EC (or EV) to EC (or EV) + 5k

spread about 5kBT.)  Each  red dot represents a conducting channels for 
positive moving electrons at specific energy for an electron moving with a positive 
velocity. In the valence bands, most of the bands (especially heavy holes) have at least 
two conducting channels per energy 

Using this argument, we may also explain qualitatively the question of why  

is different between Ge and GaAs even though the valence bands look sim

Including results for Si and InAs valence bands, the hole ‘density-of-

extracted from full band calculations for Si, Ge, GaAs, and InAs are given 

>0.97m0 >0.65m0 , respectively.  In eqn. (2.22), the degree of 

warping can be judged from the values of 2 2 2
3 2 2( )γ γ γ− , which we call the warping 

,  eqn. (2.22) yields two parabolic bands (heavy

hole).  From the tabulated values of  iγ  [196], the calculated warping parameter   

are  17 > 0.76> 0.62 > 0.20  for Si, Ge, GaAs, and InAs, respectively.  This shows 
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8(b), most of bands for holes (especially for heavy-hole) 

contribute at least two conducting channels at a specific energy. The parabolic band 

assumption, however, gives one conducting channel per band and significantly 

underestimates the density of modes for holes. Warped valence bands provide more 

 
. Energy dispersion relation showing the lowest (a) conduction bands and (b) 

) + 5kBT because 
T.)  Each  red dot represents a conducting channels for 

positive moving electrons at specific energy for an electron moving with a positive 
bands (especially heavy holes) have at least 

Using this argument, we may also explain qualitatively the question of why  

is different between Ge and GaAs even though the valence bands look similar. 

-modes’ effective 

extracted from full band calculations for Si, Ge, GaAs, and InAs are given 

qn. (2.22), the degree of 

, which we call the warping 

,  eqn. (2.22) yields two parabolic bands (heavy- and light – 

, the calculated warping parameter   

are  17 > 0.76> 0.62 > 0.20  for Si, Ge, GaAs, and InAs, respectively.  This shows 
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that the degree of warping can qualitatively explain the relative magnitude of *
DOMm for 

Si, Ge, GaAs, and InAs even though the valence band for all those diamond-like 

materials looks similar. One thing to note is that 6-valley valence band structure of 

Bi2Te3 is another reason for its high *
DOMm . 

 

2.5 Summary and Conclusion 
The relation between the so-called transport distribution, which determines the TE 

coefficients and begins with the BTE, and the transmission obtained from the Landauer 

approach has been clarified in this chapter. In particular, we showed how the mean-free-

path for backscattering in the Landauer approach should be defined so that the Landauer 

approach is consistent with the BTE in the relaxation time approximation. We also 

showed that the transmission (transport distribution) is readily obtained from the full 

band description of the electronic bandstructure of a semiconductor using well-developed 

techniques - a simple semiclassical band counting method and a quantum mechanical 

approach. Several example calculations of the transmission and the TE coefficients for 

representative bulk materials were presented to demonstrate that Landauer approach 

provides an accurate description of experimentally measured thermoelectric parameters, 

In practice, the use of a constant mean-free-path in the Landauer approach is easier to 

justify than the use of a constant relaxation time in the Boltzmann equation.  The 

Landauer approach also provides complementary insight into thermoelectric physics and 

can be applied to ballistic, quasi-ballistic, and quantum engineered structures.  Finally, 

we showed that an accurate and simple effective mass model can be defined by extracting 

a “density-of-modes” effective mass from the given full band results.  One first 

computes 
 
M E( ) from eqn. (2.16) and then fits the linear portion near the band edge to 

eqn. (2.14).  For accurate results, the fitting should be performed from the band edge to 

5 Bk T≈ above the maximum expected Fermi level at the highest temperature of operation. 
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3. LANDAUER VS. BOLTZMANN APPROACH FOR PHONONS 
The contents of Chapter 3 have been extracted and revised from the following 

publication: C. Jeong, S. Datta, and M. Lundstrom, “Landauer vs. Boltzmann and Full 

Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity,” J. Appl. Phys., 

109, 073718 (2011). 

In this chapter, using a full dispersion description of phonons, the thermal 

conductivities of bulk Si and Bi2Te3 are evaluated using a Landauer approach and related 

to the conventional approach based on the Boltzmann transport equation. A procedure to 

extract a well-defined average phonon mean-free-path from the measured thermal 

conductivity and given phonon-dispersion is presented. The extracted mean-free-path has 

strong physical significance and differs greatly from simple estimates.  The use of 

simplified dispersion models for phonons is discussed, and it is shown that two different 

Debye temperatures must be used to treat the specific heat and thermal conductivity 

(analogous to the two different effective masses needed to describe the electron density 

and conductivity).  A simple technique to extract these two Debye temperatures is 

presented and the limitations of the method are discussed. 

 

3.1 Introduction  
Electron and phonon transport play a critical role in a number of technological 

applications. They are central to thermoelectric technology, for which performance is 

determined by the dimensionless figure of merit, ZT, which has been limited to ~ 1 

[36,47,197] for many years. Recent reports of ZT >1, [36,47,197] have been achieved by 

using nanostructured materials to suppress the lattice thermal conductivity.  Further 

progress will require careful engineering of both the phonon and electron 

transport[8,44,62,66,67,69].  Phonon transport also plays an increasingly important role 

in integrated circuits where the increasing importance of power dissipation, self-heating, 

and the management of hot spots [198] necessitates electron-thermal co-design. These 
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examples indicate that a unified treatment of electron and phonon transport would be 

useful. 

Diffusive transport has been often described by the Boltzmann transport equation 

(BTE) and simplifications of it, such as drift-diffusion equation for electrons or Fourier’s 

Law for phonons [128,199]. The Landauer approach[165] provides a simple, physically 

insightful description of ballistic transport and has been widely used to describe 

quantized electrical and thermal transport in nanostructures[200–203]. Although not as 

widely appreciated, the Landauer approach describes diffusive transport as well and 

provides a simple way to treat the ballistic to diffusive transition. Thermal transport in 

nanowires has recently been described by a Landauer approach[182], but applications of 

the Landauer approach to bulk transport have been rare. In a previous chapter[3], we 

showed a very simple procedure to use the Landauer approach with a full band 

description of E(k) to evaluate thermoelectric transport parameters.  In that chapter, we 

also related the full band calculations to the widely-used effective mass level model and 

presented a procedure for extracting the two different effective masses (density-of-states 

and conductivity effective masses) that are needed to evaluate the electron density and 

the TE transport coefficients. 

In this chapter, we extend Ref. [3] to phonons and show how the same very 

simple procedure can be used to evaluate the lattice thermal conductivity from a full zone 

description of the phonon dispersion. The main contributions of the chapter consist of 

presenting a simple technique for extracting a physically meaningful mean-free-path for 

phonons from the measured thermal conductivity and relating the full dispersion results 

to the simpler, Debye model for phonon dispersion.  Our specific objectives are: 1) to 

mathematically relate the Landauer expression for the thermal conductivity, 
 
κ ph to the 

more common approach that begins with classical kinetic theory, 2) to show that two 

different Debye temperatures are needed to accurately evaluate both the specific heat and 

lattice thermal conductivity with physically meaningful mean-free-paths, 3) to 

quantitatively examine both electronic performance and thermal performance of bulk 

silicon (Si) and bismuth telluride (Bi2Te3) within the Landauer framework and a full zone 

description of the phonon dispersion, 4) to present a technique to extract a clearly-defined 
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average phonon mean-free-path for phonon backscattering from the measured thermal 

conductivity, and 5) to discuss the similarities and differences between electron and 

phonon transport in terms of the Landauer picture.  

The chapter is organized as follows.  In Sec. 3.2, we present a brief summary of 

the Landauer formalism for electron and phonon transport. In Sec. 3.3, the results of full 

phonon dispersion simulations of the electrical and thermal conductivities of Si and 

Bi2Te3 are presented. A technique to extract a well-defined mean-free-path is presented in 

Sec. 3.4. We also compare and contrast electron and phonon transport in Sec. 4 and 

discuss the extraction of the two Debye temperatures that are needed when using 

simplified models of phonon dispersion to evaluate the specific heat and thermal 

conductivity.  Finally, our conclusions are summarized in Sec. 3.5. 

 

3.2 Approach 
The theoretical approach to phonon transport used in this chapter closely follows 

the approach for electrons as presented in Ref. [3].  In the linear response regime, we 

can define[166,204] 

( ) ( ) ( )
2

22
el

q AG E T E q E
h L

 
= = Σ 
 

 [1/],     (3.1) 
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   ( ) ( ) ( ) ( )
( )

( )el
el el el el

el

E
T E T E M E M E

E L
λ

λ
= =

+
    (3.2) 

is the total transmission for electrons in the Landauer picture[165] with Mel(E) being the 

number of conduction channels at E and Tel (E) is the transmission at energy, E, with 

 λel E( ) being the mean-free-path for backscattering and L the length of the resistor.  

Equation (1) also expresses G(E) in terms of the so-called transport distribution,  Σ E( ), 

which arises when solving the diffusive Boltzmann transport equation (BTE)[204] and  

is defined as 

  
Σ E( )=

1
Ω

υx
2

k( )τ


k( )δ E − E


k( )( )

k
      (3.3) 



52 
 

 

where  Ω= AL  and A is the cross-sectional area of the conductor. 

 Although the approach is more general, in this chapter we restrict our attention to 

diffusive samples for which Tel E( )→λel E( ) L  and to three dimensional samples for 

which we write ( ) ( )G E E A Lσ= , where  σ E( ) is the conductivity.  Accordingly, 

the expressions for conductivity analogous to the conductance in Eq. (3.1) become 

( ) ( ) ( ) ( )
2

22 el
el

M EqE E q E
h A

σ λ
 

= = Σ 
 

 [1/-m],   (3.4a) 

 The total electrical conductivity is obtained by integrating ( )( )0E f Eσ −∂ ∂ over all of 

the energy channels, and the other thermoelectric coefficients are readily obtained, as 

described in Ref. [3], where mathematical definitions of Mel(E) and  λel E( ) are also 

given. For example, the electronic thermal conductivity for zero voltage gradient is 

obtained as  
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

 
[W/m-K].  (3.4b) 

Expressions for the lattice thermal conductance, Kph, and lattice thermal 

conductivity, 
 
κ ph  analogous to Eq. (3.4b) can be readily obtained and expressed as 

[200,205] 

( ) ( )
2 2

3
B L

ph ph
k TK T

h
π

ω ω
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     [W/K]   (3.5a) 

and in the diffusive limit 

 

    ( )
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2 2

3
phB L
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Mk T
h A

ωπ
κ ω λ ω

 
=  
 

 [W/m-K],  (3.5b) 

where n0 is the Bose-Einstein distribution function, the transmission is 

 Tph ω( )= Tph ω( )M ph ω( )and ( )phM ω  is the number of phonon conducting modes (per 

polarization).  The definitions of ( )phT ω and ( )phM ω are similar to those for 
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electrons[3].  In 3D, the phonon mean-free-path for backscattering,  λph ω( )  is given 

as [3] 

  λph ω( )= 4 3( )υ ph ω( )τ ph ω( )= 4 3( )Λ ω( )      
(3.6)

 
where the pre-factor, 4/3 comes from averaging over angle in 3D, ( )phυ ω is the spectral 

phonon group velocity at frequency,ω , ( )phτ ω  is the phonon momentum relaxation 

time, and Λ ω( ) is the commonly-defined spectral mean free path. Note that the mean-

free-path for backscattering, Eq. (3.6), which arises in the Landauer approach, is 

somewhat longer than the mean-free-path for scattering, Λ . In the appendix, the relation 

of Eq. (3.5b), the Landauer expression for lattice thermal conductivity, to the 

conventional expression from kinetic theory is given.   

 To find the total conductivities, we multiply the energy-resolved quantities by a 

“window function” and integrate over energy,   
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where 

    ( ) ( )M M x W x dx≡       (3.7c) 

  ( ) ( ) ( ) ( ) ( )M M x M x W x dx M x W x dxλ λ λ≡ =     (3.7d) 

where  x = E  for electrons and x ω=   for phonons and 
 
W x( )  is a “window” 

function given by 
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The electrical conductivity is proportional to the quantum of electrical conductance, 

  2q2 h , and the thermal conductivity to the quantum of thermal conductance, 
2 2 3B Lk T hπ .  The electrical and thermal conductivities are related to these two 

fundamental parameters and to the number of conducting channels per unit area, the 

mean-free-paths for backscattering, and to the Fermi-Dirac or Bose-Einstein 

distributions. 

The number of conducting channels is determined by the electronic structure or 

phonon dispersion of the material.  In Ref. [166], we discussed the evaluation of this 

quantity for electrons in 1D, 2D, and 3D considering a simple, effective mass level model.  

In Ref. [3], we discussed the evaluation of Mel(E) from a full band description of E(k) and 

its relation to effective mass level models.  For phonons, a linear and isotropic phonon 

dispersion, sqω υ= ,  gives ( )phM ω  and ( )phD ω  as  

( ) ( )2 23 4ph sM Aω ω πυ=   (3D)    (3.8a)

 ( ) ( )2 33ph sD hω ω π υ= Ω    (3D)    (3.8b) 

where sυ  is the velocity of sound in the direction of transport, and the factor of 3 comes 

from 3 branches. In the appendix, corresponding expressions for 1D, 2D, and 3D 

conductors are given and compared to the expressions for electrons.  Our objective in 

this chapter is to present a simple technique to compute,  M ph ω( ) from a given full zone 

description of the phonon dispersion.  Because simple descriptions of phonon 

dispersions are convenient to use, they find wide applications.  The extraction of Debye 

model parameters from a rigorous evaluation of ( )phM ω  and a discussion of the 

limitations of the Debye model are, therefore, also important parts of this chapter. 

Given a phonon dispersion, ( )phM ω  can be obtained by counting the bands that 

cross the energy of interest. This method provides a computationally simple way to 

obtain ( )phM ω  from a given ( )qω [3,182].   The basic idea is illustrated in Fig. 

3.2(a) using a dispersion relation along the transport direction for Si: 1) from 0 to 7.3 

THz, the ( )phM ω  is three due to two transverse AP modes (TA) and one longitudinal 
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AP modes (LA), 2) from 7.3 to 12.8 to 15.0 THz,  we have only one LA and one 

longitudinal OP modes (LO). 3) from 15.0 to 15.8 THz,  ( )phM ω  in this case is 3 due 

to two transverse OP modes (TO) and one LO.    To evaluate ( )phM ω , a full band 

description of phonon dispersion is needed.  Several techniques have been reported for 

computing detailed phonon bandstructure[206,207]. In this work, the full phonon 

dispersion is calculated by using an interatomic pair potential model within General 

Utility Lattice Program (GULP)[208].    

From the measured thermal conductivity, one can reliably estimate the average 

mean-free-path from the measured conductivity.  From Eq. (3.7b), we can write 
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   (3.9) 

where the denominator of Eq. (3.9) is recognized as ballistic thermal conductance per 

area _ph BALK A .  Note the units of _ph BALK A  are W/m2-K, which is different from the 

units of phκ , W/m-K . Since the numerator in Eq. (3.9) can be measured and the 

denominator readily evaluated from a known dispersion, reliable estimates of the mean-

free-paths can be obtained.  The extraction of average electron mean-free-path by 

similar way has been used to analyze electronic devices[209–211]

 

Finally, we note that two Debye temperatures are required to evaluate the specific 

heat and the thermal conductivity properly with the simple Debye model. The use of two 

Debye temperatures was also found necessary in work on the thermal conductivity of 

nanowires[182]. The Debye temperature is usually determined to obtain the observed 

specific heat, which is hereinafter called Debye temperature for the specific heat ( DΘ ).  

The Debye temperature for thermal conductivity ( MΘ ) is newly defined and is 

determined to obtain the correct _ph BALK . For 3D bulk ballistic conductors with linear 

phonon dispersion, the specific heat per volume and ballistic thermal conductance per 

area are expressed as 
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where B Lx k Tω=  .  Both  DΘ  and MΘ  are extracted to match full band results.  

 

3.3 Results  
In this section, the phonon thermal conductivity will be evaluated and interpreted 

within the Landauer framework. Two representative semiconductor materials are 

compared to examine key factors for good TE materials; Si and Bi2Te3.  We then 

compare full band calculations to linear dispersion approximations. A technique to 

extract a well-defined average mean-free-path is also presented. We show that this mean-

free-path has a strong physical significance.  

Figures 3.1(a) and 3.1(b) show calculated and measured [212–214] phonon 

dispersion characteristic along high symmetry directions; the phonon DOS for Si and 

Bi2Te3 are also shown. The Tersoff potential model and Morse potential model are used 

for Si[215]and Bi2Te3[207], respectively.  Computed elastic properties with these 

models show overall good agreement with experiments, indicating that the potential 

model describe well the harmonic behavior[207,215].  For both materials, it can be seen 

that the AP modes are well reproduced and OP modes are somewhat overestimated.  

Because thermal transport is mostly dominated by AP modes, we expect that these full 

band dispersions will predict the lattice thermal conductivity well.  It should be 

understood that our objective is to describe a general technique and to discuss general 

features of the solution.  More refined treatments of phonon dispersion could be used. 

The specific heat per volume (the integral of Eq. (A3)) is calculated and shown in 

Fig. 3.1(c). As shown in Eq. (A3), the specific heat calculations do not require us to 

include scattering.  In each plot, the solid line is the result with calculated DOS, and the 

dashed line is the result with the measured DOS. It is seen that two curves are generally 

in a good agreement for both materials.  
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Figure 3.2(b) shows full dispersion results and results with a linear dispersion 

approximation. At low frequency, the linear dispersion approximation provides a good fit 

to the full band calculation, and it is found that the average sound velocity to fit to full 

band results for Bi2Te3 ( 5=1.74 10 cms sυ ×  ) is about one third of average sound velocity 

of Si ( 5=5.32 10 cms sυ × ).  The available number of conducting modes is seen to be 

smaller for Bi2Te3 for most of frequency range.  

Next, the phonon thermal conductance is evaluated.  The ballistic thermal 

conductance per area for Si and Bi2Te3 is calculated as shown in Fig. 3.3. The ballistic 

thermal conductance is proportional to the effective number of phonon conducting modes, 

which can be readily obtained from phonon dispersions. Below 30 K,  _ph BALK  for 

Bi2Te3 is larger than Si due to the large ( )phM ω at low frequency. At 300 K, however, 

_ph BALK  for Si is a factor of 10 larger than _ph BALK  for Bi2Te3, which results because 

the effective number of phonon conducting modes of Bi2Te3 is 10 times smaller than that 

of Si.  
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Fig. 3.1. Phonon dispersion along the high symmetry lines and phonon density of states 
for (a) Si and (b) Bi2Te3. (c) Specific heat per volume of  Si (Inset) and Bi2Te3 .  The 
solid and dashed lines are for the results of calculation and experiments.   
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Fig. 3.2. (a) Illustration of bands counting method for specific dispersion relation for Si. 
Dotted line is guide to eye.  (b) Number of phonon modes of Si and Bi2Te3 .  The 
dashed and dashed-dot lines are the results obtained from the Debye model  with  the 
fitted sound velocities of 1.74×105 cm/s and 5.32×105 cm/s for Si and Bi2Te3, 
respectively.
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From Eq. (3.9), the average mean-free-path for backscattering is deduced by 

taking ratio of the measured thermal conductivity to the ballistic thermal conductance per 

area.  Figure 3.4 shows the extracted phλ  for Si and Bi2Te3. At 300 K,  phλ for 

Bi2Te3 is 14 nm and for Si, it is 115 nm.  To relate extracted phλ to expected 

average phλ  from the spectral phonon mean-free-path for backscattering
 
λph ω( ),  

expressions for ( )phτ ω  in the relaxation time approximation (RTA) are used for 

umklapp[24] , point defect[25], and boundary[26] scattering rate: 
1 2 1 4, ,C T

u dB e Dτ ω τ ω− − −= =  and ( ) ( )1
b F lτ υ ω− = ⋅ , respectively. The parameters to 

fit extracted phλ
 

are B = 2.8×10-19 s/K, C = 140 K, D = 1.32×10-45 s3, F = 0.4, l = 

7.16×10-3 m for Si and B = 2.8×10-18 s/K, C = 10 K,  D = 1.32×10-45 s3, F l = 1×10-4 m 

for Bi2Te3. As shown in the inset of Fig. 3, experimental thermal conductivity[26,216] 

and calculations are in a good agreement, which indicate that the extracted phλ
 

has 

strong physical significance.   

 

 
Fig. 3.3. Ballistic thermal conductance per area of Si and Bi2Te3 .  Insets: lattice thermal 
conductivity of  Si and Bi2Te3 .  The solid  line and symbols are calculated and 
experimental values, respectively.   
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Fig. 3.4. Extracted average mean-free-path  of Si  and Bi2Te3 by taking the ratio of 
experimental thermal conductivity  to  ballistic thermal conductance per area. 

 

In the Landauer picture, the low thermal conductivity of Bi2Te3 at 300 K is 

attributed to two factors. First of all, it has an effective number of conduction channels 

that is ten times smaller than Si, as shown in Fig. 3.3. The different number of conducting 

channels are related to the different phonon dispersions. On top of that, Bi2Te3 has a 

smaller phλ  due to umklapp scattering which is a factor of 10 stronger than for Si. 

Both factors lead to two orders of magnitude reduction in thermal conductivity 

comparing to Si.  For comparison, average electron mean-free-paths at room 

temperature are 18 nm for Bi2Te3 and 13 nm for Si, which are extracted in a similar way 

from the full band electronic structure [3].   The number of electron conducting modes 

for Si and Bi2Te3 are shown in Fig. 3.7(b).  In terms of electronic performance, the 

effective number of conduction channels  and average electron mean-free-path for 

backscattering are similar for both materials, resulting in similar power factor( 2S G ) 

value.  
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3.4 Discussion 
In this section, we show that average mean-free-path obtained by simple estimates 

differs by an order of magnitude from that extracted from full phonon dispersion.  The 

use of simplified dispersion model is then discussed.     

The simplest conventional approach to estimate bulk mean-free path from a 

classical kinetic theory is 

3 ph V sCκ υΛ =
 

,
     

(3.11) 

where phκ , sυ , and VC  are measured quantities. Using 5=2.95 10 cms sυ ×  and VC = 

1.20×106 J/cm3-K from Fig. 3.1(b) and (c) for Bi2Te3, estimated Λ  at 300 K is 1.2 

nm, an order of magnitude smaller than 14 nm extracted from Eq. (3.9).  This occurs 

because the appropriate velocity we should use in Eq. (3.11) is much different from the 

measured sound velocity ( 5=2.95 10 cms sυ × ).  Equation (A3) can be re-arranged as 

1
3ph V aveCκ υ= Λ

      
(3.12) 

where  ( ) ( )( )( )ave V Vd C Cυ ω ω υ ω=     is  the appropriate average velocity we 

should use in Eq. (3.12) and ( )( )3 4 λΛ =  is an average mean-free-path for 

scattering which is different from phλ  as is seen in Eq. (3.6).   At 300 K, 

4=3.40 10 cmave sυ × , a 5× ~ 9× smaller than either the measured sound velocity (
5=2.95 10 cms sυ ×  ) or the average sound velocity to fit to full band results (
5=1.74 10 cms sυ ×  ).  Therefore, prediction of the bulk mean-free path from measured 

sound velocity in Eq. (3.11) leads to serious errors.  

Simple phonon dispersion models are often used to analyze thermoelectric 

devices. The simplest model is the Debye model (the linear dispersion approximation) 

with Debye temperature ( DΘ ). As mentioned in Sec. 3.2, a Debye temperature for 

thermal conductivity ( MΘ ) must be newly defined to treat the thermal conductivity 

properly with the simple Debye model.  Both  DΘ  and MΘ  are extracted to match 
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full band results as shown in Fig. 3.5 (a) for Si and Bi2Te3.  It can be seen that  MΘ  is 

smaller than DΘ  by 20~50 % depending on materials and the two Debye temperatures 

are weakly dependent on temperature.  For Bi2Te3, Fig. 3.5(b) compare the full band and 

Debye models of ( )phM ω  and ( )phD ω .  The Debye cutoff frequencies, 

,max( )D B Dkω = Θ  and ,max( )M B Mkω = Θ   are 3.57 THz and 1.93 THz, respectively.  

Next, the specific heat and thermal conductivity are calculated as shown in Fig. 

3.6(a) and the inset of Fig. 3.6(a). Although only the Debye cutoff frequency from the 

phonon density of states ( Dω ) gives the correct specific heat, thermal conductivities 

obtained from either of the two Debye frequencies, Mω and Dω  , match well the results 

using full phonon dispersion.  Use of the Debye model with the cutoff frequency, Dω  , 

however, leads to serious errors in estimating phλ
  — by one order of magnitude as 

shown in Fig. 3.6(b). The average mean-free-path obtained from Debye model with the 

cutoff frequency, Mω  is in relatively a good agreement with that obtained by full 

phonon dispersion because this cutoff frequency gives the correct effective number of 

conduction channels, i.e. the ballistic thermal conductance per area.  The inset of Fig. 

