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ABSTRACT 
 
Neophytos Neophytou Ph.D., Purdue University, December 2008. Quantum and 
Atomistic Effects in Nanoelectronic Transport Devices. Major Professors: Mark S. 
Lundstrom, Gerhard Klimeck. 
 

  As devices scale towards atomistic sizes, researches in silicon electronic device 

technology are investigating alternative structures and materials. As predicted by the 

International Roadmap for Semiconductors, (ITRS), structures will evolve from planar 

devices into devices that include 3D features, strong channel confinement, strain 

engineering, and gate all around placement for better electrostatic control on the channel. 

Alternative channel materials such as carbon nanotubes (CNT), nanowires (NW) and III-

V based channel materials are considered to be possible candidates for future device 

technology nodes because of their potentially superior to silicon transport properties. For 

nanoscale dimensions, and under the operating conditions mentioned above, both 

atomistic and quantum effects become important in determining the electronic structure 

and transport properties of the devices. Detailed modeling and simulation that capture 

these new physics will be essential in providing understanding and guidance to the device 

operation and optimization. We have used the non-equilibrium Green�’s function (NEGF) 

formalism for quantum transport simulations and real space atomistic tight-binding 

techniques (pz, sp3d5s*-SO) to investigate transport properties in CNT, NW and III-V 

HEMT field-effect transistors. Specifically, we have investigated the effect of atomistic 

defects such as atomic vacancies, and charged impurities in 1D CNT, and dangling bonds 

in NW channels. It was found that the presence of single defects, severely degrades the 

transport performance of 1D channels. We have further investigated the effect of physical 

quantization on the electronic structure of NW field-effect transistors and identified the 

main electronic structure factors that influence their performance. It was found that 

structural and quantization below 10nm can severely affect the electronic properties of 



 xiii

NW channels by changing the effective masses and altering degeneracies through valley 

splitting. Different wire orientations have different transport properties. The [110] and 

secondly [100] oriented nanowires are found to perform better than the [111] wires in 

terms of ON-current capabilities for n-type wires, whereas the [111] and [110] 

significantly outperform the [100] wires in the case of p-type nanowires.  Explanations 

for this behavior can be extracted from the non-parabolicity and anisotropy of the Si 3D 

bulk E(k). Finally, we present an analysis of recent experimental data for III-V HEMT 

devices using the NEGF formalism and address several issues related to the operation of 

HEMT devices. Interestingly, a 60nm HEMT device can be though to first order as a 

ballistic channel connected to two series resistances.      
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1. INTRODUCTION 
 

 

1.1 Background 

 

 The need for higher device performance that is driving the silicon electronics 

industry has necessitated the scaling of device sizes to submicron dimensions over the 

last decade �– a trend embodied in Moore�’s law. As devices scale further towards 

atomistic sizes, existing CMOS devices, suffer from severe short channel effects which 

lead to device performance degradation, variations and increased power dissipation. 

These are major issues that CMOS technology faces, and drawbacks to further scaling. 

To gain more control over these critical issues, while still retaining the path of advancing 

performance, CMOS devices as predicted by the International Roadmap for 

Semiconductors, (ITRS) [1], will evolve from planar devices into devices that include 

strong strain engineering for carrier velocity enhancement and 3D features and gate all 

around placement for better electrostatic control on the channel. High mobility materials, 

that can operate at lower power supply, such as III-V compounds and carbon nanotubes 

are also been considered as alternative channel materials.   

 Several device structures and geometries are being investigated for replacements 

for the planar Si transistor, both theoretically and experimentally. Planar structures such 

as ultra-thin-body devices and III-V HEMT devices [2-6], as well as multi-gate FinFET 

type geometries [7-9], gate all around nanowire devices [10-15], and carbon nanotube 

FETs [16-21] are all potential candidates (Fig. 1.1). To predict the potential benefit of 

these devices over conventional Si MOSFETs, and further optimize their operation, 

however, deep understanding is necessary, and modeling and simulation can offer 

tremendous insight. Short channel effects must be accurately captured through proper 

electrostatic treatment, many times in three-dimensions. Quantum mechanical effects will 

dominate transport, and need to be treated through a full quantum mechanical model. 
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Fig. 1. 1. The development trend and future projections of CMOS devices and structures. 