6(b), however, shows that the spectral mean-free-path, ( )phλ ω obtained from Debye 

models doesn’t capture exactly the detailed frequency dependence of ( )phλ ω  from full 

phonon dispersion – regardless of choice of cutoff frequency. 

The reason that an effective mass description works well for electrons and a 

Debye model does not works as well for phonon is that the important energy for electrons 

is near the bottom of the band, but for phonons it is the entire phonon dispersion.  Fig. 

3.7(a) shows the “window” function for phonons, phW , and number of phonon 

conducting modes for Si and Bi2Te3. Comparing to the “window” function for electrons, 
elW , and number of electron conducting modes as shown in Fig. 3.7(b), it can be easily 

seen that the entire frequency range of full phonon dispersion affect thermal conductivity 

for Si and Bi2Te3.  However, only the electron dispersion around the band edges is 

important.  Note that this occurs because of difference between full phonon spectrum 
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and full electronic structure, not because of difference between Fermi-Dirac and Bose-

Einstein distribution or between “window” functions, defined by Eqs. (3.7e) and (3.7f).  

As shown in Fig. 3.7, both “window” functions, phW  and elW , have a width of ~ 5 kBTL 

and the function phW has similar energy dependence to the so-called Fermi “window” 

function 
 

elW .  The integral of window functions for electrons, elW  from -   to   

gives 1, while the integral of phW from 0 to  is 1.  This comparison explains why 

effective mass approximation (EMA) works well for electron transport[3], and Debye 

model should be used with caution. 

 

 

 
Fig. 3.5. (a) Comparison of Debye temperature for the specific heat ( DΘ )  and Debye 
temperature for thermal conductivity ( MΘ ) normalized by maximum DΘ . (b) Debye 
model vs. full dispersion for Bi2Te3 .  Red and green solid lines are full band results of 
number of phonon modes (Mph) and density of states (Dph) in arbitrary units. The dashed-
dot and dashed lines are results from Debye approximation at low frequency for Mph and 
Dph .   
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Fig. 3.6.  (a) specific heat calculation and (b) extracted average mean-free-path of 
Bi2Te3 for Debye models and full band results. Insets of Fig. 6(a) and Fig. 6(b) are 
thermal conductivity calculation and spectral mean-free-path for backscattering, 
respectively. Solid lines: full band results; Dashed and dashed dot lines: Debye 
approximation.  
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Fig. 3.7. (a) number of phonon conducting modes (Mph) and Eq. (3.7f) at 300 K,  (b) 
number of electron conducting modes (Mel) calculated from full band electronic structure 
and Eq. (3.7e) at 300 K. For horizontal axis,  ε = Eel –EC for number of electron 
conducting modes and ε = Eel – EF for a electron “window function”  assuming   EF = 
EC  which is a typical condition for optimum performance.  
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3.5 Summary and Conclusion  
In this chapter, we related the Landauer approach for phonon transport to the 

more commonly used Boltzmann transport equation approach.  Although the Landauer 

approach applies from the ballistic to diffusive limit and for 1D, 2D, and 3D conductors, 

we restricted our attention in this chapter to the diffusive limit and to 3D, bulk materials. 

The common expression for thermal conductance that begins with classical kinetic theory 

was related to the corresponding Landauer expression. A simple “counting bands” 

technique for extracting the kernel of the transport integral, M(E), was illustrated.  As an 

example of the technique, we examined the electronic and thermal performance of Si and 

Bi2Te3 using a full band description of phonon dispersion and electronic bandstructure.  

A simple technique for extracting a physically well defined mean-free-path for phonons 

was presented. This mean-free-path agrees with a simple estimate from the measured 

specific heat – as long as the appropriate average velocity obtained from the given 

phonon dispersion is used. Finally, we discussed the use of simple phonon dispersion 

models, such as the widely used Debye model for phonon dispersion, which is widely 

used for device design.  We showed that two different Debye temperatures are needed – 

one to describe the phonon density of states and specific heat and another to describe the 

distribution of conducting channels, M(E), and the thermal conductivity. The existence of 

two different Debye temperatures is analogous to the two effective masses needed to 

describe electron transport, the conductivity and density-of-states effective masses.  

Using the conductivity Debye temperature and the measured lattice thermal conductivity, 

a physically meaningful average mean-free-path can be accurately obtained. Finally, we 

explained why the effective mass model works well for electrons and why the Debye 

model does not work as well for phonons.  Although the conclusion is that simplified 

phonon models should be used with caution, the simple procedure for evaluating M(E) 

from the full phonon dispersion provides a practical alternative. 
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4. THERMAL CONDUCTIVITY OF BULK AND THIN-FILM SILICON: A 
LANDAUER APPROACH  

The contents of Chapter 4 have been extracted and revised from the following 

manuscript: C. Jeong, S. Datta, and M. Lundstrom, “Thermal Conductivity of Bulk and 

Thin-Film Silicon: A Landauer Approach,” J. Appl. Phys., 111, 093708 (2012) 

The question of what fraction of the total heat flow is transported by phonons with 

different mean-free-paths is addressed using a Landauer approach with a full dispersion 

description of phonons to evaluate the thermal conductivities of bulk and thin film 

silicon. For bulk Si, the results reproduce those of a recent molecular dynamic treatment 

showing that about 50% of the heat conduction is carried by phonons with a mean-free-

path greater than about one micrometer. For the in-plane thermal conductivity of thin Si 

films, we find that about 50% of the heat is carried by phonons with mean-free-paths 

shorter than in the bulk. When the film thickness is smaller than ~0.2 mµ , 50% of the 

heat is carried by phonons with mean-free-paths longer than the film thickness.  The 

cross-plane thermal conductivity of thin-films, where quasi-ballistic phonon transport 

becomes important, is also examined.  For ballistic transport, the results reduce to the 

well-known Casimir limit.[141] These results shed light on phonon transport in bulk and 

thin-film silicon and demonstrate that the Landauer approach provides a relatively simple 

but accurate technique to treat phonon transport from the ballistic to diffusive regimes. 

 

4.1 Introduction 
Recent molecular dynamics (MD) simulations[27] have shown that in bulk silicon 

(Si) about 50% of the heat is carried by phonons with mean-free-paths (MFPs) greater 

than about 1 mµ
 – a fact that is surprising and that the authors of Ref. [27] could not 

explain with a simple, Callaway model with Debye approximation.[217] These results 

raise similar questions about heat transport in thin Si films.  In this paper, we show that 
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a simple Landauer model, essentially a Callaway model with full phonon dispersion, 

accurately reproduces the results of Ref. [27]. We also show that the same model 

describes the in-plane thermal conductivity of silicon thin films and find, that about 50% 

of the heat is carried by phonons with mean-free-paths shorter than in the bulk. When the 

film thickness is smaller than ~0.2 mµ , 50% of the heat is carried by phonons with mean-

free-paths longer than the film thickness.    Finally, we apply the technique to cross-

plane thermal transport in Si. The results shed light on thermal transport in thin Si films 

and demonstrate that the Landauer approach provides a simple and accurate treatment of 

lattice thermal conductivity that is useful for analyzing experiments and for designing 

materials and structures. 

The findings of Minnich et al.[27] for bulk Si raise questions about heat conduction 

in thin Si films and how the heat is carried by phonons with different MFPs.  In silicon 

on insulator (SOI) films, it is well-known that the in-plane thermal conductivity decreases 

as the film thickness decreases due to the increasing importance of surface roughness 

scattering.[28–31]  The influence of surface roughness is usually modeled by using 

either a constant [29–31,218,219] or frequency-dependent [28,220] specularity parameter, 

p, representing the probability of specular phonon boundary scattering. As an example, 

for perfectly diffusive scattering p = 0 and for perfectly specular scattering p = 1.  The 

quantitative comparison between the in-plane thermal conductivities with constant and 

frequency-dependent p suggested that the frequency-dependent model provides a more 

accurate description for the in-plane thermal conductivity.[221]  We show in this paper 

that with the addition of a model for surface roughness scattering, the Landauer model 

used for bulk Si also accurately describes in-plane thermal transport. We then use the 

model to address the question raised by the authors of Ref. [27]:  “How do phonons with 

various mean-free-paths contribute to thermal conduction in thin Si films?” 

The measured cross-plane thermal conductivity of thin Si films has been found to 

be even lower than the in-plane thermal conductivity.[32] In some models,[222–224] the 

reduction in cross-plane thermal conductivity is modeled with the Boltzmann transport 

equation (BTE) by including a phonon-boundary scattering time ( bτ ), which is assumed 

to be equal to the average time between “boundary scattering events”: ( )2b Lτ υ= , 
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where  L  is the length of the conductor, and υ  the group velocity.  Ballistic phonon 

transport (i.e. no phonon scattering within thin film), which becomes important in cross-

plane transport is typically described by an equation of phonon radiative transport 

(EPRT),[225]  which has been developed based on the Boltzmann equation and the 

analogy between phonons and photons. In the ballistic limit and with the Debye 

approximation, the EPRT yields a familiar blackbody radiation law for phonons,[123] 

( )4 4
H Cq T Tσ= − , where σ  is the Stefan-Boltzmann constant for phonons. This result has 

also been derived by Casimir,[141] who treated a perfectly diffusive surface ( 0p =  ) as 

if it absorbed all phonons incident upon it, and reemitted them at a rate depending on the 

absolute temperature of the surface according to the theory of blackbody radiation. We 

will show in this paper that the same Landauer approach used to describe diffusive 

phonon transport can be simply extended to accurately describe ballistic and quasi-

ballistic transport. 

The Landauer approach is widely-used to treat ballistic electron [165] and phonon 

[200,205] transport in nanostructures. As recently shown for electrons[3] and 

phonons,[226] the method can also be applied to diffusive transport in bulk materials.  

The approach reduces to the BTE for diffusive transport, but is more physically 

transparent and also provides some computational advantages. Section 4.2 presents a 

brief summary of the formalism for phonon transport as discussed in detail in Ref. [226]. 

In Sec. 4.3, results for the thermal conductivity of bulk Si are presented and compared to 

recent molecular dynamics simulations. In Sec. 4.4, the in-plane and cross-plane thermal 

conductivities are discussed.  Sections 3 and 4 also illustrate a general approach for 

extracting a well-defined mean-free-path for phonons from measured thermal 

conductivity data.  In Sec. 4.5, we discuss the ballistic limit of phonon transport and 

relate the Landauer expressions to the well-known Casimir formula.[141] Finally, our 

conclusions are summarized in Sec. 4.6.  

 

4.2 Approach 
This paper is an application of the approach presented in Ref. [226]. The Landauer 

formula for heat current ( QI )  is expressed as  
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( )( ) ( )1 2
0

1 ,Q ph phI d T M n n
h

ω ω
∞

= −          (4.1a) 

where phT  is the transmission at a given energy ω , phM  is the number of conducting 

channels at a given energy, and 1n  and 2n  are Bose-Einstein distributions for the two 

contacts across which heat flows.[165]  The transmission phT  is given as [165] 

 ( ) ( )( ) ,ph ph phT Lλ ω λ ω= +      (4.1b) 

where ( )phλ ω  is the mean-free-path for backscattering and L the length of the 

conductor. Equation (4.1a) applies to ballistic limit ( ( )phL λ ω ) for which 1,phT =  

quasi-ballistic regime ( ( )phL λ ω ) for which ( ) ( )( )ph ph phT Lλ ω λ ω= +   as well as to 

diffusive limit ( ( )phL λ ω ) for which ( )ph phT Lλ ω= . In the diffusive limit, it was 

shown that the Landauer expression for lattice thermal conductivity is essentially 

equivalent to the conventional expression from BTE.[226]  Note that the product 

ph phT M  is proportional to the “transport distribution” well-known for electrons.[204]  

For a small temperature gradient ( TΔ ),   thermal conductance ( ph QK I T= Δ ) is  

( )( )
2 2

0

,
3

B L
ph ph ph ph

k TK d T M W
h
π

ω
+∞ 

=  
 

 

   
(4.2a) 

where 2 2 3B Lk T hπ  is the quantum of thermal conductance and phW  is a “window 

function” given by[226]  

    ( )
( )

2

0
2

3 .ph
B L

nW
k T
ω

ω
π ω

   ∂
= −    ∂   





    (4.2b) 

The integral of the window function, phW , from 0 to  is 1,  just like the derivative of 

the Fermi function (− ∂ f0 / ∂E) appearing in the expression for electrical conductivity. 

The thermal conductance, Eq. (4.2a) can be also expressed as  
2 2

,
3

B L
ph ph ph

k TK M T
h
π 

=  
      

(4.2c) 
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where the average X for any quantity X is defined as 
  X ≡ X Wphd(ω ) while the 

average  
X  is defined as   M X / M . From Eq. (4.2c), the expressions for the 

lattice thermal conductivity, ( )ph phK L Aκ = , can be expressed as  

2 2

,
3

B L
ph ph ph eff

k T M A
h
π

κ λ
 

=  
      

(4.3a) 

where A is the cross-sectional area of the conductor and ph eff
λ

 the effective MFP 

which is given as 

( ) 11 1 .ph ph pheff
T L Lλ λ

−− −= = +

   
(4.3b) 

From Eq. (4.2c), the ballistic thermal conductance per area _ph BALK A  can be defined as  

2 2

_ ,
3

B L
ph BAL ph

k TK A M A
h
π 

=  
      

(4.3c) 

so the thermal conductivity is expressed as  

( )_ph ph BAL ph eff
K Aκ λ= .  

   
(4.3d) 

Since phM  and _ph BALK A  can be readily obtained from the bandstructure, the 

ph eff
λ  can be estimated by taking the ratio of measured phκ  to the _ph BALK A  .  

Note that Eqs. (4.3a) and (4.3b) holds for all transport regimes.  In the ballistic limit, 

phL λ , ph eff
Lλ =

 and in the diffusive limit, phL λ , ph pheff
λ λ=

 with 

phλ being the average MFP in the diffusive limit.   In the quasi-ballistic limit, the 

appropriate effective MFP is given by Eq. (4.3b).  

It was shown in Ref. [226] that given an accurate phonon dispersion,  M ph ω( ), can 

be readily computed by a simple numerical technique - the “band counting” method.  To 

evaluate  M ph ω( ) in this work, a full band description of phonon dispersion was 
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obtained from the Tersoff [215] interatomic pair potential model within General Utility 

Lattice Program (GULP).[208] Then it is straightforward to compute _ph BALK A .  

 

4.3 Bulk Thermal Conductivity 
In this section, the phonon thermal conductivity of bulk Si will be evaluated and 

compared to a recent MD calculation.[27] Figure 4.1(a) displays the energy-resolved 

,  ,ph phM λ and phW  at 300 K for bulk Si.  Note that the entire phonon dispersion 

participates in conduction since  phW  is almost constant. This is in sharp contrast to the 

case of electrons, in which the important energies are near the bottom of the band.  The 

ballistic thermal conductance, _ph BALK , is readily evaluated from Eq. (4.3c).  By 

comparing  _ph BALK  to the measured conductivity, phκ ,[26] the average MFP, phλ , 

is readily extracted from Eq. (4.3d).  The results in Fig. 4.1b, show that 

135 nmphλ   at 300 T K= . (As will be discussed in Sec. 4.5, when comparing this 

result to the conventional mean-free-path, lph , it is important to remember that the 

Landauer mean-free-path (or mean-free-path for backscattering) is 4/3 times longer.[226]) 

To examine how heat is conducted by phonons with different mean-free-paths, we 

need expressions for the spectral phonon mean-free-path for backscattering,[226] 

( ) ( ) ( ) ( ) ( ) ( )4 3 4 3 ,ph ph ph phlλ ω υ ω τ ω ω= =
    

(4.4)
 

where ( )phυ ω is the spectral phonon group velocity at frequency ω ,  ( )phτ ω  the 

phonon momentum relaxation time, and ( ) ( ) ( )ph ph phl ω υ ω τ ω= .  For ( )phτ ω , the 

relaxation time approximation (RTA) is used for umklapp scattering,[24] point defect 

scattering,[25] and crystalline boundary scattering rates[26]: 1 2 ,C T
u B eτ ω− −=  

1 4 ,d Dτ ω− =  and ( ) ( )1
b F lτ υ ω− = ⋅ , respectively. 
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Figure 4.1. (a) For bulk Si, energy-resolved number of conducting channels ( phM ), 
window function ( phW ), and the mean-free-path for backscattering ( phλ ) are plotted at 
300 K.  Note that the entire spectrum of phM  participates in conduction since  phW  is 
almost constant. The mean-free-path shows that low-energy acoustic phonons have long 

phλ  since they don't suffer a lot from umklapp scattering. The spectral phλ  are 
calculated based on the relaxation time approximation  for umklapp scattering,[24] point 
defect scattering,[25] and crystalline boundary scattering.[26] (b) The thermal 
conductivity phκ (left axis) and the average MFP phλ  (right axis) are plotted as a 
function of temperature. Experimental results are obtained from Ref. [26]. Good 
agreement between calculation and experiment is observed.  

 

Typical parameters to fit the phκ  vs. T for bulk Si are used [226]: B = 2.8×10-19 

s/K, C = 140 K, F = 0.4, and l = 7.16×10-3 m. Parameter D = 1.32×10-45 s3 is analytically 

determined from the isotope concentration, so the value given in Ref. [26] is used for 

bulk Si.   Figure 4.1b shows that the resulting fit is excellent.  Figure 4.2 shows the 
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cumulative distribution function of thermal conductivity as a function of energy with and 

without scattering.  It can be seen that all energy channels contribute to the ballistic 

thermal conductance. When scattering is included, however, high energy channels 

contribute very little to phκ  because high energy phonons have very short MFPs.  

 

 
Figure 4.2. The cumulative thermal conductivity, phκ  , as a function of energy is plotted 
for diffusive (scattering) and ballistic (no scattering) cases. For the ballistic case, all 
energy channels equally contribute to phκ . With scattering, low-energy channels mainly 
contribute to phκ  because high-energy phonons have very short mean-free-paths. 

 

To find how the heat is carried by phonons with different MFPs, the spectral 

analysis (cumulative phκ  vs. phλ ) is presented in Fig. 4.3. Note that the scattering 

parameters are adjusted to match measured phκ  vs. T (Fig. 4.1b) rather than to obtain 

the same MFP distribution as the MD calculations. Our results are in good agreement 

with the recent MD simulations [27] - ~50% of the heat conduction is attributed to 

phonons with MFP > ~1 mµ . The reason is that the phonons with MFP > ~1 mµ  are 

low-energy acoustic phonons near the Brillouin zone center which don't suffer a lot from 

umklapp scattering, which compensates for the fact that there is a small percentage of 

low energy channels. As shown in Fig. 4.1b, the average MFP for bulk Si 
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( ( )_ph ph ph BALK Aλ κ=  ) is about 0.135 mµ  at room temperature. Therefore the 

commonly used average MFP does not give a clear picture of which phonons carry the 

heat since the phλ  includes a significant number of high energy modes with very 

small MFPs.  

To illustrate the effect of phonon dispersion model, two simple approximations of 

phonon dispersion are assumed. The first is a Debye model, ,skω υ=  where sυ  is 

sound velocity and k  is a wave vector, and the second is a sine-type dispersion model, 

( )0 0sin 2 ,k kω ω π= where 0ω  is the maximum phonon frequency and 0k  is the 

Debye cutoff wave vector.[227]  As shown in the inset of Fig. 4.3, phκ  vs. temperature 

computed from the two simple models almost overlap with the results of full phonon 

dispersion and match well the measured conductivity. But this requires an increase in the 

B parameter for umklapp scattering by a factor of 4.5 for the Debye model and a factor of 

3 for the sine-type model.  It can be clearly seen that while the simple phonon models 

can fit the measured thermal conductivity by adjusting fitting parameters, the MFP 

distribution of the simple models does not agree well with that of MD simulation. Thus, 

the question of how phonons with different MFPs carry the heat, which is important to 

know when designing thermoelectric devices, is not correctly addressed by the simple 

phonon models.  

 

4.4 In-Plane and Cross-Plane Thermal Conductivity for Thin Films 
Having verified that a simple Landauer model with full phonon dispersion 

accurately reproduces the results of MD simulations [27], we turn next to heat transport 

in thin Si films. For thin Si films, phonon boundary scattering significantly influences the 

thermal conductivity. In this section, phonon thermal conductivity of thin Si film layers 

along the in-plane and the cross-pane direction will be evaluated as a function of Si layer 

thickness.   

For in-plane thermal conduction in thin films, we consider the surface roughness of 

boundaries with a frequency-dependent specularity parameter. The scattering time 
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reduction due to boundary scattering in the thin film has been examined by a solution of 

the BTE [28,228]  and the corresponding MFP of thin film ( ,ph thinλ ) compared to that of 

bulk Si ( ,ph bulkλ  ) was given as 

, , 3 51

3(1 ) 1 1 1 exp( )( ) ( ) 1 ,
2 1 exp( )ph thin ph bulk

p t dt
t t p t

δ
λ ω λ ω

δ δ

∞ − − − = − −  − −  


  
(4.5a) 

where ( ) ,4 3 Si ph bulkdδ λ=  with Sid  being the thickness of Si thin film,  and the 

specularity parameter p is given by[220] 
3 2

2
16 exp ,SOI

ph

p π η 
= −  Λ       

(4.5b) 

where phΛ  is the wavelength of phonon and SOIη  is the roughness of surfaces which 

was estimated to be between 0.2 to 1 nm for SOI wafers.[229]  To consider the impact 

of additional imperfections associated with the SOI wafers such as point defects, stacking 

faults, and dislocations, we use an approximate formula since it is not clear which type of 

defect is dominant. The same point defect scattering rate formula used for bulk Si 

( 1 4
d Dτ ω− = ) was used except that the pre-factor, D, for SOI film is adjusted to fit the 

experimental thermal conductivity data of SOI film,  yielding that the D for SOI film is 

2× larger than D for bulk Si.  (Note that for bulk Si we used the parameter D = 1.32×10-

45 s3 analytically determined from the isotope concentration. [26])    Assuming that the 

length of conductor, L , is much greater than ( )phλ ω , transport is diffusive and 

( )ph phT Lλ ω=  in Eq. (4.2a).  For these calculations, we retain the bulk phonon 

dispersions. The results are shown in Fig. 4.4. Previous experimental data are in good 

agreement with the calculations, and considering point defects produces a better fit to 

thicker Si layers in SOI. 
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Figure 4.3. We plot the computed cumulative thermal conductivity ( phκ  )  as a function 
of the mean-free-path (MFP) for backscattering ( phλ ) using three different phonon 
dispersion models: full phonon dispersion, a sine-type dispersion, and a Debye model. 
The computed results are compared to the MD simulations obtained from Ref. [[27]]. The 
MD simulation is plotted while taking into account the difference between a conventional 
MFP for scattering ( phl ) and the MFP for backscattering, i.e. ( )4 3ph phlλ = . Our results 
with full phonon dispersion (solid line) is in good agreement with the recent MD 
simulations,[27] which showed  ~50% of the heat conduction is attributed to phonons 
with MFP > ~1 mµ .  The MFP distribution is not correctly predicted by a simple sine-
type dispersion model (dotted line) or a Debye model (dashed line). Inset: Computed 
thermal conductivity phκ  vs. temperature is plotted for the three phonon dispersion 
models and is compared to experiment.[26] Note that regardless of the phonon dispersion 
model used, we can fit well the experimental data by adjusting scattering parameters. 

 

Next, we examine the cross-plane phonon thermal conductivity of thin Si film 

layers. For cross-plane thermal transport in thin films of thickness less than ~1 mµ , 

quasi-ballistic transport becomes important. Therefore, the assumption of diffusive 

transport no longer holds. The cross-plane thermal conductivity is conventionally 

computed with the BTE by including a phonon-boundary scattering time. For example, 

( )2b Lτ υ= [222–224] is commonly used, but the physical significance is unclear. In 

contrast to the previous work, we have included only scattering processes within the thin 

film – no interface resistances are considered. In a Landauer picture, we are assuming 
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ideal reflection-less contacts at the top and bottom of the film, so our calculations will 

provide an upper limit that does not consider the interface resistances that may occur in 

practice. For the transmission, the expression, ( ) ( )( )ph ph phT Lλ ω λ ω= + , is used to 

describe quasi-ballistic transport.  

 

 
Figure 4.4. Thermal conductivity ( phκ ) vs. silicon layer thickness at room temperature is 
plotted. In-plane experimental data[28–31] and calculations are shown by open squares 
and by blue lines, respectively. For our calculations, a surface roughness of 0.5 nm is 
used, which is a typical value for SOI wafers. We assume that the point defect scattering 
rate for SOI wafer is 2× larger than that of bulk Si. The results with the point defects 
(blue solid line) give a better fit for thicker Si layers. The cross-plane experimental 
data[32] and calculations are shown by filled circle and by red lines, respectively. It is 
assumed that the ( )phM ω  for the thin film is the same as that for bulk Si.  
 

Figure 4.4 shows our calculation of the cross-plane thermal conductivity which is 

defined as ( )ph phK L Aκ =  compared to a recent experimental observation.[32] In 

agreement with the one available measurement,[32] our calculations show a much 

reduced thermal conductivity in the cross-plane.  This result occurs even though we 

have not included possible interface resistances and can be understood from Eq. (4.3a).  

In the ballistic limit, the effective mean-free-path approaches the thickness of the film.  

Note that a better fit for the cross-plane measurement could be obtained by increasing the 
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parameter, D, in the point defect scattering rate formula (we used the same D as for the 

in-plane calculation, 2× larger than D for bulk Si), but the comparison to experiment is 

clouded by uncertainties in possible interface resistances. Nevertheless, the calculation 

shows the reduction in thermal conductivity that should be expected for the thin film 

itself. 

Next, we turn to the question of which phonons play the dominant role in the heat 

conduction in thin films. Figure 4.5 is a plot of  50%λ and ph eff
λ

 

vs. thickness of 

thin Si films at room temperature along the in-plane and the cross-plane transport 

directions. Here, 50%λ  is the MFP at which the cumulative phκ  is equal to 50%, and the 

average MFP, ph eff
λ

 

, is extracted according to Eq. (4.3d).  The cross-plane 

direction displays about 2× smaller 50%λ and ph eff
λ

 

than the in-plane direction. It 

can be also seen that ph eff
λ  is always less than 50%λ  for the same reason as for the 

bulk -  ph eff
λ

 

places too much emphasis on the high energy modes with very small 

MFPs. However, the difference between  ph eff
λ  and 50%λ  decreases as the 

thickness of the thin film decreases.  This occurs for both in-plane and cross-plane 

conduction, but for different reasons. For cross-plane conduction, as the thickness of thin 

films (i.e. L in Eq. (4.1b)) decreases, the transmission phT  in Eq. (4.1b) for phonons with 

short MFPs increases more rapidly than that for phonons with large MFPs. This results in 

a decrease of 50%λ . For in-plane conduction, low-energy acoustic phonons, which have 

large MFPs  ( ~ 1 ph mλ µ> ) leading to the large 50%λ  values in the bulk, suffer a lot 

from boundary scattering in thin films with thickness 1 mµ< , and therefore the 50%λ  

decreases rapidly with film thickness.  Finally, we note that for the in-plane direction, 

about 50% of the heat conduction is carried by phonons with a mean-free-path greater 

than the thickness of the thin film when the thickness is smaller than ~0.2 mµ .  
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

Figure 4.5.  Along the in-plane (in) and the cross-plane (cross) transport directions, 

50%λ and ph eff
λ

 

are plotted as a function of the thickness of the thin Si films at room 

temperature. Here, 50%λ  is the mean-free-path (MFP) at which the cumulative thermal 

conductivity ( phκ  ) is equal to 50%, and the average MFP, ph eff
λ

 

, is obtained from 

Eq. (4.3d).  The cross-plane direction displays about 2× smaller 50%λ and ph eff
λ

 
than the in-plane direction. ph eff

λ  is always less than 50%λ  since ph eff
λ

 

places 

too much emphasis on the high energy modes with very small MFPs. Note that for the in-
plane direction, about 50% of the heat conduction is carried by phonons with a mean-
free-path greater than the thickness of the thin film when the thickness is smaller than 
~0.2 mµ  (blue symbol). 

 

4.5 Discussion 
So far, we have applied the Landauer approach to diffusive transport in bulk 

materials and thin films along the in-plane direction as well as to quasi-ballistic transport 

in thin films along the cross-plane direction.  Although the BTE with an additional 

boundary scattering ( bτ ) succeeds in modeling the bulk and thin film experiments, 

including bτ  cannot accurately describe the ballistic limit (i.e. the Casimir limit, 

( )4 4
H Cq T Tσ= − ) for which Majumdar used the equation of phonon radiative transfer 
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(EPRT).[225] In this section, we show that the Landauer approach reduces to the Casimir 

limit under the appropriate conditions. We also relate the MFP for backscattering in the 

Landauer model to the commonly used MFP for scattering and discuss some limitations 

of the Landauer approach.                                                                                                             

In the ballistic limit ( 1phT = ) and at a temperature much lower than the Debye 

temperature where  M ph ω( ) is given as ( ) ( )2 23 4ph sM Aω ω πυ=
 with sυ  being the 

velocity of sound. The heat flux (q) can be expressed from Eq. (4.1) for a small 

temperature gradient ( TΔ )  as  

( )
2

2
0

1 3 ,
4

Q

s

I dn xq d T
A h dx dT

ω
ω ω

πυ

∞   ∂ = = Δ   
  

          (4.6a) 

where 1 ( 1)xn e= −  and  .Bx k Tω≡   Using ( )4 4

0
4 15,x dn dx dx π

∞
− =

 
the heat 

flux of Eq. (4.6a) is given as  

( )4 ,q Tσ= Δ           (4.6b) 

where 2 4 3 240B skσ π υ=   is the Stefan-Boltzmann constant for phonons.[123] This 

result shows that the Landauer approach correctly reduces to the Casimir result in the 

ballistic limit with the Debye approximation.  Majumdar[225] showed that the Casimir 

limit can be also obtained from the EPRT and that the use of the Fourier law causes 

significant errors for conduction across the film.  The EPRT, however, does not 

accurately predict the thermal conductivity reduction for both the in-plane and the cross-

plane conduction of Si thin films[222] due to the gray approximation.  Finally, note that 

more generally, for temperatures above the Debye temperature, the ballistic heat flux is  

( )_ph BALq K A T= Δ  , where the ballistic thermal conductance is given by Eq. (4.3c). 

It was also shown from the EPRT[225] with the gray approximation that the 

Fourier law can be used for all transport regimes if the effective mean-free-path for 

scattering, ph eff
l , is used instead of  the commonly used average MFP for scattering 

phl  . According to Eq. (44) in Ref. [225]: 
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( ) ( )
,

1 4 3
ph

ph eff
ph

l
l

l L
=

+    
(4.7a)

 

where the phl  is the average MFP for scattering that can be obtained from a classical 

kinetic theory (i.e. ( )1 3ph V s phC lκ υ=  with VC  being the specific heat). A physical 

interpretation of Eq. (4.7a), however, was not given:  For example, where does the value 

of 4/3 in the denominator come from?  We can easily show that Eq. (4.7a) follows 

directly from Eq. (4.3b) of the Landauer approach. Using Eq. (4.4) in Eq. (4.7a) to 

convert from MFP to MFP for backscattering, we find 
1

1 1
ph eff

ph
L

λ
λ

−
 
 = +
 
 

,
    

(4.7b) 

which is precisely the Landauer result if we make the gray approximation, 

( )ph ph phT Lλ λ= + .  

The value of 4/3 in Eq. (4.7a) comes from the difference between the MFP for 

scattering and the MFP for backscattering, The usual definition of mean-free-path is the 

average distance that a carrier travels before scattering. In the Landauer approach, 

( )phλ ω  is the mean-free-path for backscattering and has a specific meaning; it is the 

length at which the transmission ( ) ( )( )ph ph phT Lλ ω λ ω= +  drops to one-half, and the 

inverse of the ( )phλ ω  is interpreted as the probability per unit length that a positive flux 

is converted into a negative flux. Following the proper definition of ( )phλ ω ,[3] it can be 

shown that in 1D,   λph ω( )= 2lph ω( ), in 2D, ( ) ( ) ( )2ph phlλ ω π ω= , and in 3D, 

( ) ( ) ( )4 3 .ph phlλ ω ω=
  

 

We have shown that the Landauer approach provides a simple but physically 

insightful description of diffusive transport, quasi-ballistic transport, and ballistic 

transport, but it does have limitations. For example, for problems like cross-plane thermal 

transport, we made the assumption of ideal contacts (i.e. that are reflection-less and that 
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maintain a near-equilibrium thermal population of phonons.) The role of contacts is 

problem-specific and should be considered on a case-by-case basis. Problems involving 

space and time dependent transport and multi-dimensional transport tend to be easier to 

handle with the Boltzmann equation, but for 1D, steady-state transport, the Landauer 

approach provides significantly more physical insight as well as computational 

advantages in computing the transport distribution (or number of channels, M ω( )).   

  

4.6 Summary and Conclusion 
In this chapter, we showed that a simple Landauer model in the diffusive limit with 

a full phonon dispersion reproduces the results of more sophisticated molecular dynamics 

simulations of phonon transport in bulk Si.  For thin Si films, the same approach also 

accurately describes the measured in-plane (diffusive transport) and cross-plane (quasi-

ballistic transport) thermal conductivity, 
 
κ ph vs. thickness of the Si layer. The spectral 

analysis of cumulative thermal conductivity as a function of a mean-free-path (MFP) 

demonstrates that the commonly used average MFP should be used with caution because 

it does not convey which phonons mainly contribute to the heat conduction. In the 

ballistic limit and with the Debye approximation, the Landauer model yields the Casimir 

limit, the blackbody radiation law for phonons. The results presented here shed new light 

on phonon transport in Si structures and also show that the Landauer approach provides a 

simple and useful computational approach that gives new insights into phonon transport 

from the ballistic to diffusive regimes in both nanostructures and bulk materials.  
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5. ON THE BEST BANDSTRUCTURE FOR THERMOELECTRIC 
PERFORMANCE: A LANDAUER PERSPECTIVE 

The contents of Chapter 5 have been extracted and revised from the following 

publication: C. Jeong, R. Kim, and M. Lundstrom, “On the Best bandstructure for 

thermoelectric performance: A Landaer Perspective,” J. Appl. Phys. 111, 113707(2012) 

In this chapter, the question of what bandstructure produces the best thermoelectric 

device performance is revisited from a Landauer perspective. We find that a delta-

function transport distribution function (TDF) results in operation at the Mahan-Sofo 

upper limit for the thermoelectric figure-of-merit, ZT. We show, however, the upper limit 

itself depends on the bandwidth (BW) of the dispersion, and therefore a finite BW 

dispersion produces a higher ZT when the lattice thermal conductivity is finite. Including 

a realistic model for scattering profoundly changes the results. Instead of a narrow band, 

we find that a broad BW is best. The prospects of increasing ZT through high valley 

degeneracy or by distorting the density-of-states are discussed from a Landauer 

perspective.  We conclude that while there is no simple answer to the question of what 

bandstructure produces the best thermoelectric performance, the important considerations 

can be expressed in terms of three parameters derived from the bandstructure – the 

density-of-states, D E( ) , the number of channels, M E( ) , and the mean-free-path, 

λ E( ). 

 

5.1 Introduction  
The performance of thermoelectric (TE) devices is related to a dimensionless 

figure of merit, ZT , 

   
2

,
ph el

S TZT σ
κ κ

=
+

          (5.1) 
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where S is the Seebeck coefficient, σ the electrical conductivity, phκ  the lattice 

thermal conductivity, and elκ the electronic thermal conductivity.  Early work 

developed TE technology with a figure of merit of about one,[33] but subsequent 

progress was stalled for several decades.  Recent progress has, however, been 

significant, and there are now several reports of ZT ’s above one,[230]  which have 

been largely achieved by reducing the lattice thermal conductivity, which dominates the 

denominator of eqn. (1).  Figure 5.1 is a plot of ZT  vs. ( )tot ph elκ κ κ= +  for several 

different TE materials including recent materials with ZT  > 1.[1–12,15–22] Also 

shown (dashed line) is the result that would be obtained if the power factor ( 2S σ ) of 

each material were the same as that of silicon. The conclusion is that the performance of 

a thermoelectric material is largely determined by its thermal conductivity. The power 

factors of good TE materials are all similar. This raises the question of what controls the 

magnitude of the power factor and provides an opportunity to further increase ZT  by 

power factor engineering. This paper addresses the question: “How is the electronic 

structure of a material related to its power factor?” 

For conventional TE materials with approximately parabolic energy bands, the 

power factor is well understood.[231,232] High power factors require high mobility to 

increase σ , and ionized impurity scattering should dominate to enhance S.[232]  In a 

seminal paper, Mahan and Sofo asked the question:  “What shape of a bandstructure 

would produce the highest thermoelectric performance?” They concluded that materials 

with a -function “transport distribution function,” (TDF) would be best.[204]  

Subsequently, Nishio and Hirano[233] showed that in the absence of thermal conduction 

by the lattice, a single energy channel leads to “electronic efficiencies” at the Carnot 
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Figure 5.1. The maximum ZT vs. total κ . Conventional semiconductors used in IC 
industry (circle): Si 300K,[1,2]  Ge 300K,[3] GaAs 300K [4]; bulk TE materials used in 
TE devices  (triangles): Bi2Te3 300K,[5] BixSb2-xTe3 300K,[6] Si80Ge20 1275K,[7]  
PbTe 300K [8]; nano-engineered materials (square): Si nanowire (NW) 300K,[9]  Si 
NW 200K,[10]  Bi2Te3/Sb2Te3 superlattice (SL) 300K,[11] PbTe/PbSeTe quantum dot 
(QD) SL 300K,[12] Tl-PbTe 773K,[8]  Na1-xPbmSbyTe2+m 650K,[15] PbxSn1-xTe-PbS 
642K,[16]  AgPbmSbTem+2 800K,[17] PbSbTe 700K,[18] p-PbTe-SrTe 800K,[19] 
Bi2Te3 300K,[20] BixSb2-xTe3 475K,[6]  n-Si80Ge20 1275K,[7] Si 1275K,[1] n-LaTe 
1273K,[21] n-YbxCo4Sb12+y 800K.[22]  The dashed line is the ZT that would be 
obtained if the power factor of each material were the same as that of silicon. 
 
 

 

limit. Similar conclusions were reached by Humphrey and Linke.[234] In a recent paper, 

Nakpathomkun, et al. argued that the power delivered to a load is the important measure 

of performance and that for such purposes, ZT  is not the best figure of merit.[235] 

Nakpathomkun concluded that the TDF should have a finite bandwidth (BW ~2.25 kBT) 

for maximum power output, although the maximum efficiency (for κ ph = 0 ) still occurs 

for a δ-function TDF. The “best bandstructure question” has also been explored recently 

by Fan et al.[236] who concluded that for a normalized TDF (i.e. the area under the TDF 

vs. energy curve is bounded), the -function TDF is best, but for a bounded TDF (the 
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maximum value is limited), a narrow, but finite width of the TDF is best. Very recently, 

Zhou, et al. considered the optimal BW question and concluded that the existence of an 

optimal BW depends strongly on the scattering model used.[237]  Finally, we note the 

recent experiments reporting improved TE performance in materials with a resonant 

level[8] and in PbTeSe alloys that display a high degree of valley degeneracy,[238] 

which increases the density-of-states, ( )D E , near the Fermi level. 

To continue to increase performance of thermoelectric materials, the electronic 

performance must be enhanced.[230,239] Previous has clarified several of issues, but a 

number of questions remain: 

1)  What physical constraints should be placed on the TDF? 

 Before we explore the best bandstructure question, the physical constraints to be 

placed on the TDF must be clarified. 

2)  How does the BW of the TDF affect TE performance? 

 Under what conditions is a δ-function TDF the best and under what conditions is 

a narrow band the best? When a narrow band is best, what determines the 

optimum BW? Finally, how do these results relate to Mahan and Sofo’s original 

arguments? 

3)  How does scattering affect optimum bandstructure? 

4) How should the improved performance of materials with a high valley 

degeneracy[238] or with a resonant energy levels8 that distort the density-of-states 

be understood? 

5)  Is there a best bandstructure for TE performance? 

Our goal in this paper is to answer these questions. We use a Landauer approach, 

which is equivalent to the Boltzmann Transport Equation for crystalline semiconductors 

in the diffusive limit but has advantages of mathematical simplicity and physical 

transparency.  This is most apparent with regard to the so-called transport distribution, a 

central quantity in thermoelectric theory[204] whose physical interpretation is unclear.  

In the Landauer approach, the transport distribution acquires a clear physical 

interpretation – it is proportional to the number of channels available for conduction 
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times the mean-free-path (MFP) for backscattering, which makes it easy to identify the 

appropriate physical constraints to place on the TDF. 

Following Nakpathomkun, et al.28, we shall assess thermoelectric performance using 

two different metrics: 1) the maximum thermoelectric efficiency and 2) the maximum 

power that a thermoelectric generator delivers to a load. The first is of theoretical interest 

and the second of practical interest.  As discussed in the Appendix F, as ZT approaches 

infinity, the maximum thermoelectric efficiency approaches the Carnot efficiency, but the 

efficiency when the maximum power is delivered to a load approaches one-half of the 

Carnot limit, the so-called Curzon-Ahlborn limit.[240] Both operating conditions will be 

considered. 

The paper is organized as follows. Section 5.2 summarizes the approach. The 

expressions presented are those of standard thermoelectric theory with only one 

difference – the transport distribution is expressed in Landauer form.  Section 5.3 is a 

short discussion of the single energy case (a δ-function TDF).  This section sets the 

stage for understanding the subsequent results and relates this paper to some previous 

studies.  Section 5.4 is a short discussion of one-dimensional (1D) thermoelectrics.  

The simplicity of the 1D problem provides a clear illustration of how the number of 

channels for conduction, ( )M E , is related to the density-of-states, ( )D E  and allows 

us to address question 1) above.  Question 2) is discussed in Secs. 5.4 and 5.5.  Section 

5.5 examines how the BW of the dispersion affects TE performance, extending the 

analysis of Sec. 5.4 to three-dimensional (3D) thermoelectrics. In Sec 5.6, it is shown that 

the conclusion of Mahan and Sofo is correct, if properly understood.  Section 5.7 is a 

discussion of scattering and addresses question 3), and Secs. 5.8 and 5.9 address question 

4).  The paper’s conclusions are summarized in Sec. 5.10, where our perspective on 

question 5) is presented.  

  

5.2 Approach 
We begin with a brief review of the Landauer approach[164] to TE transport. The 

TE transport parameters are[3,204] 
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2

0 ,el S Tκ κ σ= −      (5.2d) 

where FE  is the Fermi level,  and ( )Eσʹ′ is the so-called differential conductivity. For 

3D bulk diffusive materials,  

 
   

( ) ( )

( )

2
0

2 0

2( )

,

M E fqE E
h A E

fq E
E

σ λ
  ∂ ʹ′ = −   ∂  

∂ = Σ − ∂ 

      (5.3) 

where   2q2 h  is the quantum of conductance, ( )M E  is the number of conducting 

channels at a given energy, E, A is the cross-sectional area,  is the mean-free-path 

for backscattering, and 0f  is the Fermi-Dirac distribution. In eqn. (5.3), ( )EΣ  is the 

so-called transport distribution function (TDF), which arises from a solution to the 

Boltzmann Transport Equation.[204]  The TDF depends on both bandstructure and 

scattering.  In the Landauer approach, ( )EΣ  is proportional to the product of ( )M E , 

which depends only on bandstructure and , which depends on bandstructure and 

the scattering physics. For semiclassical transport in the diffusive limit, the Boltzmann 

and Landauer approaches are mathematically identical; we use the Landauer approach in 

this paper because it provides a simple and clear physical interpretation of the TE 

transport distribution function. 

Given a bandstructure, ( )E k , ( )M E  is easily obtained by simply counting the 

bands that cross the energy of interest.[3]  For the purposes of this paper, we seek a 

simple, but realistic bandstructure model that gives ( )E k  across the entire Brillouin 

zone (BZ) and for which the BW of the dispersion can be varied from broad to narrow in 

λ E( )

λ E( )
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order to explore the effects of bandwidth on the TE coefficients. A simple, nearest 

neighbor tight-binding (TB) model,  

0 0 0( ) 2 (1 cos ) 2 (1 cos ) 2 (1 cos ),x y zE k t k a t k a t k a= − + − + −
    

(5.4) 

will be used. In eqn. (5.4), 2 2
0 2 et m a=   with  a  and  me  being the lattice constant 

and the effective electron mass, respectively. The bandwidth (BW) of the electron 

dispersion is   12t0 . We change the BW while assuming   a = 5×10−10 m , which keeps the 

total number of states fixed. It is important to note that the TB model gives ( )E k  across 

the entire BZ and that we do not assume parabolic energy bands (i.e. ( ) 2 2 2 eE k k m≠  ). 

In the case of a large BW, however, only states near the bottom of the band, which is 

nearly parabolic, are occupied, and we recover the expected results for parabolic energy 

bands. For the small BW case, however, the TDF approaches a -function, and much 

different results are obtained. Because the TDF is derived from a physically sensible 

dispersion, no artificial constraints are placed on the TDF.  

  

5.3 Single Energy Case  
We begin with a short discussion of the single energy case (a δ -function TDF), 

which has received a good deal of attention and forms one end of the spectrum of BWs 

that we will explore. When all the channels are at , , and 

the differential conductivity becomes . In this case, the 

thermoelectric coefficients become 

0 ,σ σ=        (5.5a) 

0 ,FB

B

E EkS
q k T

   −
= −   
         (5.5b) 

22
0

0 0 ,FB

B

E EkT
q k T

κ σ
   −

=   
         (5.5c) 

2
0 0 0.el S Tκ κ σ= − =       (5.5d) 

Here, with a constant MFP ( 0λ ) being assumed, 0σ is found to be  

E = E0 M E( )= M0δ E − E0( )

ʹ′σ E( )= σ 0δ E − E0( )
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where 0( )F F BE E k Tη = −  and 2.4Fη ≈ ±  for the maximum power factor. The result, 

(5e), agrees with Mahan and Sofo[204] but not with Zhou et al.[237] who found 0 0σ = .  

For the single energy case, the electronic heat conductivity, elκ , is zero.  This 

occurs because elκ  defines the heat flow under open-circuit conditions.  If all the 

current flows at , then zero current means that no electrons are flowing, so there 

can be no heat current. For the single energy case, 

    
  

κ el

σ
= LT = 0,         (5.5f) 

which shows that the Lorenz number, L, is zero.  For a parabolic energy band under 

strongly degenerate conditions, , but we shall see that as the BW of 

the dispersion decreases, L decreases and approaches eqn. (5.5d) in the limit of zero 

bandwidth.  

  

5.4 One-dimensional Analysis 

Here, we illustrate how the number of conducting channels, ( )M E , is related to 

the density-of-states, ( )D E , by using a simple 1D example that illustrates the physical 

constraint that should be imposed on the TDF. Figures 2a and 2b show a plot of the 1D 

dispersion, 0( ) 2 (1 cos )xE k t k a= − , and the corresponding ( )D E  for BWs of ~0.1 and 

~0.6 eV. At a given energy, E, the number of states that participate in transport is the 

number of conducting channels, ( )M E , which is often referred to as the number of 

(transverse) modes in analogy with the modes of an electromagnetic waveguide. Given 

an accurate dispersion, ( )M E  can be readily computed by counting the bands that 

cross the energy of interest[3] and is shown in Fig. 5.2c. It can be seen that although the 

( )D E  goes to infinity, ( )M E  remains bounded, independent of bandwidth. (Zhou et 

E = E0

L = π 2 3( ) kB q( )2
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al.[237] also pointed out that while ( )D E →∞ , ( )EΣ  remains finite.) Note that 

D E( ) dE  is independent of bandwidth because we fix the total number of states, but it 

is the peak value of M E( ) that is independent of bandwidth, not M E( ) dE . This 1D 

example demonstrates that the answer to the first question posed in Sec. I is that for a 

given dispersion, the maximum of  ( )M E  is fixed. Fixing the electrical conductivity 

when varying the BW[234] or fixing the area under TDF vs. E[236] lead to non-physical 

results.  

 

 
Figure 5.2. (a) The 1D dispersion, 0( ) 2 (1 cos )xE k t k a= −  with two different bandwidth 
(BW) of a dispersion, ~0.1 (dashed line) and ~0.6 eV (solid line). xk is displayed in the 
units of  aπ  . (b) The corresponding the density-of-states, ( )D E , in the units of 

1 1eV nm− −  and (c) the number of conducting channels, ( )M E , which represent the 
number of states that participate in transport at a given energy E. Note that although the 

( )D E  goes to infinity, ( )M E  remains bounded independent of bandwidth. 
 