Adopted from Robert Chau (INTEL Corp.[22]). 

 

 

Suggestions have been made on that what will determine the ultimate scaling of devices 

will be the OFF-state source to drain tunneling, a purely quantum mechanical effects 

[23]. On top of that, the ability to predict the accurate electronic structure of the device, 

which might consist of material different from Si, oriented in arbitrary directions and 

quantized in various cross sectional shapes and directions and influenced from strong 

strain fileds will be another determining factor for evaluating the performance of a certain 

device. 

 

1.1.1 3D device geometry 

 

 The 3D structure geometry is essential in the scaling of the device, since it 

provides the necessary gate control on the channel, which is weakened in the case of ultra 

scaled planar devices due to short channel effects. The electrostatics of the device needs 

to be optimized and carefully studied, since it ought to be the major factor that controls 

the device behavior. Potential variations in the cross section of the device as well as along 

the channel will also have a large effect on the device properties. A proper 3D structure 

description therefore, will be a main component needed in device modeling.  

Robert Chau (Intel), 2004Robert Chau (Intel), 2004
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Fig. 1. 2. Applications of the NEGF formalism: The Non-Equilibrium-Greens�’ Function 
(NEGF) formalism has been extensively used in transport modeling in a variety of 
nanoscale devices, MOSFETs, nanowires, nanotubes and molecular electronics. 

 

 

1.1.2 Quantum mechanical effects 

 

  Extensive simulation tools based on the non-Equilibrium Greens�’ Function 

(NEGF) formalism have been developed in order to study quantum effects in MOSFET 

devices [24]. NEGF has been demonstrated to correctly account and explain the quantum 

behavior of a variety of nanoscale devices such as 2D MOSFETs [25], 1D nanowires [26-

28], carbon nanotubes [29-32], and 2D graphene based transistors [33] (Fig. 1.2). A 

variety of quantum mechanical effects can be captured by this treatment, such as 

quantization in density of states and transmission, tunneling, quantum mechanical 

reflections and resonance states, edge states (as in the case of graphene transistors) and 

metal induced gap states (MIGS), (as in the case Schottky Barrier contacts) [29, 33]. 

These capabilities have established NEGF as a powerful (and often necessary) tool in 

modeling quantum effects in nanostructures. Mode space and real space techniques are 

being used in device modeling within the NEGF framework. Mode space approaches 

provide certain parts of the necessary information, however, they fail in situations in 

which a lot of modes are mixing, as in situations with large potential variation in the 

devices, or near the surfaces where edge states and MIGS accumulate. In some of these 

1 2H+U+ S1 2H+U+ S



 4

cases, the coupled mode approaches might provide more accuracy, in others they do not. 

Compromises between accuracy and computation efficiency have to be made in some 

cases. 

 

1.1.3 Atomistic modeling 

 

  Necessity of atomistic modeling: The effective mass approximation (EMA) has 

been extensively used in evaluating the performance of traditional MOSFET devices. 

New physics need to be included in treatment of the next stage of CMOS devices, 

however, which will make the EMA inadequate. The problem of identifying the correct 

bandstructure and effective masses of nanowires has been addressed by various authors in 

references [26, 34-36] with qualitative agreement on the main features of the electronic 

structures. Other sophisticated atomistic techniques for electronic structure calculation 

also mention mass variations in nanostructures from their bulk values, which results in 

different threshold voltages and ON-current densities [34, 37]. By adjusting the effective 

masses to map masses extracted from atomistic calculations, however, the EMA can still 

be used [34, 38] for the conduction band only, for specific wafer orientations only, and 

for specific structures and structure sizes only. In general, however, this method is not 

always valid, and atomistic simulations are more appropriate for nanoscale devices.  

  More accurate atomistic models that inherently include all relevant information 

about the electronic structure of materials and structures, therefore, should be utilized. 