The counting bands method can be extended to the two-dimensional (2D) and the 

three-dimensional (3D) cases. The 1D procedure is repeated for each transverse wave 

vector so that the entire BZ of the material is spanned. The resulting number of 

conducting channels is integrated over transverse momentum at a given energy to find the 
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( )M E . This method is used next in 3D.  Finally, we also note that while not obvious, 

M E( )is related to the density-of-states according to[3] 

    ( ) ( ) ( )
2 x
hM E E D Eυ += ,      (5.6) 

where υ x
+ E( ) is the average velocity in the direction of transport at energy, E, and 

D E( ) is the density of states per spin.  The density of states is per unit length in 1D, 

per unit area in 2D, and per unit volume in 3D.  The number of channels is a number in 

1D, a number per unit width in 2D and per unit area in 3D, where the width and cross 

sectional area are normal to the direction of current flow. 

 

5.5 Three-dimensional Analysis: Constant Mean-free-path 
In this section, we extend our analysis to 3D and evaluate the TE coefficients at T = 

300 K to address question 2).  The BW of the dispersion is varied from very narrow to 

very wide while assuming a constant MFP. Figure 5.3 shows the computed density-of-

states, ( )D E , and number of channels, ( )M E , for small and large BW dispersions.  

The ( )M E  characteristics display a peak value of ~0.6 times the number of atoms in 

the cross section – independent of bandwidth. As was observed for 1D, the total number 

of states (area under the ( )D E  curve) is independent of BW but the area under the 

( )M E  curve depends on BW.  Finally, Fig. 5.3 also shows that the parabolic band 

assumption (dashed line) matches the full-band TB results (solid line) only near the 

bottom of the band where  and .[3]  

Next, TE performance for 3D bulk is assessed for two different conditions: 1) the 

maximum TE efficiency and 2) the maximum power that a thermoelectric generator 

delivers to a load.[204]  The load resistance and the location of the Fermi level are co-

optimized in order to extract the maximum efficiency or the maximum power output.  

For each of the two different operating conditions, the efficiency and power output are 

calculated as a function of the BW.  

D E( )∝ E1/2 M E( )∝ E
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Figure 5.3. (a,c) The 3D density-of-states, ( )D E , for the narrow and the broad bandwidth 

(BW) bands. (b,d) The number of conducting channels, ( )M E , for the narrow and the 
broad BW bands. Full-band calculations (solid line) are compared to effective mass 
approximation (EMA, dashed line). Based on the EMA, 

( ) 2 32 ( ) 2e e CD E m m E E π= −   and ( ) 2( ) 2e CM E m E E π= −  , where CE  is the 
band edge. Fitted effective masses ( em ) at the bottom of band are 0em m= for the broad 
band and 010em m= for the narrow band, where 0m  is the electron rest mass. It is  seen 
that the ( )D E  and the ( )M E obtained from parabolic band assumption (dashed line) 
match well the full-band TB results (solid line) only at the bottom of the band. Dotted 
line is the arbitrarily normalized window function”, ( )0W f E= −∂ ∂ , where 0f  is 

Fermi-Dirac distributions. For horizontal axis, CE Eε = − for ( )D E and ( )M E   and 

FE Eε = −  for ( )0W f E= −∂ ∂  where FE  is the Fermi level. We assumes C FE E=

which is a typical condition for optimum performance.  
 

 

 

0 0.5 1 1.50
2
4
6
8

E (eV)
0 0.5 1 1.5

1

2

3

0
E (eV)

20
40
60
80

D(
E)

 (x
10

27
 #

/e
V/

m
3 ) 

1

2

3

M
(E

) (
x1

018
 #

/m
2 ) 

(a) (b)

ε (eV) ε (eV)

BW  7 kBT 

BW  70 kBT BW  70 kBT 

BW  7 kBT 

(c) (d)

full band
EMA

0f E−∂ ∂

full band
EMA

0f E−∂ ∂



96 
 

 

We first evaluate TE performance for zero lattice thermal conductivity, 0phκ = , 

and the results are shown in Fig. 5.4a where the TE efficiency is normalized by the 

Carnot efficiency, Cη . For this case, the maximum power output is obtained for a 

moderate BW band, but the maximum efficiency occurs for a δ -function like narrow 

band. In agreement with Nakpathomkun,[235] we find that as the TDF (or ( )M E ) 

approaches a δ -function, the maximum efficiency approaches the Carnot efficiency, but 

no useful power can be delivered to a load.  However, the δ -function TDF does 

produce a finite power under maximum power conditions with an efficiency of one-half 

the Carnot efficiency, the Curzon-Ahlborn limit.[240]  

Figure 5.4b shows the results with the more realistic case, i.e. a finite κ ph = 0.5  

W/m-K, which is about 2~3 times smaller than the lattice thermal conductivity of Bi2Te3. 

In contrast to the case of 0,phκ =  the maximum efficiency now occurs for a moderate 

BW, instead of for the narrowest BW. Note that the maximum power occurs for a 

moderate BW for both zero and finite κ ph .  If we repeat the calculations using a smaller 

(larger) value of phκ , we find only a slight decrease (increase) in the optimum BW. Next 

we discuss how the BW affects the four TE transport parameters. 
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Figure 5.4. Efficiency normalized by Carnot efficiency Cη  (upper panel) and power for 
(a) zero lattice thermal conductivity, 0phκ = ,  and (b) a finite lattice thermal 
conductivity, κ ph = 0.5  W/m-K are plotted as a function of the bandwidth (BW).  
Efficiency and power are evaluated from two different perspectives. Solid line: condition 
for the maximum thermoelectric efficiency. Dashed line: condition for the maximum 
power that a thermoelectric generator delivers to a load. The load resistance and the 
location of the Fermi level are co-optimized in order to extract the maximum efficiency 
or the maximum power output.   
 

The TE coefficients assuming zero lattice thermal conductivity, 0phκ = , are 

shown in Fig. 5.5. For each value of the BW, we found the optimal location of the Fermi 

level to maximize ZT. As the BW decreases, ZT diverges. Therefore, the highest ZT and 

efficiency is obtained for a δ -function like band.  As seen in Fig. 5.5b and 5.5c, this 

occurs mainly because as the BW approaches zero, κ el  approaches zero while σ

approaches a finite value, eqn. (5.5e), and therefore the Lorenz number, L, approaches 

zero as discussed in Sec. 5.3. For the large BW case, Fig. 5.5b shows that we obtain the 

expected results for a parabolic energy band, i.e. for large BWs, L saturates at a value 
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slightly above 2. Recall that for a parabolic energy band under strongly degenerate 

conditions, L kB q( )2
= π 2 3  and for non-degenerate conditions with a constant MFP, 

L kB q( )2
= 2 . The Wiedemann-Franz “law” states that there is a relation between the 

electrical conductivity and the electronic component of the thermal conductivity, but the 

specific value of the L depends on bandstructure, scattering, and the location of the Fermi 

level.  As noted by Mahan and Bartkowiak,[241] it should be regarded as a “rule of 

thumb” rather than a law.   

In contrast to the case of 0,phκ =  Fig. 5.6a shows that the highest ZT occurs for a 

moderate BW when κ ph = 0.5  W/m-K.  As seen in Fig. 5.6b, for this case, the 

optimum BW for highest ZT is mainly determined by the BW dependence of the power 

factor rather than that of the L.  Figure 5.6c shows that the BW has a strong effect on σ

, but it has a rather small effect on S. The stronger variation of σ  vs. BW than that of S 

vs. BW explains the shape of the power factor vs. BW characteristic in Fig. 5.6b.  

The results shown in Fig. 5.6 can be understood in terms of the width of the Fermi 

“window function,” −∂f0 ∂E( ), and the distribution of conducting channels, as plotted in 

Fig. 5.3a.  The width of the Fermi window function is a few kBT, so when the bandwidth 

of the dispersion is less that this value, σ  decreases.  The optimum BW for σ occurs 

when the width of the Fermi window matches the BW of ( )M E . As the BW of the 

dispersion increases, the channels are more spread out, so given the finite width of the 

Fermi window function, a decreasing fraction of the channels can participate in electrical 

conduction, and σ  decreases.  Note that the peak of κ el  occurs for a somewhat larger 

BW than that of σ  because of the E − EF( )2 factor in eqns. (5.2d-e).   
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Figure 5.5. For zero lattice thermal conductivity ( 0phκ = ), (a) ZT, (b) the power factor 
(PF) and the Lorenz number (L), and (c) the Seebeck coefficient ( S ), the electrical 
conductivity (σ )  and the electronic thermal conductivity ( elκ ) are plotted. The units of 

PF, L, S, ,σ  and κ el  in the plots are 6 210 W/m-K ,−  ( )2 ,Bk q 310 V/K,− 1/ -m,Ω  and 
55 10 W/m-K−× , respectively.  For each value of the BW, we found the optimal location 

of the Fermi level to maximize ZT. As the BW decreases, the highest ZT (i.e. efficiency) 
is obtained for a delta-function like narrow band.  This result occurs mainly because as 
the BW approaches zero, κ el  approaches zero and therefore the L approaches zero. Note 
that the maximum PF still appears at a moderate BW. 
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Figure 5.6. For a finite lattice thermal conductivity (κ ph = 0.5  W/m-K),  (a) the ZT, (b) 
the power factor (PF) and the Lorenz number (L), and (c) the Seebeck coefficient ( S ), 
the electrical conductivity (σ )  and the electronic thermal conductivity ( elκ ) are plotted. 

The units of PF, L, S, ,σ  and κ el  in the plots are 3 210 W/m-K ,−  ( )2 ,Bk q 410 V/K,−

410 / -m,Ω  and 110 W/m-K− , respectively. For each value of the BW, we found the 
optimal location of the Fermi level to maximize ZT.  In contrast with the case of 

0,phκ =   the highest ZT occurs for the moderate BW mainly because of the BW 
dependence of the power factor.  Since the BW has a rather small effect on S,  the 
strong variation of σ  vs. BW explains the shape of the power factor vs. BW. The 
optimum BW for σ occurs when the width of the Fermi window matches the width of 

( )M E .  
 

We have discussed why a δ -function like TDF maximizes the efficiency for 
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a finite phκ . For the maximum power output, however, Fig. 5.4 shows that a moderate 

BW is best in either case.  This occurs because the power output is proportional to the 

power factor (as discussed in Appendix), and the power factor displays its maximum at a 

moderate BW regardless of the value of phκ .  Achieving a moderate BW band by 

coherent transport in a superlattice, however, is not an effective approach because in that 

case, most of the channels are filtered out. Molecular thermoelectrics is another 

possibility.[67] This might lead to high efficiency but not to high power, because 

although molecular levels can be sharp (possibly too sharp), one still needs a large 

number of channels in a small energy range.  Packing molecules closely may broaden 

the levels and degrade performance.  

 

5.6 The Mahan and Sofo Upper Limit  
In previous sections, we have shown that for a constant MFP, a moderate BW (a 

few kBT) is best for the practical case of a finite phκ . This conclusion holds for both the 

efficiency and the power output when we consider a constant MFP.  This fact has been 

pointed out in previous studies;[204,233–237] we have provided a simple, physical 

explanation in terms of the need to match the width of the Fermi window to the width of 

the transport distribution or ( )M E  and also explained the appropriate physical 

constraints on the TDF. In this section, we address the question of how these theoretical 

studies relate to the original arguments.  

The Mahan-Sofo upper limit to ZT can be readily obtained by using eqns. (5.1) and 

(5.2d),  from which  ZT  can be written as  

0 01 .
1

el

ph el ph

ZT κ κ κ
κ κ κ

 −
= ×   + 

     (5.7a) 

Since the term in the brackets is always less than 1, it can be seen that  

0 ,
ph

ZT κ
κ

≤           (5.7b) 
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which is the Mahan-Sofo upper limit.[204]  Mahan and Sofo[204] also showed that a 

bandstructure that produces a δ -function TDF (a single energy channel) gives the upper 

limit. This can be readily understood from the fact that 0elκ =  for the single energy 

case, so eqn. (5.7a) shows that the thermoelectric figure of merit reaches its upper limit, 

0 phZT κ κ= . Figure 5.7 shows the computed upper limit of ZT vs. BW of the dispersion 

(dashed line) along with the computed ZT vs. BW (solid line). It can be seen that 

ZT ≤κ 0 κ ph  is always true, and that in agreement with the prediction of Mahan and 

Sofo,[204] ZT approaches its upper limit for the narrowest BW. Although we assumed a 

constant MFP and a finite phκ , we find that the conclusion that ZT ≤κ 0 κ ph  and  

0 phZT κ κ= for δ -function TDF are independent of the specific scattering model and 

value of phκ . The important point, however, is that κ 0  depends on the BW, so the 

upper limit itself depends on BW and shows peak value at a BW of a few kBT where the 

maximum ZT occurs.  The highest ZT, therefore, occurs for a BW that results in 

operation well below the Mahan-Sofo upper limit.  

 

Figure 5.7. For a finite lattice thermal conductivity (κ ph = 0.5  W/m-K),   the ZT (solid 
line) and its upper limit, 0 phκ κ  (dashed line), are plotted as a function of bandwidth 
(BW). For each assumed bandwidth, the optimal location of the Fermi level is determined 
to maximize ZT.  Here a constant mean-free-path is assumed.  It can be seen that 
ZT ≤κ 0 κ ph  is always true and the ZT approaches its upper limit for the narrowest BW.  
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5.7 Role of Scattering 
In previous sections we showed that a narrow TDF with a BW of a few kBT gives 

the best TE performance.  The only exception is that when 0phκ = , the maximum 

efficiency (but not the maximum power delivered to a load) occurs for a -function TDF.  

We also revisited the Mahan-Sofo limit and showed that while the upper limit is obtained 

for a -function TDF, better efficiency can be obtained by operating below the BW 

dependent upper limit using a TDF with a BW of a few kBT. These results answer 

question 2), but before we conclude that a narrow band is best, however, we should 

realize that our use of the same MFP for all bandwidths is physically unreasonable. One 

advantage of the Landauer approach is that it separates the TDF into a part that depends 

only on bandstructure, ( )M E , and a part that depends both on bandstructure and 

scattering physics, the MFP.  We turn now to the question of how scattering affects TE 

performance and we shall see that although narrow TDFs have been much 

discussed,[204,233–237] they are probably not the best for TE performance.  

Recent work by Zhou et al.[237] and by the author[242] has examined three 

models for scattering:  1) the constant mean-free-path discussed here in previous 

sections, 2) a constant scattering time, and 3) a scattering rate proportional to the density-

of-states, ( )1 ( )elE C D Eτ − = .  The constant MFP can be justified for parabolic energy 

bands, but it is hard to justify over a wide range of BWs.  The constant scattering time is 

commonly used, but hard to justify under any circumstances.  A scattering rate that is 

proportional to the density-of-states follows directly from Fermi’s Golden Rule and 

should describe acoustic phonon scattering, which typically dominates for good 

thermoelectrics.   

Extensive calculations for the three scattering models have been presented 

recently,[237,242] so we only review the conclusions here.  As discussed in previous 

sections, for a constant mean-free-path, ZT is mostly determined by the BW dependence 

of σ , which is maximized when the BW of the TDF matches that of the Fermi window 

function. Similar results are obtained for the constant scattering time case.  For the most 

realistic scattering model, however, it is found that there is no optimum BW.[237,242] 
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Instead, ZT continuously decreases as the BW decreases.  The reason is clear in a 

Landauer picture.  According to eqn. (5.3), σ  is proportional to the TDF, which is the 

Landauer picture is proportional to the product of the number of channels, ( )M E , and 

the MFP, ( )Eλ . As the BW decreases, the number of channels in the Fermi window 

increases, which should increase the conductivity, but the density of states near the Fermi 

level also increases, which increases the scattering rate and decreases the MFP.  In our 

isotropic bandstructure model, the smaller BW corresponds to a larger effective mass and 

smaller velocity.  Since the MFP is the product of velocity and scattering time, it 

decreases faster than ( )M E  increases so ZT decreases as the BW decreases.  

In contrast to several previous studies and to the discussion in earlier sections of 

this paper, which used overly-simplified treatments of scattering, we conclude that for 

best TE performance, wide (dispersive) bands are the best.  This point can also be seen 

from the expression for the conductivity, 

    σ =
M E( )

A λ E( ) −
∂f0

∂E






dE  .    (5.8a) 

Recall that M E( )∝ υx
+ D E( ), where υx

+  is the average velocity in the direction of 

transport at energy, E.  Recall also that λ E( )∝ υx
+ τ E( )  and that 1 τ E( )∝ D E( ), so 

eqn. (5.8a) becomes 

    σ ∝ υx
+ E( )

2
−
∂f0

∂E




 dE      (5.8b) 

Equation (5.8b) shows that the conductivity is proportional to the square of the average 

velocity in the Fermi window.  High velocities occur for light effective masses (large 

BWs), so for a realistic model of scattering, we conclude that a wide band, not a narrow 

band, is best. 

 

5.8 High Valley Degeneracy 
The analysis in the previous section showed that it is hard to increase the power 

factor in a single band by increasing the density-of-states near the Fermi level because of 
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the tradeoff between the number of channels and the mean-free-path. It is generally 

understood, however, that a high degree of valley degeneracy is beneficial for 

thermoelectric performance,[33] and recently, this approach has produced significant 

increases in performance.[238] This leads to the question of how high valley degeneracy 

affects the power factor. 

The benefits of valley degeneracy can be understood with a very simple model.  

As shown in previous sections, the power factor is mainly controlled by the behavior of 

the conductivity, σ , and when a realistic model for scattering is assumed (proportional 

to the density of states), large bandwidths, for which the parabolic band assumption holds, 

are best. Accordingly, we assume two spherical, parabolic band semiconductors, the first 

with an effective mass of m1
*  and the second with m2

* .  The first semiconductor has a 

valley degeneracy of 1VN , and the second has only a single valley, i.e. 2 1VN = .  We 

compare these two semiconductors at the same density of states and ask: how do the 

power factors of these two semiconductors with the same densities of states compare? 

 

 

Figure 5.8. (a) The computed power factor vs. valley degeneracy is plotted. (b) The 
power factor ( PF ), (c) S , and (d)σ  are plotted as a function of Fermi level for three 
cases of  1VN = , 6, and 12. Symbols represent values at optimal Fermi level. It can be 
seen that PF of multi-valley semiconductor is improved and that the enhancement is 
attributed to the increase of σ .  
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The computed power factor vs. valley degeneracy is plotted in Fig. 5.8a. The 

calculations assume *
2 0m m=   and that τ E( )= Cel D E( )  with Cel selected to produce 

average MFP ( λ ) of 10 nm for a single valley. The calculations confirm the 

expectation that valley degeneracy produces higher performance.  For 6VN = , about a 

factor of 3 increase of the power factor can be achieved in this model multi-valley 

structure. Figure 5.8b, 8c, and 8d show the power factor, S , and σ as a function of 

Fermi level for an isotropic single valley ( 2 1VN = ) and multi-valley ( 1 6VN = , and 

1 12VN = ). It is found that the  vs. FS E  characteristics are the same for the three cases, 

but Fig. 5.8c shows that the conductivity increases with valley degeneracy. 

Additional insight into the benefits of valley degeneracy can be gained from Fig. 

5.9, which compares D E( ), M E( ), λ E( ), and the transport distribution, M E( )λ E( ) 

for the three cases. For this calculation, we forced D E( ) to be the same in the three 

cases (Fig. 5.9a), so the scattering times, τ E( ) , are also the same.  In the multi-valley 

cases, we combine the contributions of several light mass bands.  In an isotropic single 

valley, the same density-of-states is achieved by increasing the effective mass, which 

lowers the velocity.  As shown in Fig. 5.9b, M E( ) is higher for the multiple valley 

case because M E( )∝υ E( )D E( ).  Fig. 5.9c shows that λ E( ) is also higher for the 

multiple valley case because λ E( )∝υ E( )τ E( ) . Note that with a parabolic band, λ E( ) 

is energy-independent.  Since the transport distribution is proportional to M E( )λ E( ), 

it is considerably higher for the multiple valley case, as shown in Fig. 5.9d.  The 

υ x
+ E( )

2
 term in eqn. (5.8b) is larger in multi-valley case.  Stated another way, 

M E( )∝υ E( )D E( ) andλ E( )∝υ E( )τ E( ) . While D E( )  and τ E( )  are the same in 

the three cases, the velocity is higher in the multi-valley cases, so both M E( ) and 

λ E( ) are larger when a high density-of-states is obtained by combining light mass 

valleys. 
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Figure 5.9. (a) Density-of-states ( ( )D E ), (b) number of conduction channels ( ( )M E ), (c) 
mean-free-path (MFP) for backscattering ( ( )Eλ ), and (d) ( ) ( )M E Eλ  are plotted for 
three cases of three cases of  1VN = , 6, and 12.  Symbols represent values at optimal 
Fermi level.  M E( )  and  λ E( )   are higher for the multiple valley case because 
M E( )∝υ E( )D E( )  and λ E( )∝υ E( )τ E( ) . Since the transport distribution is 
proportional to M E( )λ E( ), it is considerably higher for the multiple valley case. 

 

The improved PF for multiple valleys is due to the high conductivity, 

  
σ = 2q2 h( ) M λ . The improved power factor is attributed to increases in both the 

average MFP, λ , and in the number of channels in the Fermi window, M .   For 

example, 16 29.5 10M m−= ×  and 18 nmλ =  for the multi-valley case of 6VN =  

and 16 25.2 10M m−= ×  and 10 nmλ =  for the single valley case.  

 

5.9 Distorted Density of States 
Next, we examine the possibility of improving TE performance with a distorted 

density-of-states, ( )D E [8,243,244].  To illustrate the effect of a distorted ( )D E , we 

consider a model semiconductor for which the lower band is an isotropic single valley 

with an effective mass of 0m  and the upper band has an effective mass of 010m . The 
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10×  larger effective mass induces sharp increase of ( )D E  , which is similar to the 

effect of a resonant level.  We compare the power factor of this semiconductor to that of 

an isotropic single valley with an effective mass of 0m .  Two different scenarios for 

scattering are considered; the first assumes a constant MFP, λ , with a value of 10 

nm.  The second scenario assumes that τ E( )= Cel D E( )  with Cel selected to produce 

λ  of 10 nm for an isotropic single valley. In practice, we expect the results to lie 

between these two limits.  We compare TE performance at the optimal location of the 

Fermi level while varying the band-offset, CEΔ , between the lower and upper bands.  

Figure 5.10a, the computed power factor vs. CEΔ  for the constant MFP case, 

shows that the best performance is obtained when 0CEΔ = . The maximum performance 

is much better than that of the single, small mass valley, and slightly better than that of a 

single, large mass valley.  Figure 5.10b shows that the maximum PF occurs when the 

Fermi level is located near the bottom of the large mass valley, and Fig. 5.10c shows that 

a non-monotonic behavior of S EF( )  when ΔEC > 0  maintains a relatively large 

maintains a relatively large Seebeck coefficient under degenerate conditions.  These 

results can be understood as show in Fig. 5.11.  The density of states for three different 

valley offsets are shown in Fig. 5.11a, and Fig. 5.11b show the corresponding M E( ). 

The case of ΔEC = 0 produces the largest M at any energy. Because the MFP is 

constant (Fig. 5.11c), the transport distribution (which is proportional to ( ) ( )M E Eλ ) is 

largest for all energies for ΔEC = 0 , which leads to the higher power factor.  As 

discussed in Sec. 5.7, however, the assumption of a constant mean free path for this 

composite band is unrealistic.  Next, we discuss the more realistic case where the 

scattering rate is proportional to the total density-of-states, τ E( )= Cel D E( ) .  This 

scattering rate produces a significantly different TDF, which leads to significantly 

different results. 
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Figure 5.10. (a) For constant mean-free-path (MFP), the power factor (PF) vs. CEΔ  for a 
material with lower band and upper band, where CEΔ  is the band-offset. Lower band is 
isotropic single valley with an effective mass of 0m  and upper band has an effective 
mass of 010m . Note that PFs for single valley with an effective mass of 0m  and 011m
are 1.25×10-3 W/mT2 and 1.38×10-2 W/mT2, respectively.  Upper band with heavy 
effective mass produces higher performance regardless of CEΔ  in comparison to the 
power factor of a single valley and best performance is obtained when 0CEΔ = . (b - d) 
The PF, Seebeck coefficient (S), and electrical conductivity (σ ) vs. Fermi level for three 
cases of 0CEΔ = ,  5 , and 10 Bk T . Comparing to the case of single valley, it is found 
that a significant increase in σ  lead to improved power factor. Non-monotonic Seebeck 
coefficient behavior (Fig. 5.10c) maintains large S at the degenerate limit. Symbols 
represent values at optimal Fermi level.   
 

Figure 5.12a shows the computed power factor vs. CEΔ  for the case of 

τ E( )= Cel D E( ) .  Also shown is the power factor for a single light mass valley (red 

circle). As discussed in Sec. 5.7, a single heavy mass valley produces much lower 

performance. Figure 5.12a shows an enhanced power factor when CEΔ  is larger than 

about 10 Bk T . For example, about a factor of two increase can be achieved for 

15C BE k TΔ = .  This is in stark contrast to the case of constant MFP for which best 

performance is obtained with 0CEΔ = . This behavior occurs because for the case of 
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τ E( )= Cel D E( ) , the increase in ( )D E  leads to large scattering rates if the upper band 

with its large ( )D E  is located within the Fermi window.  For 0CEΔ = ,  σ is 

reduced by a factor of ~10 compared to that for the single light mass valley. 

 

Figure 5.11. (a) Density-of-states ( ( )D E ), number of conduction channels ( ( )M E ), 
mean-free-path (MFP) for backscattering ( ( )Eλ ), and ( ) ( )M E Eλ vs. Fermi level are 
plotted for three cases of 0CEΔ = ,  5 , and 10 Bk T for constant MFP. Since MFP is 
constant, the sharp increase of ( )D E  leads to a sharp increase of ( )M E  and TDFs (i.e. 

( ) ( )M E Eλ ).  The resulting strong energy dependence of ( ) ( )M E Eλ  produces non-
monotonic Seebeck coefficient behavior. Symbols represent values at optimal Fermi level.   
 

Figures 5.12b-12d plot the power factor, S  and  σ   vs. Fermi level for 

5, 10,CEΔ =  and 15 Bk T  and  show that the improved power factor for  

~ 10C BE k TΔ >   is mainly attributed to a large σ  while maintaining a large S  of 

~120 V Kµ  at degenerate limit (which is due to the non-monotonic ( )FS E  
characteristic).  For 10C BE k TΔ = , 5 1 11.88 10 mσ − −= × Ω  which is about 4 ×  larger 

than σ  for a single light mass valley.  It is found that at the optimal Fermi level, σ  

keeps increasing with CEΔ  because the effective number of conduction channel 

contributed by the lower band increases for large CEΔ  . In practice, achieving this 

performance would depend on the ability to dope the semiconductor so that  EF  is near 

CEΔ . 
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Figure 5.12. (a) The power factor (PF) vs. CEΔ  for a material with lower band and 
upper band, where CEΔ  is the band-offset. Lower band is isotropic single valley with an 
effective mass of 0m  and upper band has an effective mass of 010m . Red circles 
represent the PF for a single valley.  The improved PF is obtained for   ~ 10C BE k TΔ > . 
(b - d) The PF, Seebeck coefficient (S), and electrical conductivity (σ ) vs. Fermi level 
for three cases of 5CEΔ = ,  10 , and 15 Bk T . It can be seen that non-monotonic 
Seebeck coefficient behavior (Fig. 5.9c) improves S at the degenerate limit. As CEΔ  
becomes large, σ  at optimal Femi level continues to increase. Therefore, the enhanced 
power factor is obtained when  CEΔ  is larger than about  10 Bk T  . 
 

The non-monotonic behavior of ( )FS E  is observed for both constant MFP and for 

τ E( )= Cel D E( ) .  In fact, for the second case,  ( )FS E  actually changes sign for 

 EF > ΔEC .  This can be understood from the ( )D E , ( )M E , ( )Eλ , and ( ) ( )M E Eλ  
characteristics as plotted in Figs. 11 and 13.   For constant MFP, the sharp increase of 

( )D E , leads to a sharp increase of  ( )M E   and TDF (i.e. ( ) ( )M E Eλ ) when the 

upper bands are available. In contrast, for the second case, the sharp increase of ( )D E  

leads to sharp decrease in ( )Eλ and TDF due to large scattering rates when we assume 

τ E( )= Cel D E( ) . From eqn. (5.2b), the Seebeck coefficient in the degenerate limit is 

given by   
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( ) ( )( )2 2 ln
,

3
F

B

E E

d E M Ek TS
q dE

λπ

=

=
−

     (5.9) 

which is the so-called Mott formula. Consequently, the strong energy dependence of the 

( ) ( )M E Eλ  near the edge of the upper band leads to the non-monotonic ( )FS E  . The 

drop in ( ) ( )M E Eλ  for the second case, casuses a change in sign of  S . 

 

 

Figure 5.13. Density-of-states ( ( )D E ), number of conduction channels ( ( )M E ), mean-
free-path (MFP) for backscattering ( ( )Eλ ), and ( ) ( )M E Eλ vs. Fermi level are plotted 
for three cases of 5CEΔ = ,  10 , and 15 Bk T . The MFP is decreased when upper bands 
are available. As a result,  ( ) ( )M E Eλ  is reduced. The resulting sharp decrease of 

( ) ( )M E Eλ  produces non-monotonic Seebeck coefficient behavior. 
 

The simple models considered in this discussion show that we should expect 

improved TE performance with increasing valley degeneracy. In practice, the valleys 

may be anisotropic, which provides additional opportunities to increase the number of 

channels without decreasing the MFP.  (Some example calculations are discussed in the 

Appendix.)  We also showed that a semiconductor with a locally distorted   D(E)  near 

the Fermi level can display an enhanced power factor through increase of σ  and non-

monotonic Seebeck coefficient characteristics. Because the distorted   D(E)  also lowers 

σ  , the increase of power factor only happens when lower and upper bands are 

engineered in an appropriate way, so the benefits of locally distorted density-of-states 

should be carefully considered on a case-by-case basis.  Finally, these model 
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calculations show how profoundly scattering influences the results underscoring a point 

recently made by Zhou, et al.,[237] and illustrating how these effects can be understood 

by interpreting the TDF from a Landauer perspective. 

 

5.10 Summary 
In this paper we set out to answer several questions and summarize the answers as 

follows. 

1)  What physical constraints should be placed on the TDF? 

 The TDF(E) can be written as a product of the number of channel, ( )M E and the 

mean-free-path, λ E( ). Each of these two quantities is well-defined and directly 

relatable to the underlying electronic bandstructure. For a given dispersion, the 

maximum of  ( )M E  is fixed, not the area under ( )M E  vs. E. 

2)  How does the BW of the TDF affect TE performance? 

When the lattice thermal conductivity is zero, a δ-function TDF produces an 

electronic efficiency at the Carnot limit, but no power can be delivered to a load. 

For a constant MFP (independent of BW), a narrow TDF maximizes the power 

delivered to a load – for both zero and finite lattice thermal conductivity.  For a 

finite lattice thermal conductivity, it also maximizes the efficiency. The BW 

should match the width of the Fermi window. A δ-function TDF produces an ZT 

at the Mahan-Sofo limit, ZT = κ 0 κ ph , but this upper limit itself depends on the 

BW, so higher ZTs result for higher BWs where operation is below the Mahan-

Sofo limit. 

3)  How does scattering affect optimum bandstructure? 

Scattering profoundly changes these conclusions. If, instead of a constant MFP, 

we assume that the scattering rate is proportional to the density-of-states, we 

conclude that a very broad band is better than a narrow band. 

4) How should the improved performance of materials with a high valley 

degeneracy[238] or with a resonant energy levels8 that distort the density-of-states 

be understood? 
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It is best to achieve a high density of states through valley degeneracy with a 

number of light mass valleys, as opposed to a single heavy mass valley because 

the higher velocity of the light mass valley increases both ( )M E and λ E( ). 

Offsetting the valleys in energy can enhance the Seebeck coefficient, but it 

degrades the conductivity. With a higher upper valley effective mass and the 

appropriate energy offset, TE performance can be enhanced, but the results are 

sensitive to the specifics of scattering. 

5)  Is there a best bandstructure for TE performance? 

Although there is no simple answer, the general considerations are clear.  

Assuming that density-of states scattering dominates, high average velocities in 

the Fermi window produce the best results, so materials with a small density-of-

states are best. The small ( )D E  helps to increase scattering times. The large 

velocity times this ( )D E  gives a significant number of channels for conduction, 

and the large velocity also increases the MFP. 

For more complex thermoelectric performance, materials can be compared in 

terms of three well-defined physical parameters: 1) the average velocity in the direction 

of transport, υx
+ E( ) , 2) the density-of-states, D E( ), and 3) the distribution of channels 

in energy, M E( ) .  Each of these three parameters can be easily extracted from a 

bandstructure, E k( ) . Alternatively, we could express the three parameters as υ E( ) , 

D E( ), and υ E( )D E( ).  High velocities lead to long MFPs, low densities-of-states 

produce long scattering times and long MFPs, and large numbers of channels increase the 

conductivity.  A super linear increase of M E( )  is also beneficial for the Seebeck 

coefficient.  As illustrated in the discussion of distorted bandstructures, specific results 

depend very much on specifics of scattering (e.g. electron-phonon coupling constants, 

etc.), but these three parameters should provide useful guidance in assessing the 

performance of materials. 
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6. EXPLORATION OF POWER FACTOR ENGINEERING APPROACHES 
The contents of Chapter 6 have been extracted and summarized from the following 

two publications: C. Jeong, and M. Lundstrom, “On Electronic Structure Engineering and 

Thermoelectric Performance,” J. Elec. Mater., 40, 738-743 (2011) and C. Jeong, G. 

Klimeck, and M. Lundstrom, “Computational Study of the Electronic Performance of 

Cross-Plane Superlattice Peltier Devices,” Mater. Res. Soc. Proc., 1314, 

DOI:10.1557/opl.2011.509 (2011). In this chapter, we address the question of how to 

engineer the electronic structure to enhance the performance of a thermoelectric material.  

We examine several different materials and discuss possibilities for enhancing TE 

performance.  

 
6.1 Introduction 

Many efforts have been made to search for materials that maximize the 

thermoelectric (TE) figure of merit, 2ZT S GT K= , where T is the temperature, S is the 

Seebeck coefficient, G is the electrical conductance, and K is the thermal conductance, 

which is the sum of the electronic contribution,  Ke , and the lattice thermal conductance, 

 Kl . Most recent improvements in ZT have been achieved by phonon engineering to 

reduce the lattice thermal conductivity [36,47,197] . The question of how to improve the 

electronic performance is now an important one [8,44,62,64–67,69]. 

Significant improvements in S have been predicted and reported for several 

different materials. For example, an enhanced S has been achieved by engineering the 

density-of-states (DOS) in the bulk Tl-PbTe [8], and giant Seebeck coefficients have 

been predicted for nanostructured graphene [66] and for appropriately engineered 

molecules[67]. These examples all seek to enhance performance by achieving a delta-

function like DOS. Also the possibility of enhancing the power factor (S2G, PF) of TE 

performance by using SL devices has been studied.  For cross-plane transport in SL, it 
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has been predicted that energy filtering will lead to significant increases in ZT under a 

certain condition [72]. Experimentally, researchers have shown the increase in S by 

filtering out low energy electrons, but a limited increase in power factors  due to the 

decrease in electrical conductivity [73–75].    

It is still not clear how these materials affects the electronic performance i.e. PF.  

Since a clear understanding of how electronic structure affects the S and G of a material 

is essential for developing materials with enhanced power factors (PF), we examine a 

wide variety of thermoelectric (TE) materials that have been proposed for enhanced 

electronic performance: molecules, graphene, composite energy bands, and cross-plane 

superlattice. Extensive calculations and comparisons for these materials have been done 

with Landauer approach and a sophisticated quantum transport model, NEMO-1D and 

are presented in Appendix A and B, so we only review the main points here.   

 

6.2 Molecules, Graphene, and Composite Energy Bands 
In order to enhance S, a very sharp energy-dependent transmission or number of 

conduction  is desirable near Fermi level. Several ideas to engineer the   have 

been proposed: 1) creating Fano resonance [67] (CSW molecule in Fig. 6.1a), 2) periodic 

graphene PN junction [66] (graphene superlattice in Fig. 6.1b), and 3) a composite energy 

bands [8] (introducing upper band with a heavy effective mass, AlxGa1-xAs as a model 

system in Fig. 6.1c). The results for a graphene, graphene SLs, and a molecule are 

compared with common TE semiconductors. As shown in Fig. 6.1d, graphene 

superlattice (SL), and an CSW molecule device display similar S(EF) characteristics to 

common semiconductor materials. The predicted giant S for a CSW molecule is actually 

what is expected from single level model. For a given Fermi level, the 3D bulk results 

have a somewhat higher S than the ideal single level model because in 3D, energy states 

are spread-out. In the AlxGa1-xAs materials system, however, an increase in ZT of 10 

times (Fig. 6.1e) is possible because of the non-monotonic S behavior (magenta line in 

Fig. 6.1d), which maintains high S at high EF (i.e. high carrier densities) resulting in high 

PF.    
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Figure 6.1. (a) The number of conducting channels (Mel) for (a) a BPDT vs. a CSW 
molecules. Engineering the transmission is done by putting side group in the CSW 
molecule, which creates very sharp Fano resonance. (b) a graphene vs. a graphene 
superlattice (GR GL). A transmission gap is created by making a periodic graphene PN 
junction electrostatically. (c) Al content of 0 vs. 0.28 of AlxGa1-xAs alloy. x = 0.28 is the 
optimal Al content for maximum ZT.  All three examples seek to achieve a sharp Mel(E).   
(d) the S vs. EF  for GaAs (x=0 in AlxGa1-xAs), Bi2Te3, ideal molecule which has a 
delta-function like Mel, CSW molecule, a graphene, a graphene SL and composite bands 
(x=0.28, AlxGa1-xAs).  For a given Fermi level, the 3D bulk results have a somewhat 
higher S than the ideal single level molecule because in 3D, energy states are spread-out. 
(e) ZT at 300K with respect to Al composition in AlxGa1-xAs. At each x, EF is selected to 
maximize ZT. The Mel is computed from effective mass approximation. The electron 
mean-free-path is calculated based on the measured mobility. The 10x improvement in 
ZT is achieved at x=0.28. As shown in Fig. 3c, the band-splitting between a lower band 
(Gamma) and a upper band (L) is 5~ 7 kBT and the Mel(E) for L band is 20 times steeper 
than the Gamma band at x=0.28.
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6.3 Cross-Plane Superlattice Peltier cooler 
The performance of a single barrier and multi barriers (i.e. SL) TE devices are 

compared (Fig. 6.2a vs. b-c). In addition, the role of SL contacts (Fig. 6.2b) and phase 

coherence in the SL(Fig. 6.2c) are studied in multi barriers. As shown in Fig. 6.2d-f, our 

study shows that PF of multi barrier structures is no better than a single barrier TE device. 

We found that thin barrier, SL contacts and coherency only make energy-depedent 

transmission less steeper than corresponding bulk materials due to quantum mechanical 

effects such as tunneling, reflection, and Fabry-Perot type interference which led to 50% 

reduction in PF comparing to bulk barrier materials which led to 50% reduction in PF 

comparing to bulk barrier materials. 

 

 
Figure 6.2. Schematic diagrams of test structures and corresponding power factor (PF) 
are plotted for (a,d) single barrier, (b,e) multi-barriers-1: superlattice (SL) contacts, and 
(c,f) multi-barriers-2. Barrier is In0.52Al0.48As. Grayed box represents contact (cnt), where 
energy relaxation scattering time is assumed to be 50 fs. Solid circle denotes injected 
electrons from emitter contact.  emitter: bulk In0.53Ga0.47As with 0.044 m0,  barrier: 
In0.52Al0.48As with 0.075 m0,  barrier height: 0.51 eV. (d-f) The dashed-dot is the result 
of bulk In0.53Ga0.47As and dashed line the result of In0.52Al0.48As.  Red circle symbols in 
(d-f) denote maximum PF of single barrier device in (d).   
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6.4 Conclusions 

We examined electronic TE performance for several different materials. It was 

shown that most materials, even those for which giant Seebeck coefficients have been 

predicted, display a similar monotonic behavior of S vs. EF that is expected from 

conventional thermoelectric theory. Using III-V alloy semiconductors as a model system, 

we demonstrated a promise of composite energy bands because of the non-monotonic S 

behavior, which maintains high S at high carrier densities resulting in high PF. Our 

findings show quantitatively how barriers in cross-plane superlattices degrade the 

electrical performance, i.e. power factor due to quantum mechanical effects, and that  

PF of multi barrier structures is no better than a single barrier TE device.  
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7. GRAPHENE AS A TRANSPARENT CONDUCTOR  
The contents of Chapter 7 have been extracted and revised from the following 

publication: C. Jeong, Pradeep Nair, Mohammad Khan, Mark Lundstrom, and Ashraf 

Alam, “Prospects for Nanowire-doped Polycrystalline Graphene Films for 

Ultratransparent, Highly Conductive Electrodes,”  Nano Lett., 11, 5020 (2011).  

In this chapter, we shift our attention to nanocomposite thermoelectric materials and a 

new approach to model nanocomposite (NC) TE devices is discussed. As a testbed of our 

model, recent experimental work on polycrystalline graphene is used, and we explain 

how grain boundaries affect the electronic performance of large-area polycrystalline 

graphene. We also demonstrate that a composite based on poly-crystalline graphene and a 

sub-percolating network of metallic nanowires offers a simple and effective route to 

reduced resistance, while maintaining high optical transmittance. This new approach of 

‘percolation-doping by nanowires’  has the potential to beat the transparency-

conductivity constraints of existing materials and may be suitable for broad applications 

in photovoltaics, flexible electronics, and displays. 

 

7.1 Introduction  
Since resistivity and transmittance are often fundamentally constrained by the 

intrinsic properties of a material, developing transparent conducting materials (TCMs) 

with low sheet resistance (RS < 10 /sq) and high transmittance ( ) has been a 

persistent challenge. Different metal doped oxides such as indium tin oxide (ITO) are 

widely used in commercial applications, but a replacement for ITO is desired for the 

following reasons[245]: 1) the limited availability and high-cost of indium,  2) 

increasing brittleness with aging,  3) chemical instability under acid or base conditions,  

4) poor transmittance in the near infrared [246], and 5) metallic-ion diffusion from ITO 

into thin barrier layers that results in parasitic leakage.[247]  These problems make ITO-
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based technologies, such as thin-film photovoltaics (PV), touch-screen displays, light 

emitting diodes, etc., expensive. Various alternative TCMs, such as networks of carbon 

nanotubes (CNT) [248,249] or metal nanowires (NW) [250,251] and chemical vapor 

deposited (CVD) polycrystalline graphene (poly-graphene),[252–255] have also been 

explored.  While these potential ITO replacements resolve several practical issues 

associated with ITO, Fig. 7.1 suggests that their respective RS-T curves are not 

significantly different than that of ITO. To understand why, consider the constraints of 

random CNT or metallic NW networks. To achieve technologically relevant values of RS 

< 20 Ω/sq,[250] the density of NWs or CNTs must significantly exceed the percolation 

threshold for higher sheet conductance;[256] such high density however reduces the 

transmittance considerably.[250],[257] Moreover, even with low , the vertical current 

collection in PV cells is compromised by current crowding at the small-area interface 

between nanotubes/nanowire electrode and the bulk emitter layer.[256] Graphene 

provides another intriguing option; four layers of CVD graphene, fabricated by a roll-to-

roll process, has already shown RS  ~ 30 Ω/sq and T  ~ 90 %.[252] Available 

experimental data,[258] however, suggests that there is a fundamental limitation in sheet 

resistance and transmittance of thin graphene film and that it may be difficult for poly-

crystalline graphene to compete successfully with ITO.[257] 

In this Chapter, we use an experimentally calibrated, comprehensive numerical 

model for electron transport in polycrystalline graphene to conclude that the high 

resistivity of the film reflects an intrinsic percolation bottleneck of the system in which 

electrons are periodically trapped in domains formed by high-resistance grain boundaries 

(GBs). A novel concept which “dopes” poly-graphene with metallic nanowires can 

overcome this transport bottleneck to achieve T > 90% and RS < 20 Ω/sq, with 

performance comparable or better than ITO.  To distinguish the effects of doping by 

metallic NW from those by standard chemical or electrostatic techniques, we define a 

concept that we call ‘percolation-doping’: a positive percolation-doping by metallic 

nanowires improves conductivity not by increasing the free carrier density, but rather by 

increasing the number of electronic pathways to bridge the percolation bottleneck. A 

negative percolation doping – in the form of striping of nanotube network – has been 
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previously used in a different context.[259] The continuity of poly-graphene ensures 

vertical current collection free from current crowding, and a small footprint of nanowires 

on graphene film ensures that high optical transmittance of single layer graphene is not 

compromised by percolation-doping. 

 

 
Figure 7.1 Transmittance as a function of sheet resistance (RS) for polycrystalline 
graphene  grown by chemical vapor deposition (CVD) method,[252]  the networks of 
carbon nanotubes (CNT) [249]   and nanowires (NW),[250]   ITO,[252] and  a 
hybrid of poly-graphene  and NW mesh. The dashed lines are guide to eye. The best 
reported data are selected from literatures. The data for the hybrid are computed based on 
the following parameters: the RS of a single crystalline graphene  ~ 30 Ω/sq, the ratio of 
inter-grain resistance to intra-grain resistance ~ 63,  the percentage of high-resistance 
grain boundary (PGB) = 35%,  and geometric aperture of 99% (an average distance 
between NWs of ~ 10 µm, a line width of 100 nm, and a height of 100 nm) for metal NW 
mesh with bulk Ag conductivity being assumed.  The value in the bracket represents the 
number of layers for poly-graphene or the hybrid. 
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The chapter is organized as follows. To explore the origin of high RS in poly-

graphene films, we first construct microstructures of typical poly-graphene films reported 

in the literature and calculate their corresponding transport properties. Next, we examine 

quantitatively the impact of GBs on polycrystalline graphene to demonstrate the 

importance of a percolation bottleneck in these films. Finally, we propose a hybrid of 

polycrystalline graphene and a metal NW mesh to improve the performance in terms of 

RS and T as well as to reduce variations among samples. Finally, we summarize our 

conclusions.  

 

7.2 Approach  
To understand why poly-graphene is so resistive, we use a process model to 

produce representative structures, an electrical model to compute the sheet resistance, and 

an optical model to compute the transmittance. The modeling approach is described in 

detail in the Appendix E.  In brief, we begin by synthetically generating polycrystalline 

graphene samples using Voronoi tessellation.[260] Five types of microstructures (see Fig. 

7.2a) of increasing complexity: 1) uniform square grain as a reference, 2) uniform 

hexagonal grains to approximate films produced by the seeded growth method,[261] 3) 

perturbed hexagonal grains with Gaussian size distributions, typical of films produced by 

seeded growth method,[261] 4) random grains with normal size distribution to represent 

films produced by CVD graphene,[262] and 5) with log-normal size distribution 

characteristic of CVD graphene.[262,263] The average grain size (<Lgrain>) is  ~5 µm, 

consistent with reported values.[253],[261] Corresponding grain size distributions are 

shown in Figure 2b. Several hundred samples are prepared for a statistical study of the 

transport characteristics of the film.  

The two key electrical parameters are the resistances of the grains and grain 

boundaries. In poly-graphene, it is experimentally observed that the ratio of the inter-

grain to intra-grain resistance ranges from ~ 1 to ~ 30.[261]   Although there might be a 

distribution of GB resistances as a function of misorientation between neighboring grains, 

for simplicity in the following discussion, we classify the GBs as either a high-resistance 

GB or a low-resistance GB. To describe electronic transport through the microstructure, 
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we use a drift-diffusion formulation, i.e., ( ) ( )J dV dx qD dn dxσ= +
 

where J is the 

current density in A/m,  σS the sheet conductivity, V the potential, D the diffusion 

constant, and nS the sheet carrier concentration. A drift-diffusion formulation is 

appropriate for this problem because average grain size (~5 µm) is much larger than the 

typical mean-free path of hundreds of nanometers.[261,210] (A similar drift-diffusion 

based approach has also been used for CNT networks, with excellent results.[259]) We 

assume that the charge current is conserved (i.e. no recombination-generation) and solve

  
∇ ⋅ J = 0 = −∇ ⋅ σ∇ Fn q( )  , where  Fn  is the electrochemical potential. 

Within the bulk of the poly-graphene grain,  σ = σ0 . The theoretical lower limit 

of conductivity is 30 Ω/sq, which occurs when only acoustic deformation potential 

scattering is present. For the conductivity across a GB, we follow a recent theoretical 

study,[264] which characterizes a high-resistance GB by transport energy gap (EG) below 

which charge carriers are perfectly reflected (i.e. ( )
0

hi
GBσ σ< ). A low-resistance GB is 

taken to be being perfectly transparent (i.e.   σGB
(lo) ≡ σ0 .) With these three conductivities, 

i.e., ( ) ( )
0 , ,σ σ σlo hi

GB GB  the transport problem is fully defined. This model with high and low 

resistance GBs lead to a maze-like morphology landscape through which the electron 

injected from one contact travels to the other contact, thereby transforming the problem 

of transport in poly-crystalline graphene into a percolation problem.  