Atomistic models can provide information about non-parabolicity, confinement level 

position beyond the effective mass approximation (for both structural and electrostatic 

confinement), the effects of strain in the electronic structure (uniform and non-uniform), 

as well as a more accurate distribution of charge in the device channel. In addition to that, 

atomistic description of the device in arbitrary orientations, has the advantage of being 

able to automatically capture the valley projections and extract the dispersions of the 

channels in the transport orientation. This model also automatically includes information 

about band coupling and mass variations as functions of quantization.  

Motivation for an empirical tight-binding (TB) model: The choice of the atomistic 

model to be used depends on the problem of interest. At the nanometer scale the concept 
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of a �“new device�” and a �“new material�” are blurred. Quantum mechanics of the electronic 

structure, crystal symmetry, atomic composition and spatial disorder are important. A 

certain electronic structure model needs to satisfy several requirements to accurately 

capture nanoscale device physics, in which the traditional effective mass approximation 

(EMA) will fail to capture. The finite extent of the devices rather than the infinite 

periodic nature speaks for the choice of a local basis set rather than a plane wave basis 

set. The stability of the bands in typical semiconductor devices speaks for a reduced 

model that takes the existence of bands for granted. The need to model complicated man-

made heterostructures speaks for a nearest neighbor model to eliminate ambiguities of 

long-range coupling elements. The need to simulate large extensive structures containing 

tenths of millions of atoms [39], requires a reduced order model. The need to accurately 

model bandgaps (within a few meV) and masses (within a few %) speaks for an empirical 

bandstructure model rather than an ab-initio model. All these requirements have led to the 

choice of empirical TB in this work. 

The sp3d5s* TB model: The basis set of the sp3d5s* nearest neighbor TB model 

used in this work, is composed of orthogonal localized orbitals. This type of basis makes 

it very attractive for accurate electronic structure of truncated nanostructures of finite 

sizes and composition variations on the nm-scale. It is a very convenient method to treat 

material and potential variations as well as strain fields at the nanoscale. The 

parameterization was performed using a genetic algorithm in [40, 41], and the parameters 

extracted can reproduce the band edges of the bulk silicon bandstructure over the entire 

Brillouin zone. The model is described in detail in references [39, 41-45]. The energy 

bands obtained for nanostructures, as well as in the bulk case in energy regions away 

from the bulk minima, are in good quantitative agreement with other theoretical 

calculations using pseudopotential and ab-initio GW methods [46]. 

  Challenges and limitations: At the 22nm node (year 2011), the device channel 

length is predicted to be 10nm, which is only about 60 atomic layers in length. In such 

mesoscopic dimensions, the essence of electronic structure of devices, based mainly on 

effective mass approximation is definitely questionable. Atomistic effects, interface 

details and surface roughness, discrete dopant and impurity fluctuations will dramatically 

influence the device properties. The statistical nature of imperfections is lost, and the 
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devices cannot be characterized by a collective behavior. Each device will be different 

from the rest, and variations due to imperfections will be a major drawback in the 

controlling their operation. An understanding of the impact of atomistic effects, therefore, 

will be of importance. In doing so, atomistic modeling provides this information 

inherently, since the devices can be modeled atom by atom and all imperfections can be 

are included. Direct modeling of quantum transport in 3D devices of realistic sizes using 

atomistic basis sets and quantum transport in the NEGF formalism is, however, 

prohibitive due to the extensive computational burden. This can be succeeded by using 

fast and parallel numerical techniques, with the involvement of computer scientists. A 

large part of the necessary information however, can be extracted relatively fast, from 

bandstructure simulations of nanostructures (cross section of infinite length devices). 

Relevant information can be extracted and then be used in the 3D NEGF simulation 

scheme in less computationally expensive approaches (i.e modifications in effective 

mass, or mode space approaches).      

 

1.2 Summary and contributions 

 

  In this thesis, we address general issues that will impact the performance of the 

possible candidate structures and devices for silicon MOSFET alternatives. The three 

device families addressed are CNTs, NWs, and III-V material devices. These are all ultra 

scaled, low dimensional devices that will operate in the quantum capacitance regime, and 

possibly very close to the ballistic limit.  