For a given a microstructure, the finite difference method (FDM) is used to 

calculate transport properties. Each grain has about 200 nodes.  The input parameters 

used for the FDM calculations are the sheet resistance within the grains, Rlo ~30 /sqΩ   

and the sheet resistance across high-resistance GBs,  Rhi ~ 63Rlo.  (By assuming the 

lower limit sheet resistance for the grain, Rlo , our results establish the best case 

performance for large area polycrystalline graphene.) The FDM results are compared to a 

simple “one-node model”, for which each grain is represented by only one node, i.e. by 

four resistors as shown in Figure 7.2a. This one-node model is of practical importance 

because the resistance, including high- or low-resistance GB in the one-node model, can 
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be easily measured.[261] Finally, we calculate the optical transmittance of the system by 

(numerically) solving Maxwell equations with Floquet periodic boundary condition.[265] 

Normal illumination was assumed and the transmittance of both TE and TM waves was 

calculated for a set of wavelengths spanning the entire solar spectrum.  

 

 

 
Figure 7.2 (a) Five microstructures generated by Voronoi tessellation for use of finite 
difference method: uniform square grain (square), uniform hexagonal grain (hex1), 
perturbed hexagonal grain with normal size distribution (hex2), and random grains with 
normal size distribution (rand1) and with log-normal size distribution (rand2). The 
percentage of high-resistance grain boundary is 50%. High- and low- resistance grain 
boundary are shown by red and by blue line. A grain is shown by white and has about 
200 nodes per grain. A schematic diagram for one-model is also shown to explain how 
the one-node model represents one grain.  The sheet resistance across low-resistance 
grain boundary and the sheet resistance across high resistance grain boundary are denoted 
as Rlo and Rhi,  respectively.  (b) Grain size distributions are shown for perturbed 
hexagonal grain and two random grains. (c)  the normalized conductance vs. sample 
length for five different microstructures (symbols) and one-node model (solid , dashed, 
and dashed-dot line) for three different percentage of high-resistance GB (PGB = 20%, 
50%, and 80%). Inset: the dependence of the conductance exponent, n, on the sample 
length, i.e.  ( )n

CG L∝  
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7.3 Results  
In Fig. 7.2c, we plot the normalized sheet conductance (for five different 

microstructures) as a function of length for three different percentages of high-resistance 

GBs (PGB = 20%, 50%, and 80%). The width of the sample is fixed at 7 × average grain 

size, <Lgrain> after which the width dependence of the transport properties disappears (as 

should be the case for large area films). The inset of Fig. 7.2c shows the dependence of 

the conductance exponent, n, on the length, i.e.  ( )n
CG L∝ .  If the length is smaller than 

~10× average grain size (<Lgrain>), the exponent becomes significantly larger than −1.0, 

indicating a nonlinear dependence on sample length. Compared to a long sample, there is 

a higher probability in a short sample that low-resistance GBs and grains form a 

continuous network between contacts. We are, however, interested in transport in large 

area (~square meters) poly-graphene appropriate for PV applications, where regardless of 

PGB, the exponent approaches −1.0 with increasing length. Remarkably, we find that the 

grain shape and grain size distributions have little effect on the conductance. This is 

because it is the average-size of the grain and the percentage of the high-resistance GBs – 

not the specific details of grain-size distributions – that dictate the overall transport 

property of the network.   

The plot of normalized conductivity vs. percentage of high-resistance GB shown 

in Fig. 7.3 is characterized by dramatic suppression of conductivity – even for small 

increase in PGB. This result can be understood with reference to Fig. 7.4, which interprets 

the resistance of poly-graphene as a percolation problem defined by high and low 

resistance GBs. Recall that the percolation threshold for the Voronoi tessellation is 

(0.667-0.68) [266,267], while that of the hexagonal lattice is 0.6527.[268] Therefore, 

regardless the specific form of the GB-distribution, when the fraction of high-resistance 

GB approaches ~0.66 (i.e. ~ 66% GBP ), electrons traveling between a pair of contacts 

must cross one (Stanley’s red bonds[269]) or more high-resistance GBs, see Fig. 7.4b.  

This percolation bottleneck suppresses conductivity exponentially.  
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Figure 7.3. For a long sample (LC ~ 100× average grain size), the dependence of the sheet 
conductance on the percentage of high-resistance grain boundary (PGB ) is plotted.  Inset: 
the computed results for grain size dependence is compared to experiments. [253]     

 

 To support this percolation hypothesis quantitatively, we interpret the numerical 

results by the generalized effective media (GEM) theory.[270,271]  The GEM equation 

is given by   

( )
1 1 1 1

0
1 1 1 1

0

1 0,σ σ σ σ
σ σ σ σ

− −
+ − =

+ +

t t t t
GB

GB GBt t t t
GB

f f
A A

     (7.1) 

where GBf is area fraction of grain boundaries, 0( )σ GB  the conductivity of the grain 

(grain boundary), t  a characteristic exponent defined in ,(1 )t
GB C GBf fσ ∝ −  with 

,C GBf  being the threshold area fraction of  GBs, and the constant A is  

( ), ,1C GB C GBA f f= − . When 0σ σ =∞GB ,  Eq. (4.2) is reduced to a form of  

percolation equation ,(1 )t
GB C GBf fσ ∝ −  . With 1t =  and 2A = , the GEM equation is 
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also reduced to Bruggeman’s symmetric effective medium equation.[270]   To fit our 

simulation results, two parameters need to be determined: t  and ,C GBf . We set the 

bounds for the critical exponent to be from 1.05 to 1.37, typical number for 2D bond 

percolation,[272,273] while ,C GBf is adjusted to fit the data. The relation of ,C GBf  to 

PC,GB is  100% 100%
, , ( )C GB C GB GB GBP f P f= , where  100% ~  12.6%GBf  is the area fraction of GB 

when 100% GBP = (in the FDM simulation).  The intensity of D bands in the 

spectroscopic Raman mapping of graphene grains and grain boundaries showed
100% ~  10%GBf .[261] As shown by dashed line in Figure 7.3, our numerical results for 

poly-graphene transport are well-reproduced by the GEM equation when 1.05t =   and 

, 8.4 0.2% C GBf = ± corresponding to a percolation threshold of PGB, , 67 1.6% C GBP = ± , 

almost precisely the value expected from the percolation-hypothesis that interprets poly-

graphene transport  in terms of percolative transport on Voronoi tessellation[266,267] 

and hexagonal honeycomb lattice.[268]  

Having established the validity of the theory, it can now be used to explain why 

poly-graphene is so resistive and to extract GBP  from experimental data. For example, 

the inset of Fig. 7.3 compares the computed grain size dependence of sheet conductance 

to experiments.  With the assumption of Rhi ~ 60Rlo, we find PGB  30% gives a good 

match between our model and experiments.  For this ,GB C GBP P< , the effect of grain-

boundaries is still significant and percolative transport plays an important role in defining 

sheet conductivity, with 0 0.2 0.3σ σ > − .  
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Figure 7.4. The schematic figures to interpret the resistance of poly-graphene as a 
percolation problem defined by high and low resistance grain boundaries (GB). High-
resistance and low-resistance GBs are shown by red and blue line. (a) 0%GBP =  (b) 

~ 60%GBP  (c) the concept of ‘percolation-doping’: doping the polycrystalline graphene 
by a sparse random mesh of metal NW. Metal NW is represented by black solid line.  
All arrows indicate current stream.

 

7.4 Discussion 
The results discussed above shows that the key to reduce sheet-resistance of poly-

graphene is either by increasing grain-size or by reducing the number of high-resistance 

grain boundaries Even if the grain-size could be further enlarged by various process 

techniques,[253],[261]  these grains will be always smaller than the dimension of 

transparent conductors necessary for PV applications. Most importantly, there is no 

obvious approach to control the magnitude or the number of high-resistance grain-

boundaries by simple process changes. Clearly, a more practical technique to alleviate the 

influence of high-resistance GBs is needed of graphene electrodes has to be competitive 

with ITO.  

To decrease the influence of high resistance GBs, we propose (see Fig. 7.4c) a 

novel concept which “dopes” the polycrystalline graphene with a sparse random mesh of 

metal NWs. The density of these nanowires should be below the percolation threshold, so 
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that NW-NW connectivity is not expected and the NWs themselves do not form a 

percolating network (Fig. 7.4c, black lines). If the nanowire length is larger than that of 

the grain, the NWs will cross the grain-boundaries with probability approaching one. If a 

NW intersects a high-resistance grain-boundary, the GB can no longer inhibit current 

conduction, so that effective PGB is reduced (see Figure 7.4c). Given the exponential 

dependence of conductance on PGB, even a modest percolation-doping by metallic NW 

can dramatically decrease the RS of poly-graphene films. The following example 

illustrates our proposition.  

To examine the effectiveness of NW doping, consider a poly-graphene film with 

average grain-size of 5 m decorated with a random dispersion of ~ 8 m long, 100nm 

diameter, Ag nanowires.[250] These Ag NW will bridge the neighboring grains with 

probability approaching 1. The NW density ( NWρ ) is varied from 0 to 100%. We define 

the 100% coverage when the average distance between NWs is ~ 8-10 m, so that every 

other grain – on average – contains a NW. For samples with 100%NWρ < , the 

proportional fraction of NWs are randomly removed. Based on a recent 

measurement,[274] the contact resistance between metal and graphene is 

200 µΩ ⋅CR m . The theoretical lower limit of 20CR mµ≈ Ω⋅ [275] is obtained by 

assuming that the work function (W) difference between graphene and silver is about 0.3 

eV (Wgraphene = 4.4 ~ 4.6 eV, WAg = 4.7 ~ 4.9  eV).[276]  The poly-graphene 

conductivities remain unchanged.  

Two dimensional simulation of NW-doped graphene can now be used to calculate 

the overall conductivity, σ , of the NW-doped poly-graphene film. The results are 

summarized in Fig. 7.5. The red solid line represents the normalized conductivity of poly-

graphene without NW-doping ( 0%ρ =NW ).From this curve, the best reported sheet 

resistance of monolayer CVD graphene[252] of 125 Ω/sq translates to 35%GBP ≈  - a 

typical value. As we increase the NW density, the conductivity increases dramatically – 

even with a sparse network of only 60% coverage (one NW for every four grains) and 

relatively poor 200CR mµ≈ Ω⋅ , the sheet conductance σ  begins to approach that of 

pure single crystalline graphene RS ~ 30 Ω/sq. Obviously, the conductivity improves 
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further for lower contact resistance (i.e. 20CR mµ≈ Ω⋅ ) as the quasi-percolating NWs 

begin to carry larger fraction of the current between the contacts and σ  reduces below 

30 Ω/sq. Given that the sheet resistance of a monolayer of a graphene-NW hybrid, the 

sheet resistance of 2-3 layers of the NW-doped graphene film is obtained by 

, ,

( 2 3) 1 ( 2 3)
S hybrid S hybrid

nR R n= − = = − . This linear dependency of RS was also observed for roll-to-

roll processed CVD graphene.[252]  Indeed, as shown in Fig. 7.1, a stack consisting of 

2-3 layers of the NW-doped graphene offers sheet resistance approaching 10 Ω/sq – the 

conductivity target for the potential replacement of ITO.  

 

 
Figure 7.5. For a hybrid of polycrystalline graphene (poly GR) and nanowires (NW) 
mesh, the sheet conductance  vs. the percentage of high-resistance grain boundary (PGB ) 
for two different contact resistance (RC) are plotted as a function of NW density ( NWρ ).  
At 100%NWρ =  , average distance between NWs is ~10 m and 0%NWρ =  represents 
poly GR.  Inset: the normalized standard deviation (NSD) is plotted.
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To understand how NW-doping achieves this dramatic improvement, let us 

consider an illustrative example. In Figure 7.6a-f, we compare the FDM calculation of 

polycrystalline graphene sample with  35%GBP ≈  to that of hybrid polycrystalline 

graphene – metal NW in terms of the potential profile.   Note that network of metal 

NWs is sparse enough not to form a continuous percolating path between electrodes. A 

sharp potential drop at the grain boundaries is observed for poly-graphene samples (See 

the boxed region in Figure 7.6b and 7.6c), but the impact of high-resistance GBs is 

significantly suppressed in the hybrid system (Figure 7.6e and 7.6f).  This occurs 

because a sparse metal NW mesh provides a low-resistance path to bypass high-

resistance GBs.   

It is clear from the discussion above that the sheet conductivity of poly-graphene 

can be increased by doping it with a small number of Ag NWs, but does the approach 

compromise optical transmittance? For computational simplicity, we approximate the 

random NW dispersion with a regularized network (with the same spacing and the same 

dimensions of NW).  Figure 7.6g shows the simulated transmittance for regular grating 

structures with a period of 10 µm, a line width of 100 nm, and a height of 100 nm, 

corresponding to a coverage of 100% ( 100%NWρ = ). The average transmittance (of  the 

TE and TM modes)  exceeds  99%, i.e. 0.99AgT > . Given that the transmittance of 

monolayer poly-graphene is close to 97.7% as well, a graphene-NW composite is 

expected to achieve ~ 0.96= ×graphene AgT T T .  As shown in Figure 7.1, even with 2-3 

layers of graphene, ( ) ( 2 3)
0.90

n

graphene AgT T T
= −

= × >  is obtained.  

These RS and T values of NW-doped poly-graphene suggest significant 

improvement of the tradeoff between RS and T for the NW-doped poly-graphene as 

compared to conventional TCMs. There is an additional improvement:  the NW-doped 

graphene also has reduced statistical variation in sheet resistance compared to pure poly-

graphene films. The inset of Fig. 7.5 shows the normalized standard deviation (NSD) 

computed for polycrystalline graphene and the hybrid with 200CR ≈  and 20 mµΩ⋅ as 
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a function of PGB.  For a polycrystalline graphene, the maximum NSD is about 0.15, 

which means about 15% variation in sheet resistance among the samples. The inset figure 

shows that NSD values for the hybrid with 200CR mµ≈ Ω⋅  is significantly improved. 

For 35%GBP ≈ , an 4× reduction of NSD is achieved.  It is clear that a metal NW mesh 

can suppress variation.  

 
 

 
Figure 7.6. (a) A polycrystalline graphene sample with perturbed hexagonal grain for 

35%GBP = . High-resistance and low-resistance grain boundaries (GB) are shown by red 
and blue line, respectively.  (d) hybrid polycrystalline graphene – network of metal NW 
(gray solid line).  (b, c, e, f) Corresponding potential profile are plotted for comparison.  
All potential data are normalized. The contact resistance between graphene and metal 
NW is assumed to be 200 mµΩ⋅ . (g) The simulated transmittance vs. wavelength data 
for regular grating structures with a period of 5 and 10 µm, a line width of 100 nm, and a 
height of 100 nm.  The average transmittance for the TE and TM mode are considered 
here.

 

Very recently, the concept of a metal NW-graphene composite has been 

experimentally demonstrated.[277] The experimental results are promising, but the two 

approaches are quite different. Zhu, et al., use graphene to enhance the performance of a 

metallic grid defined by top-down photolithography with spacing much larger than grain-

sizes; the graphene provides a continuous conductive surface for the metallic grid. In 

contrast, we propose to randomly disperse a thin, sub-percolating network of metallic 
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tubes to enhance the performance of a graphene conductor by opening up new conducting 

channels through high-resistance GBs. Our assumptions that (i) the net transmission can 

be expressed as a product of transmittance of individual layers and that (ii) a highly 

conducting metal grid can change the effective sheet resistivity of graphene from k/sq 

to ~100 /sq are clearly demonstrated by Fig. 7.2c and Table 1 of Ref. 34. The two 

approaches have different trade-offs.  The metallic grid-based approach may provide 

lower sheet resistance, while the NW-doped graphene-based approach being proposed 

here may provide greater flexibility and transmission.   

 

7.5 Conclusions 
In this study, the impact of the microstructure on electrical performance of the 

large-area polycrystalline graphene has been numerically explored based on 

experimentally reported parameters such as grain shape, grain size, statistical 

distributions, and grain and grain boundary resistances. The numerical results show that 

the grain shape and its grain size distribution do not substantially affect the electronic 

performance, but the grain size and the percentage of high-resistance grain boundaries 

play important roles. We propose a novel concept of NW-doping of poly-graphene by Ag 

NWs to beat the transparency-conductivity constraint of pure poly-graphene or pure NW 

networks. Our results show that both the sheet resistance and its variation can be 

significantly improved by using the hybrid without a loss of transmittance. These results 

should inspire new experiments in search of novel alternatives to TCOs. 
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8. CONCULSIONS AND FUTURE WORK  
In this thesis, we presented comprehensive theoretical and simulational studies for 

nanoscale electronic and thermoelectric devices. The main accomplishments of this thesis 

are the following: 

1) In Chapter 2, using a full band description of electronic bandstructure, the 

Landauer approach to diffusive transport was mathematically related to the 

solution of the Boltzmann transport equation, and expressions for the 

thermoelectric parameters in both formalisms were presented.  Quantum 

mechanical and semiclassical techniques to obtain from a full description of 

the bandstructure, E(k), the density of modes in the Landauer approach or the 

transport distribution in the Boltzmann solution were compared and 

thermoelectric transport coefficients were evaluated. Several example 

calculations for representative bulk materials were presented, and the full 

band results were related to the more common effective mass formalism. 

Finally, given a full E(k) for a crystal, a procedure to extract an accurate, 

effective mass level description was presented. 

2) In Chapter 3, using a full dispersion description of phonons, the thermal 

conductivities of bulk Si and Bi2Te3 were evaluated using a Landauer 

approach and related to the conventional approach based on the Boltzmann 

transport equation. A procedure to extract a well-defined average phonon 

mean-free-path from the measured thermal conductivity and given phonon-

dispersion was presented. The extracted mean-free-path had strong physical 

significance and differed greatly from simple estimates.  The use of 

simplified dispersion models for phonons was discussed, and it was shown 

that two different Debye temperatures must be used to treat the specific heat 

and thermal conductivity (analogous to the two different effective masses 
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needed to describe the electron density and conductivity).  A simple 

technique to extract these two Debye temperatures was presented, and the 

limitations of the method were discussed. 

3) In Chapter 4, the question of what fraction of the total heat flow in bulk and 

thin-film Si is transported by phonons with different mean-free-paths was 

addressed using a Landauer approach with a full dispersion description of 

phonons. For bulk Si, the results reproduced those of a recent molecular 

dynamic treatment showing that about 50% of the heat conduction is carried 

by phonons with a mean-free-path greater than about one micrometer. For the 

in-plane thermal conductivity of thin Si films, we found that the 50% point 

occurs at even shorter mean-free-paths. When the film thickness is smaller 

than ~0.2 mµ , 50% of the heat is carried by phonons with mean-free-paths 

longer than the film thickness.  The cross-plane thermal conductivity of thin-

films, where quasi-ballistic phonon transport becomes important, was also 

examined.  For ballistic transport, the results reduced to the well-known 

Casimir limit [141]. These results shed light on phonon transport in bulk and 

thin-film silicon and demonstrated that the Landauer approach provides a 

relatively simple but accurate technique to treat phonon transport from the 

ballistic to diffusive regimes. 

4) In Chapter 5, the question of what bandstructure produces the best 

thermoelectric device performance was revisited from a Landauer perspective. 

We found that a delta-function transport distribution function (TDF) results in 

operation at the Mahan-Sofo upper limit for the thermoelectric figure-of-merit, 

ZT. We showed, however, that the upper limit itself depends on the bandwidth 

(BW) of the dispersion, and therefore a finite BW dispersion produces a 

higher ZT when the lattice thermal conductivity is finite. Including a realistic 

model for scattering profoundly changes the results. Instead of a narrow band, 

we found that a broad BW is best. The prospects of increasing ZT through 

high valley degeneracy or by distorting the density-of-states were discussed 
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from a Landauer perspective.  We concluded that while there is no simple 

answer to the question of what bandstructure produces the best thermoelectric 

performance, the important considerations can be expressed in terms of three 

parameters derived from the bandstructure – the density-of-states, D E( ), the 

number of channels, M E( ), and the mean-free-path, λ E( ). 

5) In Chapter 6, we addressed the question of how to engineer the electronic 

structure to enhance the performance of a thermoelectric material.  We 

examined electronic TE performance for several different materials. It was 

shown that most materials, even those for which giant Seebeck coefficients 

have been predicted, display a similar monotonic behavior of S vs. EF that is 

expected from conventional thermoelectric theory. Using III-V alloy 

semiconductors as a model system, we demonstrated a promise of composite 

energy bands because that display a non-monotonic S vs. EF behavior, which 

maintains high S at high carrier densities resulting in high PF. Our findings 

showed quantitatively how barriers in cross-plane superlattices degrade the 

electrical performance, i.e. power factor due to quantum mechanical effects, 

and that  PF of multi barrier structures is no better than a single barrier TE 

device.  

6) In Chapter 7, we shifted our attention to nanocomposite thermoelectric 

materials and a new approach to model nanocomposite (NC) TE devices was 

discussed. As a testbed of our model, recent experimental work on 

polycrystalline graphene was used.  The effect of grain boundaries on the 

electronic performance of large-area polycrystalline graphene was 

investigated. We also demonstrated that a composite based on poly-crystalline 

graphene and a sub-percolating network of metallic nanowires offers a simple 

and effective route to reduced resistance while maintaining high transmittance. 

This new approach of ‘percolation-doping by nanowires’  has the potential to 

beat the transparency-conductivity constraints of existing materials and may 



138 
 

 

be suitable for broad applications in photovoltaics, flexible electronics, and 

displays. 

There are a few possible directions to extend this work. 

1) In Chapter 7, we developed computational framework for modeling the 

electronic performance of the polycrystalline materials that accounts for the 

distribution of grain boundaries (GBs) and grain sizes obtained from process 

simulation. For future work, a modeling of thermoelectric properties will be 

required to optimize the performance of nanocomposites (NC). The work in 

Chapters 3 and 4 can be extended to treat phonon transport in NCs.   In 

particular, a simple phenomenological model is necessary to treat energy 

relaxation inside grain and evaluate Seebeck coefficient properly, which could 

be done using the previous results with non-equilibrium Green’s function, as 

presented in Ref. [278].  

2) While it is well known that GB properties and the grain statistics determine 

the performance of the NC TE devices, the microstructure-performance 

connection has generally been empirical. This is because grain and GB 

statistics are only known for specific instances, and there is no physical model 

that can predict the performance of NCs as a function of grain and GB 

statistics. Therefore, it will be worthwhile to develop a new NC modeling tool 

that is informed by the process-specific distribution of grains and GBs and 

associated electrical and thermal parameters of grains and GBs. A key strategy 

will be to use numerical simulation to identify the critical parameters for the 

performance and examine distinct classes of grain and interfacial 

microstructures such as the NCs with embedded nanoinclusions or lamellar 

structures obtained from thermal processing methods.  The model will enable 

us to find a strategy to enhance bulk TE performances using various types of 

microstructures and to design NCs in short cycle times by reducing the 

parameter space to be explored by design-of-experiments (DOE) experiments.  
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3) Once the microstructure-aware modeling tool is sufficiently advanced, the 

output of physics-based process simulation of sintering, nucleation/growth, 

and spinodal decomposition would be directly transferred to the device 

modeling tools for a process-device co-modeling of grain- and GBs- 

influenced performances of TE devices. Such integrated capabilities are 

needed to investigate unexplored problems such as effects of process 

condition such as annealing on device performance and to predict long-term 

reliability.  
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A. ON ELECTRONIC STRUCTURE ENGINEERING AND 
THERMOELECTRIC PERFORMANCE 

 
In this appendix A, we address the question of how to engineer the electronic 

structure to enhance the performance of a thermoelectric material.  We examine several 

different materials and show that all of them, even those for which giant Seebeck 

coefficients have been predicted, display a value that is expected from conventional 

thermoelectric theory.  For molecular thermoelectrics, we show that the detailed 

lineshape plays an important role.  Finally, using III-V alloy semiconductors as a model 

system, we explore the role of electronic structure on the Seebeck coefficient, electrical 

conductivity, and power factor.  In the process, some general guidelines for engineering 

the electronic component of thermoelectric performance are identified. 

 

A.1 Introduction 

The dimensionless figure of merit, 2ZT S GT K= , is the primary material 

parameter governing the maximum thermoelectric (TE) efficiency, where T is the 

temperature, S is the Seebeck coefficient, G is the electrical conductance, and K is the 

thermal conductance, which is the sum of the electronic contribution,  Ke , and the lattice 

thermal conductance,  Kl . For a single, parabolic band material, the Fermi level (EF) is 

positioned near the bottom of conduction band due to the balance between S and G.   

Most recent improvements in ZT have been achieved by phonon engineering to reduce 

the lattice thermal conductivity [36,47,197] . The question of how to improve the 

electronic performance is now an important one [8,44,62,64–67,69]. 