  We investigate the sensitivity of these low dimensional device structures to 

defects and process variations and identify the important factors that will influence their 

performance. The key findings are that the performance of 1D channels is very sensitive 

to atomistic defects and can suffer from the presence of just a single defect or 

imperfection in the channel. In order to develop this general conclusion, simulations on a 

variety of channels with a variety of imperfections have been performed.  

  We also investigate the sensitivity of the electronic structure of scaled channels as 

a function of quantization, channel orientation and potential variations in the structure. 

Examination of these effects in several device families allowed us to identify which of 
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the electronic structure features affect the performance of the devices and to what degree. 

We also identified at what extent the effect of variations in these features impact the 

device performance. What has emerged as a general conclusion out of this work is the 

importance of the semiconductor capacitance for devices that operate in the quantum 

capacitance regime, which degrades the total gate capacitance by a factor of about two. 

Variations in the capacitances of the devices, however, (oxide capacitance, quantum 

capacitance) do not appear as variations of similar order in the performance of the device. 

What can affect the performance of different channels is the transport effective mass. For 

short channel devices, light mass can increase the carrier velocity and improve 

performance, however, it can also enhance tunneling which slows carriers down. For this 

reason, the carrier velocity is lower than can be expected from bandstructure calculations. 

This dissertation, finally, other than the channel, addresses the importance of the contact 

resistance and the design of the source in low dimensional / low density of states devices.  

  From modeling point of view, the thesis provides descriptions of comprehensive 

models to analyze the effect of electronic structure in nanowires using an atomistic 

Hamiltonian self consistently coupled to a Poisson solver. It also provides detailed 

descriptions of how to build generic models for simulators utilizing atomistic treatment of 

nanodevices, 3D electrostatics and quantum transport. Most of these details are presented 

in the Appendices.   

 

1.3 Outline of the dissertation 

 

  In chapter 2 a real-space atomistic 3D quantum (NEGF) simulator for 

experimentally realized CNT devices is used to investigate the impact of single atomistic 

defects in the 1D CNT channels. The chapter is based on references [31, 32, 47]. The 

effect of a variety of defects such as vacancies, and both positively and negatively 

charged impurities on the CNT channel performance is described. In addition to 

semiconducting CNTs, the effect of vacancy defects on metallic CNTs, as well as the 

effect of dangling bonds on the performance of nanowire devices is investigated. The 

results presented, therefore, provide a general understanding of the effect of defects in 1D 

systems, independent of the nature of the defects or the channel. The final conclusion of 
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this study is that single atomistic defects have a large impact on the performance of 1D 

nanoscale devices.  

  Chapter 3 describes the self-consistent ballistic model that is used for examining 

the transport properties of nanowire transistors based on their electronic structure 

properties. The chapter is based on references [38, 48, 49]. In the model, the nanowire 

channel is described atomistically, in various transport and quantization directions. A 

semiclassical ballistic model is used for transport calculations. Atomisitc modeling is 

essential, since as it is explained in the chapter, the simple effective mass treatment can 

only work for some transport cases for the conduction bands of nanowires, only after the 

effective masses are adjusted to the TB masses. The new contribution to the semiclassical 

model is to include the potential variations in the cross section of the device through 

through a 2D Poisson solution for the solution of the electrostatics. The key finding is 

that consideration of potential variations in the cross section of the device, as well as the 

exact shape of the charge distribution is very important, for devices of sizes even down to 

3nm, and can impact the electronic structure, the semiconductor capacitance and the 

device performance at large.  

  Chapter 4 describes explicitly the bandstructure effects on the transport properties 

of NMOS nanowires oriented in different transport orientations and it is based on 

reference [49]. It is shown that atomistic effects are dominant in the transport of ultra 

scaled nanowires. The effective masses and carrier velocities of nanowires, other than 

depending on the wire orientation, are also strong functions of quantization and change 

differently in different wire orientations. Explanation for this behavior is provided 

through features in the first Brillouin zone of Si. Band coupling effects such as valley 

splitting, lift the degeneracies of nanowires, and are also of different magnitude in 

different orientations. In addition, it is shown that the semiconductor capacitance in 

nanowires is important, and can degrade the total gate capacitance by ~30%. This is 

effect appears to be very similar to nanowires in all transport orientations. The final 

important conclusion of this chapter is that when comparing the relative performance of 

different nanowires, the carrier velocity is the dominant deciding factor.  