Significant improvements in S have been predicted and reported for several 

different materials. For example, an enhanced S has been achieved by engineering the 

density-of-states (DOS) in the bulk Tl-PbTe[8], LAST [(PbTe)1-x(AgSbTe2)x] system[64], 
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La3-xTe4[65], and giant Seebeck coefficients have been predicted for nanostructured 

graphene[66] and for appropriately engineered molecules[67]. These examples all seek to 

enhance performance by achieving a delta-function like DOS. A clear understanding of 

how electronic structure affects the S and G of a material is essential for developing 

materials with enhanced power factors (PF) and is the subject of this chapter. 

In this appendix, we: 

1) Examine a wide variety of thermoelectric (TE) materials for which large Seebeck 

coefficients have been predicted.  

2) Demonstrate that the Seebeck coefficient for each of them can be explained 

within the conventional, single particle framework and show that most materials 

display similar S vs. EF characteristics.  

3) Show for molecular thermoelectrics, that the detailed shape of the transmission 

plays an important role.   

4) Use AlxGa1-xAs as a model system to explore the role of electronic structure and 

significant enhancement in electronic performance are observed due to non-

monotonic behavior of S(EF). 

5) Present general guidelines to enhance the electronic performance of TE devices.    

 

A.2 Approaches 
Our approach, based on the Landauer formalism, is equivalent to the conventional 

Boltzmann transport equation (BTE) approach[204], but, it adds physical insight and is 

applicable to quantum-engineered structures as well as to bulk materials[3,279].   

We begin with a brief review of conventional thermoelectric theory and the 

Landauer formalism. According to conventional thermoelectric theory[280], integrating 

the contributions of each energy channel, we find the total S as   

( )B F

B

G Ek E ES dE
q k T G

+∞

−∞

   −
=   
   


    

(A.1) 

This expression can be alternatively expressed as  

( )C F nE E
S

qT
− + Δ

= −

      
(A.2) 
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with  

( ) ( )
n C

G E
E E dE

G

+∞

−∞

Δ = −      (A.3) 

where nΔ  represents average energy of charge carriers above the conduction band edge 

(EC). This expression suggests that all materials should display similar S vs. EF 

characteristics within a framework of conventional TE theory, and bandstructure effect 

only affects nΔ . For an ideal single channel, nΔ = 0, while for non-degenerate materials 

with parabolic energy bands and a constant mean-free-path (mfp), nΔ = 2kBT. 

To evaluate the Seebeck coefficient, we need to calculated G(E).    Within the 

Landauer formalism, G(E) is given as[3] 

     
( )

2
02 ( ) fqG E T E

h E
∂ = − ∂       

(A.4) 

with 

    ( ) ( ) ( )T E T E M E= ,      (A.5) 

being the transmission, and ( )M E  the number of conducting channels.  For a 

conductor of length, L, and mfp for backscattering, 
 
λ E( ) , ( )T E  is given as 

 
T E( )= λ E( ) L       (A.6) 

in the diffusive limit. For some common scattering mechanisms, 
 
λ E( )  can be 

expressed in power law form as 
  
λ E( ) = λ0 E kBT( )r

, where 0λ  is a constant, E  

is the kinetic energy, and r is a characteristic exponent describing a specific scattering 

process.  If we consider a single parabolic conduction band, 2 2 *2E k m= , then 

( )M E for 3D is  

( ) ( )
*

22
DOM

C
mM E A E E
π

= −


     (A.7) 
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where the density-of-modes effective mass, 
*
DOMm  is just   m*  for a single, spherical 

band. For ellipsoidal energy bands, *
DOMm  for each equivalent ellipsoid is  * *

y zm m  

with the direction of current flow being along the x-direction [3]. Procedures for 

evaluating M(E) from the full band electronic dispersion have been given in Ref. [3] 

 

To explore how the electronic structure can be engineered to enhance performance, 

three TE devices are examined:   

1) Graphene superlattice [66] for which a 30 mV/K Seebeck coefficient was 

predicted.  ( )T E  is evaluated using transfer matrix method . 

2) Single molecular device[67], in which the engineering of transmission gives rise 

to huge increase in S. ( )T E  is  taken from the original paper.  

3) AlxGa1-xAs, ternary materials such as AlxGa1-xAs, AlxGa1-xSb, AlxIn1-xAs, and 

GaAs1-xPx, which are good examples to illustrate the effect of the electronic 

structure on TE coefficients because  

- the band-splitting, ΔE, and effective masses for  Γ, L, and  X valleys 

depend on Al composition [281] 

- the effective masses of  L and X valleys are ~ 10 times larger than the 

effective mass of  Γ valley.   

- At x = 0.42, all valleys are degenerate, and the thermal conductivity is 

minimum, 5 and 10 times smaller than the thermal conductivity for GaAs 

and AlAs, respectively.    

 

A.3 Results 
Our goal is to discuss, in a single particle framework, how electronic structure can 

be engineered to enhance the electronic component of TE performance.  

Figure A.1a shows the transmission of an infinite graphene sheet and a graphene 

superlattice (SL)[66]. The transmission for a graphene is linearly proportional to 

energy[282].  Since graphene is a zero gap material, there is a sizable contribution from 

valence band.  Therefore, the expected maximum S (Smax) is only about 100 µV/K. To 
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enhance the Seebeck coefficient, a transmission gap is created by making a periodic 

graphene PN junction electrostatically, as shown in Fig. A.1a[66].  The S is evaluated by 

full integral formula, Eq. A.1 rather than simplified Mott formula.  Figure A.1b 

compares the S vs. EF characteristics of graphene and a graphene SL. It turns out that the 

predicted 30 mV/K at 300 K is a mathematical artifact caused by the inappropriate use of 

the Mott formula and that the superlattice is no better than graphene. 

 
Figure A.1  For graphene and a graphene SL (a) the transmission (b)  the S vs. EF 
characteristics   
 

A significant enhancement in S in single molecule devices was also predicted by 

engineering transmission as shown in Fig. A.2a[67].  Figure A.2a shows the 

transmission for a BPDT molecule, for which Smax is found to be ~ 10 µV/K. This low 

value is attributed to the relatively flat transmission near the Fermi level, which is in the 

LUMO-HOMO bandgap region.  In order to enhance S, a very sharp transmission is 

desirable near Fermi level. Engineering the transmission is done by putting side group in 

the CSW molecule, which creates very sharp Fano resonance[67]. In the Fig. A.2b, the 

results of BPDT and CSW molecules are compared.  Comparing to BPDT, CSW shows 

a huge improvement in S.  
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Figure A.2  For a BPDT molecule and a CSW molecule, (a) the transmission (b) the S 

vs. EF  

 

A.4 Discussion 
Questions that will be addressed are  

1) How close are the results for graphene SLs and single molecules to common TE 

semiconductors? Can all be understood within the traditional thermoelectric 

theory? 

2) Why does the Seebeck coefficient for the CSW molecule with the sharp 

transmission deviate from the single level model? 

3) How can the electronic structure be engineered for maximum TE performance? 

The results for a graphene, graphene SLs, and a single molecule are compared 

with common TE semiconductors as shown in Fig. A.3.  Nano-structured graphene SLs, 

and an appropriately engineered molecule device display similar S(EF) characteristics to 

common semiconductor materials, as is expected from Eq. A.2. The predicted giant S for 

a CSW molecule is actually what is expected from single level model.  For a given 

Fermi level, the 3D bulk results have a somewhat higher S than the ideal single level 

model because in 3D, energy states are spread-out. 
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Figure A.3  The results for graphene, graphene SL, and a single molecule are compared 
with common TE semiconductors.    

 

It is interesting that S for the CSW molecule deviates from a single level model 

when EF is far below the level. The actual Seebeck coefficient is reduced below what we 

expect from single level model by a factor of 30, though the CSW molecule has a very 

sharp transmission which almost look like ideal delta function as shown in Fig. A.2a.  

This is because the CSW molecule transmission has a finite linewidth with a shape that is 

actually described by a Lorentzian model where transmission is proportional to E2.  This 

energy dependency is important because most of the charge and heat flow occurs at the 

Fermi Level, not at the position of transmission peak when EF is far below the level. In 

the single level model, however, all charge and heat should flow at the single channel, no 

matter where the Fermi level is sitting in. To illustrate the importance of detailed shape of 

transmission, we compare the results for Gaussian shaped and Lorentzain shaped 

transmissions, as shown in Fig. A.4. The results for a Gaussian lineshape, shown in the 

dashed line, follows exactly single level model even with large standard deviation value.  

The Seebeck coefficient for a Lorentzian lineshape, however, shows degradation from 

single level model, and the maximum Seebeck coefficient depends on the value of the 

standard deviation. 
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Figure A.4 Comparison of the results for Gaussian shaped and Lorentzian shaped 
transmission with respect to standard deviation (σ).  

 

Since all materials examined so far display similar Seebeck coefficient behavior, 

it is essential to consider other approaches for enhancing S by electronic structure 

engineering.  Using ideas similar to those of Ref. [8], it will be shown that enhancing 

the electronic component of TE performance is possible even in common semiconductors 

such as AlxGa1-xAs just by changing composition of Al.   

For varying composition of Al, relevant parameters are taken from Ref. [281], and 

linear interpolation is used for unknown parameters. Although the scattering parameters 

generally depend on the location of Fermi level, the average mfp, 
 
λ E( ) , is assumed 

to be energy-independent,  λ0  , because calculations with the constant  λ0  
approximation[3]  turned out to be in good agreement with experiments over wide range 

of doping densities (or EF level) for common semiconductors. (Others have found 

similarly good agreement with experimental data by solving the BTE in the constant 

relaxation time approximation [168,169]).  As shown in Fig. A.5, calculations with  a 

constant mean-free-path (black dashed line), match well experiments over the range of EF 

of interest, and it also captures well the maximum value of the PF.  The constant  λ0 is 
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estimated as follows.  Firstly, iλ  for each valley i, is calculated using the 3D 

expression for mfp for backscattering[3].  
*

2
24 4

3 3
c B

i T i i
m k T

q
λ υ τ µ

π
= =       (A.8) 

with iµ
 and *

cm being the experimentally determined mobility and the conductivity 

effective mass, respectively[283].  The overall  λ0  is estimated by weighting iλ  in 

each valley by the electron population density of i th valley, in [284].   

0 i i i
i valley i valley

n nλ λ=         (A.9) 

Figure A.5 compares the calculation of ZT for GaAs (x=0 in AlxGa1-xAs) with best fitted 

 λ0  and Eq. A.9.  Although Eq. A.9 underestimates the experimental results by about 

50 %, this doesn’t affect the comparison of AlxGa1-xAs alloy to pure GaAs and AlAs.  

The comparisons are the subject of this study.   It is also assumed that upper limit of 

doping density is 5×1018 cm-3.  

 

 
Figure A.5 Calculation of ZT for GaAs (x=0 in AlxGa1-xAs) with best fitted  λ0  and Eq. 
9 is compared to experimental results[4]. 
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For each Al composition, the optimum position of Femi level (doping density) is 

determined for maximum ZT. The resulting optimum TE parameters (S, G, K, PF, ZT) are 

shown in Figure A.6.  Comparing to GaAs (x = 0), a 5 times enhancement in PF and 10 

times enhancement in ZT are predicted at x = 0.28 and 0.29, respectively. Interestingly, 

maximum ZT is not achieved at Al concentration of 0.42 where all valleys are degenerate 

and the thermal conductivity is minimum. When x   0.06, the optimum doping density 

for maximum ZT is the maximum allowed doping of 5×1018 cm-3, which causes S (G) 

suddenly to decrease (increase) at x  = 0.06 .  The reason why S (G) gradually 

increases (decreases) at x   0.06  is that non-monotonic behavior of  S vs. EF is 

noticeable as shown in Fig. A.7b and A.7c.  

 

 
Figure A.6  (a) optimum S, G, and  K   (b) PF and  ZT   with respect to Al 
composition 

 

 

Figure A.7 shows S, G and PF vs. Fermi level for Al composition of 0, 0.17, 0.28 

and 0.42.  For pure GaAs (x=0), a conventional monotonic S(EF) is observed up to  EF 

= 5kBT at which the Seebeck coefficient starts increasing again with EF due to 

contribution of L valley. Also the optimum doping density is below the maximum 

allowed doping 5×1018 cm-3. At x=0.17 and x=0.28, the non-monotonic S(EF) 

characteristic becomes prominent, giving rise to high S and PF at the degenerate limit, 
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whereas the totally degenerate condition (x=0.42) doesn’t show enhancement in PF 

mainly due to low mobility.  This non-monotonic S was also reported in bulk Tl-

PbTe[8].  Note that the upper limit of doping density, shown in the dashed line, is the 

optimum doping density for maximum PF at x=0.17,  x=0.28, and x=0.42.   

 

 
Figure A.7  S, G and PF vs. Fermi level for Al composition of (a) 0, (b) 0.17, (c) 0.28 
and (d) 0.42.  

 

The DOS at x=0.17 and x=0.28 are shown in Fig. A.8.  The band-splitting (ΔE) 

between Γ and L is 5~ 7 kBT and the effective density-of-states mass ( *
DOSm ) and density-

of-modes mass ( *
DOMm ) for L valley are 7 and 20 times larger than the Γ valley, 

respectively. The L-valley with heavy effective mass is analogous to the resonant states 

in bulk Tl-PbTe[8]. To find a general guideline for effective mass ratio ( * *
2 1m m ) between 

lower ( *
1m ) and upper valley ( *

2m ) and band-splitting (ΔE) to achieve maximum PF, two 

simple parabolic bands case are studied. Unlike AlxGa1-xAs, in this simple model, the 

effective mass ratio and band-splitting (ΔE) can be varied without constraint.  

 

-8 -6 -4 -2 0 2 4 6 80
0.2
0.4
0.6
0.8

1

(EF-EC)/kBT

S,
G

,P
F 

(a
.u

.)

-8 -6 -4 -2 0 2 4 6 80
0.2
0.4
0.6
0.8

1

(EF-EC)/kBT

S,
G

,P
F 

(a
.u

.)

-8 -6 -4 -2 0 2 4 6 80
0.2
0.4
0.6
0.8

1

(EF-EC)/kBT

S,
G

,P
F 

(a
.u

.)









 



-8 -6 -4 -2 0 2 4 6 80
0.2
0.4
0.6
0.8

1

(EF-EC)/kBT

S,
G

,P
F 

(a
.u

.) 







 







 

 



176 
 

 

 
Figure A.8  Density-of -states at (a) x=0.17 and (b) x=0.28. 

 

Calculation of the maximum PF for the simple two band model are shown in Fig. 

A.9a, where the results are normalized by the maximum PF obtained for one band case.  

Similar to the case of AlxGa1-xAs with x = 0.28, an increase in PF of about 5 times is 

achieved when * *
2 1m m =10 and ΔE~5kBT. As shown in Fig.  A.9b, a non-monotonic S 

vs. EF behavior is also observed at maximum PF condition.  

Figure A.10 shows under which condition non-monotonic S occurs. The band 

splitting between two bands is kept at 5kBT and then we examine the effects of effective 

mass of upper band on S vs. EF characteristics. Non-monotonic behavior of S starts 

appearing when the effective mass ratio is larger than 5 as shown in Fig. A.10a.  In the 

Fig. A.10b, the band splitting varies with * *
2 1m m  kept at 10. In the case where the band 

splitting is above 4kBT,   non-monotonic behavior of S is observed.  When two bands 

are very close, their S follows conventional thermoelectric theory.   
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Figure A.9 (a) calculation of maximum PF for the simple two band model which is 
normalized by the maximum PF obtained for one band case.  (b)  S vs. EF 
characteristics at maximum PF condition.  

 

 
Figure A.10 S vs. EF characteristics (a) with the band splitting kept at 5kBT (b) with 

* *
2 1m m  kept at 10.    
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perturbing potential such as defects[285].  Considering typical doping limit[286], the 

optimum band-splitting might be an order of 5kBT.  

 

A.5 Summary and Conclusion 
In summary, it was shown in this appendix that most materials display a similar 

monotonic behavior of S vs. EF, but for molecular thermoelectrics, the detailed lineshape 

of the transmission plays an important role. In the AlxGa1-xAs materials system, an 

increase in PF of 5 times and in ZT of 10 times is possible because of the non-monotonic 

S behavior, which maintains high S at high carrier densities resulting in high PF. This 

result is similar to the behavior reported for bulk Tl-PbTe [8].  The increase only 

happens when multiple bands are engineered in an appropriate way.  General guidelines 

for electronic structure engineering are as follows: 1) an upper band with a heavy m* 

(equivalently, sharp resonant states) are needed, and 2) the minimum of the upper band 

must be about 5kBT above the lower, dispersive band.  The appropriate bandstructure 

may be achieved with an alloy of the proper composition, as discussed in this appendix, 

by the introduction of resonant states, as discussed in [4], or by proper strain engineering.   
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B. COMPUTATIONAL STUDY OF THE ELECTRONIC PERFORMANCE OF 
CROSS-PLANE SUPERLATTICE PELTIER DEVICES 

In this appendix B, we use a state-of-the-art non-equilibrium quantum transport 

simulation code, NEMO-1D, to address the device physics and performance 

benchmarking of cross-plane superlattice Peltier coolers.  Our findings show 

quantitatively how barriers in cross-plane superlattices degrade the electrical 

performance, i.e. power factor.  The performance of an In0.53Ga0.47As/In0.52Al0.48As  
cross-plane SL Peltier cooler is lower than that of either a bulk In0.53Ga0.47As or bulk 

In0.52Al0.48As device, mainly due to quantum mechanical effects. We find that a cross-

plane SL device has a Seebeck coefficient vs. conductance tradeoff that is no better than 

that of a bulk device.  The effects of tunneling and phase coherence between multi 

barriers are examined. It is shown that tunneling, SL contacts, and coherency only 

produce oscillatory behavior of Seebeck coefficient vs. conductance without a significant 

gain in PF.  The overall TE device performance is, therefore, a compromise between the 

enhanced Seebeck coefficient and degraded conductance.  

 

B.1 Introduction 

The dimensionless figure of merit, 2ZT S GT K= , is the primary material 

parameter governing the maximum thermoelectric (TE) efficiency. Here T is the 

temperature, S is the Seebeck coefficient, G is the electrical conductance, and K is the 

thermal conductance, which is the sum of the electronic contribution, Ke , and the lattice 

thermal conductance, Kph . Most recent improvements in ZT have been achieved by 

phonon engineering to reduce the lattice thermal conductivity [36,47,197]. One way is to 

use thin film superlattices (SLs), which has led to significant reduction in the lattice 

thermal conductivity and, therefore, enhanced TE performance [11].  The possibility of 

enhancing the electronic component (S2G, power factor: PF) of TE performance by using 
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SL devices has been studied.  First quantitative calculations for in-plane direction in SLs 

were done by Hicks and Dresselhaus in 1993 [51,155] and showed promising results. For 

cross-plane transport in SL, it has been predicted that energy filtering will lead to 

significant increases in ZT under a certain condition [72]. A single barrier and multi-layer 

thermionic refrigeration were proposed [85,287]. Experimentally, researchers have 

shown the increase in S by filtering out low energy electrons, but a  limited increase in 

power factors  due to the decrease in electrical conductivity [73–75].    

Although there have been a number of studies, it is still not clear how a SL affects 

the electronic performance i.e. PF.  This work explores the physics of transport in a 

single barrier and multi barriers (i.e. SL) TE devices using a sophisticated quantum 

transport model, NEMO-1D. A clear understanding of how barriers affect the PF is 

essential for developing a single barrier or multi barriers TE device with enhanced PF and 

is the objective of this appendix. 

  

B.2 Approach  
In the linear response regime, the Landauer expressions for electronic transport 

properties such as G, S, and Ke are expressed as 
2
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being the transmission, and ( )eM E   the number of electron conducting modes.  In this 

study, ( )eT E  is evaluated with the NEMO tool [288], which was originally developed to 

simulate resonant tunneling devices (RTDs) by the non-Equilibrium Green's Function 

(NEGF) approach and rigorously consider quantum mechanical (QM) reflection and 

interferences and contacts with phenomenological energy relaxation model.    In this 

study we assume conductors with ( ) 1eT E = , i.e. ballistic transport. Quantum mechanical 

effects like quantum reflections, tunneling, and interferences are included in ( )eM E . An 

In0.53Ga0.47As/In0.52Al0.48As is considered as a model structure and an effective mass 

model is used in NEMO. To begin with, we examine the hetero-junction and then a single 

barrier is studied with varying barrier thickness to evaluate quantitatively the effect of 

tunneling. Then, the effects of multi barriers are studied. - First, the effect of “SL 

contacts” and second, the effects of phase coherency between SL periods.  Sketches of 

test structures are shown in Fig. B.1. 
 

 
Figure B.1.  Schematic diagrams of test structure of numerical experiments. (a) hetero-
junction, (b) single barrier (c) multi-barriers-1: SL contacts and (d) multi-barriers-2. 
Barrier is In0.52Al0.48As. Grayed box represents contact (cnt), where energy relaxation 
scattering time is assumed to be 50 fs.  Solid circle denotes injected electrons from 
emitter contact.  emitter: bulk In0.53Ga0.47As with 0.044 m0,  barrier: In0.52Al0.48As with 
0.075 m0,  barrier height, BΦ : 0.51 eV. 

  

B.3 Results And Discussion  
B.3.1. Hetero-junction and Single barrier  

 A previous theoretical study [289] suggested a simple general rule in a 

semiclassical picture that given a transmissions (number of conducting modes) in the 
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emitter and the barrier, the smaller one determines overall transmission at the hetero-

junction. As shown in Fig. B2(a), the semiclassical transmission (blue solid line) of the 

hetero-junction is the lower of transmission of bulk In0.53Ga0.47As and that of bulk 

In0.52Al0.48As.   For the most of energy range, the overall transmission is determined by 

barrier because of its lower number of conducting modes. NEMO simulations at the 

hetero-junction were compared to the semiclassical transmission. It is seen that the slope 

of NEMO ( )eT E becomes shallower than semiclassical one due to QM reflection at the 

junction interface. The inset of Fig. B2(a) is contour plot of NEMO transmission at 

hetero-junction as a function of longitudinal energy (x-axis) and transverse energy (y-

axis).  Note that transmission is close to one even when incident longitudinal energy is 

less than barrier height or close to zero. This occurs because of transverse momentum and 

total energy conservation condition at the interface. In the case of homo-junction, 

however, the transmission is independent of the transverse energy which is not shown 

here. In comparison to the hetero-junction, the transmission for the single barrier with 

barrier thickness of 20 nm (thick enough to suppress tunneling current) is smaller due to 

Fabry-Perot type interference. Therefore, it can be easily predicted that QM evaluation of 

transmission gives worse electrical conductance than semiclassical approach. In addition, 

the weak energy dependence of transmission produces a small S from Eq. (B.2).  

Overall S vs. G tradeoff and PF vs. EF are shown in Fig. 3(a) and 4(a). It is seen that PF 

of a single barrier is about 50% of bulk In0.52Al0.48As and no better than hetero-junction 

and bulk In0.53Ga0.47As. 

Next, the effect of tunneling is quantitatively evaluated in a single barrier.  

Figure 2(b) shows the transmission for barrier thickness of 6, 21, 70 and 100 Å. As the 

barrier thickness gets smaller, i.e., tunneling contribution is dominant, the overall curve is 

reduced to ( )eT E of bulk In0.53Ga0.47As and energy dependency of ( )eT E  becomes weak. 

The results of S vs. G tradeoff and PF vs. barrier thickness are shown in Fig. 3(b) and 

4(b). In Fig. 4(b), comparing to thick barrier case (ex: 200 Å), it can be seen that PF 

generally decreases with thickness down to 21 Å and then increase again to value of bulk 

In0.53Ga0.47As. However, the behavior of PF from 200 down to 21 Å shows local 
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maximum of PF at thickness of 70 Å, which is in contrast to the conventional notion that 

electrons should not tunnel through barriers for maximum cooling performance.   

 

 
Figure B.2. Transmission results: (a) semi-classical (blue) for hetero-junction vs. QM 
calculation for hetero-junction (red) and single barrier (light blue). Barrier thickness is 
200 Å (b) single barrier. Barrier thickness: 6, 21, 70, 100 Å (c) multi-barriers-1 (no. of 
barriers in SL contacts): 1, 2, 4, 10, and (d) multi-barriers-2 (no. of barriers in device 
region): 1, 2, 4, 10. The dashed dot is bulk In0.53Ga0.47As and dashed line is In0.52Al0.48As. 
Insets:  (a) contour plot of transmission at hetero junction as a function of longitudinal 
energy (x-axis) and transverse energy (y-axis), (b-d) transmission (y-axis) vs. total energy 
(x-axis, in eV) plot when transverse energy is zero. 