Chapter 5 focuses on the ballistic transport of PMOS nanowires and is based on 

[50]. The valence band of semiconductors in general is much more complicated to 



 9

describe compared to its conduction band counterpart because of the enhances spin-orbit 

coupling, the strong anisotropy and non-parabolicity of the heavy hole subband. It is 

shown that this problem becomes much larger in the case of nanowires and especially 

under potential variations in the lattice. The dispersions of nanowires in different 

orientations look very different, and qualitative explanations for their shapes are extracted 

from the Si bulk Brillouin zone. It is shown that the large change in the dispersion shapes 

under potential variations makes the effective mass description impossible. The effect of 

anisotropy is evident in the charge distribution in the cross section of the wires, in which 

the charge tends to accumulate on the surface with the largest quantization mass. The 

effect of the semiconductor capacitance on the total gate capacitance is somewhat less 

severe than in the case of the conduction band. The key contribution of this work is to 

provide a qualitative understanding of the dispersion shapes and quantization behavior of 

of p-type nanowires, and their implications in the device performance.    

Chapter 6 presents a simulation analysis of recent experimental data for high-

performance In0.7Ga0.3As high electron mobility transistors (HEMTs). It is based on 

reference [51]. The bulk mobility in InGaAs is of the order of ~10,000 cm2/V-s, so these 

devices are expected to reach the ballistic limit in much longer channel lengths than Si 

devices. It is shown that an In0.7Ga0.3As HEMT with a gate length of LG = 60nm can be 

understood as a ballistic channel FET with two series resistances attached at the source 

and drain contacts. Reduction of the series resistance, reduction of the insulator thickness, 

and optimization of the source design are singled out as the primary drivers to further 

improve III-V HEMT device performance (at a constant channel effective mass). The 

importance of this work lies in the theoretical demonstration that the specific devices 

analyzed can be understood as devices that operate ballistically, or very close to the 

ballistic limit.     

  Chapter 7 concludes the thesis work, resumes the main findings and points 

towards future directions.  
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2. QUANTUM SIMULATION OF 3D CNTFET DEVICES �– THE  

          EFFECT OF ATOMISTIC DEFECTS IN TRANSPORT 

PROPERTIES OF 1D CHANNELS 
 

 

2.1 Introduction    

 

  As devices shrink to the nanoscale, 1D channel devices such as carbon nanotube 

field effect transistors (CNTFETs) and nanowire transistors are becoming potential 

candidates for electron devices. Carbon nanotubes (CNTs) have excellent device 

characteristics and are candidates for future digital switches and RF transistors [16-20, 

52]. Simple circuits based on CNTFETs have already been demonstrated [21]. Nanowire 

transistors have also been demonstrated with cross sections even down to 3nm. It is 

expected, however, that the sensitivity of 1D channels to device variations and atomistic 

defects will be increased. At the mesoscopic regime, the nature of statistical averaging is 

lost, and each device is a different channel/material on its own. Slight variations to the 

size of the devices will correspond to large percentages of their sizes, and can affect their 

properties significantly. Understanding the effect of single defects on the performance of 

1D channels will therefore be essential in addressing design issues on the nanoscale. In 

this chapter, the effect of a variety of defects (negatively/positively charged impurities, 

vacancies) on 1D CNTFET channels is examined. The effect of dangling bond defects on 

the transport properties of nanowires is also investigated. The conclusion is common for 

all devices and defects examined: In one-dimensional systems, the effect of individual 

defects can have severe effects on the device performance.   