 

The 15% improvement in comparison to thick barrier case is attributed to the 

delicate interplay between S and G as shown in Fig. B3(b): This behavior results from 

non-monotonic behavior of S vs. EF due to non-negligible tunneling current. It can be 

understood from the two band model: ( ) ( )1 1 2 2 1 2totS S G S G G G= + + , where 

( )1 1B F nS E qT= − Φ − +Δ  and ( )2 2F nS E qT= − − +Δ  are S of thick barrier 

(In0.52Al0.48As) and bulk emitter (In0.53Ga0.47As), respectively and are weighted by 

thermionic emission over the barrier, G1 and tunneling current, G2. Bandstructure and 

QM effects affect the value of nΔ . At the fixed EF > 0, it is seen that absolute value of S1 

is larger than S2. At the barrier thickness of 70 Å, Stot at low EF is same as S2 because high 

barrier height ( B FEΦ − ) suppress G1 and dominant current is G2.  However, Stot 

becomes S1 at high EF due to G1 > G2. Transition from small S2 to large S1 gives 

oscillatory behavior of Stot vs. EF (or S vs. G as shown in Fig. B3(b)). The location of 

local maximum of Stot depends on barrier thickness: local maximum of Stot vs. EF moves 
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toward lower EF as barrier becomes thick. Though this behavior enhances PF slightly, 

tunneling generally degrades the electronic performance.   

 

 
Figure B.3.  S vs. G trade-off: (a) dashed dot is bulk In0.53Ga0.47As, dashed line is 
In0.52Al0.48As and  semiclassical results for hetero-junction,  red solid line is NEMO 
calculation for hetero-junction, and light blue line is NEMO calculation for single barrier 
with barrier thickness of 200 Å (b) single barrier. Barrier thickness: 6, 21, 70, 100 Å (c) 
multi-barriers-1, no. of barriers in SL cnts +  a single barrier device: 1, 2, 4, 10, and (d) 
multi-barriers-2, no. of barriers in device region: 1, 2, 4, 10. The dashed dot is bulk 
In0.53Ga0.47As and dashed line is In0.52Al0.48As. 

 
B.3.2. Multi Barriers  

 Firstly, the effect of “SL contacts” is studied to see if there is possibility to 

enhance the PF of a single barrier TE device when it is the first period of SL as shown in 

Fig. B.1(c). A single period of SL is composed of In0.53Ga0.47As (50 Å)/ In0.52Al0.48As (70 

Å). As shown in the inset of Fig. B.2(c), SL contacts produces mini-bands, though they 

are not sharply defined because strong phase relaxation is assumed (τ = 5 ×10-14 s).  The 

effects of SL contacts saturates as the number of periods increase from 2 periods of SLs 

to 9 periods of SLs in the contact (total no. of barrier is 10). The ( )eT E  for SL contacts 

is no better than a single barrier case, resulting in poor PF as shown in Fig. B.4(c). 

Next, we examine how phase coherency between the SL periods affects the 

performance. The device region is extended from 1 barrier to 10 barriers. Increasing 

coherency between SL periods makes more sharply defined mini-bands, resulting in a 

step-like ( )eT E curve, as shown Fig. B.2(d). It is also seen that ( )eT E becomes shallow 

as coherency become stronger. Therefore, this leads to no improvement in PF as shown in 

(a) hetero-junction (b) single barrier (c) multi barriers-1 (d) multi barriers-2
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Fig. B.4(d) though the step shaped ( )eT E  (or mini-bands) leads to oscillatory S 

behaviors as shown in Fig. B.3(c) and (d). 

 

 
Figure B.4. (a) PF vs. EF results: dashed dot is bulk In0.53Ga0.47As, dashed line is 
In0.52Al0.48As and  semi-classical results for hetero-junction,  red solid line is NEMO 
calculation for hetero-junction, and light blue line is NEMO calculation for single barrier 
with barrier thickness of 200 Å (b) maximum PF (PFmax) of single barrier with respect to 
barrier thickness: 6, 21, 70, 100 Å  (c) PFmax of multi barriers-1, no. of barriers in SL 
cnts +  a single barrier device: 1, 2, 4, 10, and (d) PFmax of multi barriers-2, no. of 
barriers in device region: 1, 2, 4, 10.  The dashed dot and dashed lines in (b)-(d) 
represents PFmax of bulk In0.53Ga0.47As and In0.52Al0.48As  in (a), respectively.  Square 
symbols in (c) and (d) denotes PFmax of corresponding single barrier device in (b).   

 
B.4 Conclusions  

We examined Peltier cooling in semiconductor SL devices. Quantum transport 

simulations for hetero-junction and single barrier show that transmission degrades due to 

QM effects which led to 50% reduction in PF comparing to bulk barrier materials.  In 

addition, the role of SL contacts and phase coherence in the SL are studied in multi 

barriers. Our study shows that PF of multi barrier structures is no better than a single 

barrier TE device. Tunneling, SL contacts and coherency produces oscillatory behavior in 

the S vs. G tradeoff, in contrast to conventional monotonic decreasing behavior, but we 

found no gain in PF.  The effect of electrostatic self-consistency, scattering, and SL 

structure design are under study.  
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C. NUMBER OF CONDUCTING CHANNELS FOR 1D, 2D, AND 3D.  
 To relate Eq. (3.5b), the Landauer expression for lattice thermal conductivity, to 

the conventional expression from kinetic theory, we write the number of phonon 

conduction channels per area, ( )phM ωʹ′ , as [3]  

( ) ( ) ( )4 ( )ph phM h Dω υ ω ωʹ′ ʹ′= ,
    

(C.1)
 

where  ( ) ( )( ) 1ph q
q

D ω δ ω ωʹ′ ≡ Ω −  
 

is the phonon density of states (DOS) per 

polarization per volume.  Using  Eqs. (3.6) and (3.7),  Eq. (3.5b) the phonon thermal 

conductivity can be written in the conventional form [217,290] as 

   
( ) ( )1 ( ) ( )

3ph V ph phd Cκ ω ω υ ω ω
+∞

−∞

= Λ 

   
(C.2) 

with ( )VC ω being the specific heat per unit volume 

   
( )

( )

2
2 0( )V B L ph

B L

nC k T D
k T
ω

ω ω
ω

   ∂
= −    ∂   




.    (C.3) 

Next, for both electron and phonon, the number of conduction channels is defined 

as[3]  

( ) ( )
2 x k

k

hM E E E
L

υ δ= −      (C.4) 

Assuming parabolic dispersion  for electron ( 2 2
1 2 eE k mε− =  ),  corresponding 

expression for the number of conduction channels  per spin per valley for 1D, 2D, and 

3D conductors are given as[166] 

( ) ( )1elM E E ε=Θ −   (1D)   (C.5a) 

( )
( )12 e

el

m E
M E W

ε

π

−
=


 (2D)   (C.5b) 
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( ) ( )22
e

el C
mM E A E E
π

= −


 (3D)   (C.5c) 

where Θ  is the unit step function,  ε1  is the bottom of the first subband, em  is the 

electron effective mass, CE  is the conduction band edge and W and A are the width and 

the area of the 2D and 3D conductors, respectively. For phonons with linear and isotropic 

dispersion approximation, sqω υ= , ( )phM ω  per polarization is given as  

( ) ( )phM ω ω=Θ    (1D)   (C.6a) 

( ) ( )ph sM Wω ω πυ=    (2D)   (C.6b)

( ) ( )2 24ph sM Aω ω πυ=  (3D)   (C.6c) 

where sυ  is the velocity of sound.  
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D. DIFFUSIVE MISMATCH MODEL FROM LANDAUER APPROACH 
In a Landauer approach, heat current from side 1 to side 2 is  

( ) ( ) ( ) ( ) ( ),1 2 1 2 1 1 2 1 2 2QI d T M n T M n
h
ω

ω ω ω ω ω→ → →= −  


   (D.1) 

where iT  and iM  is  the transmission and the number of conduction channels at side i 

and in  is Bose-Einstein distributions at side i. For an interface in thermal equilibrium,  

,1 2QI → = 0 in Eq. (D.1)  or  

( ) ( ) ( ) ( )1 2 1 1 2 1 2 2T M n T M nω ω ω ω→ →=    (D.2) 

In thermal equilibrium, TL,1 = TL,2 = TL and n1 = n2 . Therefore, 

( ) ( ) ( ) ( )1 2 2 1 2 1T T M Mω ω ω ω→ →=     (D.3) 

The DMM model assumes a diffusive scattering at interface, resulting in the phonons 

forgetting where they came from except for their energy [291]. So, transmission from 

material 1 to 2 at the interface is assumed to be same as reflection at the interface from 

material 2 to 1.  

( ) ( ) ( )1 2 2 1 2 11T R Tω ω ω→ → →= = −   `  (D.4) 

From  Eqs. (D.3) and (D.4), we can solve for ( )1 2T ω→ :  

( ) ( ) ( ) ( )( )1 2 2 1 2T M M Mω ω ω ω→ = +    (D.5) 

According to Ref. [3] , number of modes are defined as  

  
M E( )=

h
2L

υx
k
 δ E − Ek( )    (D.6) 

so, Eq. (D.5) becomes  

( ) ( ) ( ) ( )( )1 2 ,2 2 ,1 1 ,2 2x x xT D D Dω υ ω υ ω υ ω→ = +  `  (D.7) 
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where  ( ) ( )k
k

D E E Eδ= −  is the density of states and xυ , the velocity for 

transport direction, is defined as  

( ) ( )x x k k
k k

E E E Eυ υ δ δ≡ − −  
    (D.8) 

Therefore, Eq. (D.5) is essentially same as the results in the DMM.  
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E. MODELING APPROACH FOR NANOCOMPOSITES 

E.1 Introduction 
To explore the thermoelectric (TE) performance of polycrystalline materials, it is 

essential to model transport on the micro/macro scale with physics-based input from the 

nano scale. Such modeling efforts, however, have been rare for this problem. 

Conventional modeling efforts to understand the electronic and thermal properties are 

done with a variety of techniques with most of the emphasis being on microscopic 

modeling including: 1) Boltzmann transport equation (BTE) for electrons 

[99,105,106,132,133] and phonons [134], 2) Monte Carlo (MC) simulations [135],  3) 

Molecular dynamic (MD) simulations [136], 4) modified effective medium theory [137], 

and 5) non-equilibrium Green’s function (NEGF) method [138]. The current models, 

however, ignore the statistics of grains and GBs and their associated properties as well as 

their configurations in three dimensions (3D). Therefore, microstructure-aware modeling 

informed by macroscopic properties is required. 

For this problem, we first need to generate the microstructure. Many different 

methods for constructing 3D grain microstructures have been used. We can start with 

images from existing microstructures, which have a clear physical meaning. A limited 

number of two dimensional (2D) samples, however, yield uncertainties in the 

reconstruction of the 3D structure, although many properties such as grain size, its 

topology, its orientation are given [113]. Another way is simulation of microstructures 

based on physics [292,293]. This method enables us to simulate how the grain network 

evolves with respect to process and operation condition, which are expected to have 

important implications for macro properties such as reliability. Microstructure simulation, 

however, needs a lot of computational resources. Synthetic generation of microstructures 

like Voronoi tessellation [260,294,295] is also popular because it is computationally 

simple and efficient.   
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In this work, we first synthetically generated a polycrystalline structure using 

Voronoi tessellation method, which enables us to control the statistics of grain and GBs. 

We used a simple model for grains and GBs along with a Landauer approach for 

transport. A Landauer approach for homogeneous materials has previously been 

considered by Kim et al. [166] within an effective mass context. Extensions of the 

Landauer approach to full band electron and phonon dispersions have been discussed by 

Jeong et al. [3]. We will use their methods to illustrate key consideration in TE transport 

in polycrystalline type TECs. We compute the transmission of the polycrystalline TECs 

and compare the TE performance of the TECs in comparison to that of the single 

crystalline TECs.  Our specific objectives are: 1) to quantitatively examine electronic 

performance for polycrystalline thin film TECs,  2) to present a technique to extract a 

energy resolved transmission for the inhomogeneous NCs, 3) to discuss the similarities 

and differences between NC and composite energy bands in terms of the transmission 

engineering, and 4) to discuss percolation phenomena in energy space.  

This chapter is organized as follows.  In Sec. E.2, we present our approach to 

construct the microstructure. In Sec. E.3, we describe our approach to calculate transport 

properties.  

 

E.2 Generating the Physical Structure 
This section describes the Voronoi tessellation scheme for generating 

microstructure. We synthetically generate 2D microstructure using Voronoi tessellation 

which can be easily extended to 3D.  The concept of the Voronoi tessellation was 

originally proposed by Georgy Voronoi in 1907 [260]. In the simplest case, we are given 

a set of points in the plane, which are the Voronoi sites. Each site, s, has a Voronoi cell 

consisting of all points closer to s than to any other site. The segments of the Voronoi 

diagram are all the points in the plane that are equidistant to the two nearest sites as 

shown in Fig. E.1a. This method is essentially same as the method to construct Wigner–

Seitz primitive cell (the first Brillouin zone) for the Bravais lattice (the reciprocal lattice). 

The statistics of output Voronoi cells such as shape and size depends on the input 
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parameters such as pattern and number of Voronoi sites. For a complete discussion, the 

reader should refer to the book by Okabe et al. [260]. 

There are already several software projects and libraries that compute the Voronoi 

tessellation because the Voronoi diagram has many applications across science in 

problems that involve allocating space between a group of objects. The software package 

QHull [296] can compute Voronoi diagrams in arbitrary numbers of dimensions, making 

use of an indirect projection method; Matlab’s Voronoi routines make use of this 

package. Another program is Triangle [297], which is most well-known for mesh 

generation via the Delaunay triangulation, but it also computes the Voronoi tessellation. 

However, this code is specific to two-dimensional computations [298]; Voro++ is an 

open source software library for the computation of three dimensional Voronoi cells 

[298,299].  In this preliminary study, we used Voro++.  

Figure E.1b, c, d, and e shows constructed 2D microstructures with respect to 

number probability of high-angle grain boundaries (HAGBs) which is shown by black 

solid lines. For a given probability of HAGBs, the grain boundaries are categorized into 

HAGBs and low-angle grain boundaries (LAGBs), randomly. In this study, 

microstructure with 50% HAGBs is used, and average grain size is about 12 nm. Most of 

nanograins for Si and SixGe1-x NC are in the 10 - 30nm range[101].  

 

 
Figure E.1 (a) the Voronoi diagram of a random set of points in the plane shown by red 
dots (all points lie within the image), (b)-(e) 2D microstructure generated by Voronoi 
tessellation. The number probability of HAGBs (shown by black solid line) for (b), (c), 
(d), and (e) are 25, 50, 75, and 100%, respectively. In this study, microstructure with 50% 
HAGBs is used – i.e. (c). 
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E.3 Modeling Electron Transport 
This section describes the mesh structure and the finite difference scheme for 

solving the transport equation for polycrystalline TECs.  Given a microstructure, we 

define a uniform square grid structure for the use of finite difference method to calculate 

transport properties in non-homogenous materials. In this preliminary study, we used a 

grid size of N = 100 in each direction.  

For illustrative purpose, we first consider charge current with the voltage gradient 

only. To solve charge (particle) current, we assumed that particle fluxes are conserved 

(i.e. no recombination-generation);  

( ) ( )0 J E Vσ σ= ∇ ⋅ = ∇ ⋅ = −∇ ⋅ ∇
 

  
 (E.1a) 

The 2D finite difference mesh for a device is given in Fig. E.2a. For a node (i, j),  Eq. 

(E.1a) can be discretized as follows, 

   

1, 1, , 1 , 1
, , 1, , , 1, , , , 1 , , , 1

, 1 1, , 1, , 1
, , 1 , 1, , , , 1, , , 1

0 ( ) ( ) ( ) ( )i j i j i j i j
i j i j i j i j i j i j i j i j i j i j i j i j

i j i j i j i j i j
i j i j i j i j i j i j i j i j i j i j

g V V g V V g V V g V V

g V g V g V g V g V

− + − +
− + − +

− − + +
− − + +

= − + − + − + −

= − − + − −

 

(E.1b) 

where n
mg  is the local conductivity between a node m and a neighboring node n. A node 

(i, j) is numbered as m which is given as (j-1)N +i. We can write linear equations for all 

N2 nodes which can be rewritten as a matrix form: 

 

2 2 2 21 1N N N N

BC G V

× × ×

     
     =     
          

,  (E.1c) 

 

where the matrix [BC] has the information on the boundary conditions, and the 

conductivity matrix [G] is a large sparse matrix. For a node m ,  
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1
1 1

1

m N

m
m N m m m m N

m m m m m m m

m

m N

V

V
BC g g g g g V

V

V

−

−

− − + +

+

+

   
   
   
   
   
   
    = − − − −
   
   
   
   
   
   

     





   





 (E.1d) 

 

Because two voltages are known for two sides connected to electrodes (i.e., the Dirichlet 

boundary condition),  BCm and corresponding local conductivity are given by  

BCm = Vhigh (Vlow)  for i = 1 (N),  where m = (j-1)N +i , (E.1e) 

1m
mg =        for i = 1 or N     (E.1f) 

Zero flux boundary conditions (i.e. Neumann boundary condition) are applied for the 

other two sides (i.e. j = 1 and N), and BCm and local conductivity for this condition are 

given by 

BCm = 0   for j = 1 or N ,  where m = (j-1)N +i , (E.1g) 

1m
mg = , and ( ) 1m N m N

m mg g+ − = −   for j = 1 (N)  (E.1h) 

Otherwise, BCm and local conductivity, n
mg , are given by  

BCm = 0  for 1< i,j < N,   where  m = (j-1)N +i ,  (E.1i) 

( ) 2n
m m ng σ σ= +  for m  n, and m n

m m
n m

g g
≠

=
 

 (E.1j) 

The voltage vector, [V], is obtained by using left matrix division in Matlab (i.e., [V] = 

[G]\[BC]). Finally the current flux J of a composite systems is computed from 

( )1, 1, 2,j j j
j

J V V hσ= − , and the effective conductivity NCσ  is evaluated from 

( )NC high lowJ V V Lσ= −  . 
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Figure E.2 (a) schematic diagram of 2D finite difference mesh (N×N grids, N = 100, grid 
size = 1 nm). (b) grid points around element (i, j) 

  

A general equation for charge current including temperature gradient is given as  

[ ]0 J V S Tσ σ = ∇ ⋅ = −∇ ⋅ ∇ − ∇ 


,
   

(E.2a) 

where [Sσ] is the Seebeck coefficient times conductivity, which could be integrated 

values as well as energy resolved values. The boundary conditions for temperature 

gradient are the same as those for voltage gradient. The charge (particle) conservation 

equations should be valid at each energy in near equilibrium to satisfy Eq. (E.2a). This 

will be checked in Sec. E.3. The corresponding heat current equations are expressed as  

[ ] 00 Q ave
j

J T S V Tσ κ ≠ ∇ ⋅ = − ∇ − ∇ 


,  (E.2b) 

where κ0 is the electronic thermal conductivity for zero voltage gradient. In contrast to a 

previous work [126], which assumed energy flux conservation, carriers are assumed to 

absorb and dissipate energy through electron-phonon interactions in this study – i.e. the 

energy relaxation length << grain size. The heat current is evaluated using voltage and 

temperature information obtained from Eq. (E.2a).  In principle, Eqs. (E.2a) and (E.2b) 

need to be solved self-consistently because the electrical properties such as , ,Sσ and 

0κ also depend on temperature. We may assume that the temperature gradient is not large 

and therefore the electrical properties are not dependent on temperature.  
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F. THE MAXIMUM POWER CONDITION AND THE MAXIMUM EFFICIENCY 
CONDITION 

For the maximum power condition and the maximum efficiency condition, we will 

find the power delivered to the load resistance and the efficiency.  The power delivered 

to the load, 

    2
Load LoadP I R=         (F.1) 

where I is the current flow due to temperature gradient and is expressed as 

 

Load

S TI
R R

Δ
=

+
        (F.2) 

where R  is the resistance of thermoelectric devices.  So Eq. (F.1) becomes 
2

Load Load
Load

S TP R
R R

 Δ
=  

+ 
         (F.3) 

 Equation (F.3) can be expressed as  

( )

2 2

21Load
S T MP

R M
Δ

=
+

      (F.4) 

where M  is  the ratio of the resistance of LoadR   to R  , LoadM R R≡ . The 

efficiency is given by 

( )

2
Load Load

in h tot h c

P I R
W ST I K T T

η = =
+ −

     (F.5) 

where inW  is the total heat flow from hot side.  

 

The maximum power condition, LoadR R=  

First, it can be seen from Eqs. (F.3) or (F.4) that the power is the maximum for LoadR R=

and   the maximum power †
LoadP  is given by 
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2 2
† 2

4 4Load
S TP T PF
R

Δ
= Δ =       (F.6) 

with 2PF S R=  being the power factor.  The power delivered to the load for this 

condition is a function of  PF,  not ZT . Under this condition, the current is obtained to 

be 2I S T R= Δ    from Eq. (F.2). Inserting this current into Eq. (F.5), the efficiency 

under the maximum power condition is given by  

( )
( )

( )

2
† 2

2

2 4

2 4

h tot

hot

hot hot

S T R R
ST S T R K T

Z T
ZT

Z T
Z T T

η
Δ

=
Δ + Δ

Δ
=

+

Δ
=

+

      (F.7) 

where  ( )2
totZ S RK= . The efficiency is  a function of  Z. 

 

The maximum efficiency condition, 1LoadR R ZT= +  

We can maximize the efficiency in Eq. (F.5)  when LoadM R R≡ is given by  

1M ZT= + ,        (F.8) 

Under this condition, the maximum efficiency is obtained from Eq. (F.5) to be 

    * 1 1 .
1 hotcold hot

ZT T
TZT T T

η
 + − Δ 

=  
+ +  

     (F.9) 

This is the same as Eq. (F.7).  This efficiency is also  a function of  Z. Under the 

maximum efficiency condition (i.e. 1LoadR R ZT= + ), the power delivered to the load 

*
LoadP  is  obtained from Eq. (F.3), 
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( )

( )

2
*

2 2

2

†
2

1
1

1

1 1

4 1

1 1

Load

Load

S TP R ZT
R R ZT

S T ZT
R ZT

ZTP
ZT

Δ 
= + + + 
 Δ +

=  
  + +

+
=

+ +

    (F.10) 

where we also used Eq. (F.6).   *
LoadP  is a function of Z as well as PF  since †

LoadP  is a 

function of PF.  In addition, we can see that *
LoadP ≤ †

LoadP   always holds because 

( )
2

4 1 1 1ZT ZT+ ≤ + + . Now we have the efficiency ( Eqs. (F.7) and (F.9) ) and the 

power ( Eqs. (F.6) and (F.10) ) under both conditions.  
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G. THE EFFECT OF ANISOTROPIC BAND 
To illustrate the effect of anisotropic valleys in a multi-valley materials, we consider 

multi-valley materials with a valley degeneracy of 6VN =  .  For ellipsoidal bands, the 

degree of anisotropy (k) is represented by the ratio of the longitudinal effective mass ( *
lm ) 

to transverse effective mass ( *
tm ), i.e. * *

l tk m m= . We compare an anisotropic multi-

valley material to a single valley material with an effective mass of *
2m  at the same 

density of states. It is found that anisotropic multi-valleys produces higher performance 

than isotropic multi-valleys. This occurs mainly because a larger degree of anisotropy (i.e. 

larger k ) leads to increases in λ  and M
 

(i.e. enhanced power factor).  

The results can be understood in a following way. With the same density-of-states, 

    ( )( ) ( )
3/21/3 3/2* *2 *

2V l tN m m m=      (G.1) 

or 

    ( )1/3* 2/3 * *2
2 .V l tm N m m=       (G.2) 

For each equivalent ellipsoidal bands, the number of conduction channels is the density-

of-states in the 2D plane transverse to the transport direction[3] (i.e. * *
l tm m  ). The MFP 

for backscattering is proportional to velocity times scattering time.  The velocity is 

proportional to *1 tm but the scattering times are the same if we make the physically 

reasonable assumption that the scattering rate is proportional to the density-of-states.  

From eqn. (G.1) or (G.2), the ratio of σ  for anisotropic multi-valley ( 1σ ) to that for 

isotropic single valley ( 2σ ) is  

1/2* * *
2/3 1/31 1 1 2

* *
2 2 2 2

.V t l
V

t

N m mM m N k
M m m

σ λ
σ λ

 
≈ × = × = 

 
  (G.3) 
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Equation (G.3) reduces to an isotropic case at k = 1.  The simple models considered here 

show that we should expect improved power factor with increasing valley degeneracy 

and with the degree of anisotropy. Also note that the conductivity of the multiband 

semiconductor depends more strongly on valley degeneracy than on the degree of 

anisotropy.  
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