  For the cases of defects in CNTFETs, a real space 3D ballistic quantum simulator 

is used. The simulator is based on the Non-Equilibrium Greens�’ Function method 

(NEGF) for quantum transport, and 3D electrostatics based on the finite element method  
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Fig. 2. 1. Electronic features of semiconducting and metallic zig-zag CNT devices: 
Rolling up the 2D graphene sheet, will quantize the k-space according to the direction 

that the material is rolled up, and according to number of atoms in the ring. (a-b) 
Semiconducting CNTs i.e. (13,0) have a parabolic dispersion at low energies, and are 
direct gap materials. (a) The (13,0) CNT DOS(E). (b) The (13,0) CNT T(E). (c-d) The 
metallic CNTs i.e. (12,0), have a linear dispersion that passes through the fermi level 

(Ef=0eV). (c) The (12,0) CNT DOS(E). (d) The (12,0) CNT T(E). 
 

(FEM). The channel is described using an atomistic pz-orbital nearest-neighbor (NN) 

tight-binding (TB) description for the device Hamiltonian. Details of the simulator are 

given in Appendix A.  

  The chapter is based on references [31, 32, 47] and is organized as follows: The 

transmission, T(E), and 1D density of states, DOS(E), of CNTs are presented, for the 

control (un-defected) zig-zag CNT devices, as well as devices with atomistic defects in 

the channel. The effect of vacancy and charged impurity defects on the CNTFET 

transport properties is then discussed. Further on, the effect of vacancy defects in metallic 

zig-zag CNT devices is investigated. Finally, it is shown that dangling bond atomistic 

defects in nanowire devices show similar effects on the T(E) and DOS(E) as in the case of 

CNTs. 
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Fig. 2. 2. The 3D coaxial CNTFET with source/drain extensions: The channel length is 
20nm. The channel is a zigzag CNT with ~1 nm diameter. The gate oxide is assumed to 

be 4 nm thick HfO2 with dielectric constant k=16. 

 

 

2.2 1D CNT electronic features: Density of states (DOS(E)) and   

            transmission coefficient (T(E)).  

 

              The density of states (DOS(E)) and transmission coefficients (T(E)) for two 

different chirality zig-zag CNTs are shown in Fig. 2.1. The calculation was performed 

using the pz-orbital TB description of the CNT and the NEGF formalism. Rolling up the 

2D graphene sheet, will quantize the k-space according to the direction that the material 

is rolled up, and according to number of carbon atoms in the ring that is formed. The k-

space quantization will determine the properties of the CNT. The (13,0) CNT has 

semiconducting behavior, with zero density of states and transmission around the 

bandgap region as shown in Fig. 2.1 (a-b). The (12,0) CNT is metallic (zig-zag CNTs in 

which the chirality number n is a multiple of 3 are metallic), with a finite DOS(E) around 

the middle of the energy spectrum, and finite transmission of two quantum units per spin 

(Fig. 2.1 (c-d)). These results agree well with previously published results for zig-zag 

CNTs [29, 53]. 

 

2.3 The effect of atomistic defects on the transport properties of CNTFETs   

  

  In this section, we investigate how different vacancy defects affect the device  
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Fig. 2. 3. The effect of vacancies in the electronic properties of CNTs: (a) The density of 
states of the (13,0) CNT with and without a vacancy defect presence in the channel using 

a pz orbital approximation. The results are drawn on a two unit cell structure. (b) The 
transmission probability for two unit cells of (13,0) CNT. Results for a perfect CNT, a 

CNT with a vacancy in the channel modeled in the simple pz orbital approximation, and 
by using the four orbital non-othogonal Extended Huckel Theory (EHT) [54] model. 

 

 

characteristics of semiconducting zig-zag CNTFETs. We consider the cases of vacancies 

and both positively and negatively charged impurities.  

  The model device considered consists of a (13,0) zigzag CNT, with 1nm diameter 

and 0.8eV bandgap (Fig. 2.2). The length of the undoped channel and source/drain region 

extensions are 25 and 22.5nm respectively. The source/drain regions are doped uniformly 

with ND=109 dopants/m. The surrounding gate oxide is a 4nm thick HfO2 high  

dielectric material ( =16), whereas the interior of the CNT is vacuum ( =1). We assume 

a gate workfunction that produces flat band conditions at VG = -Eg/4 where Eg is the band 

gap of the CNT ( mGate = mCNT + Eg/4). The applied drain (Vd) and gate (Vg) biases 

vary from 0 to 0.45V, which provide an excellent Ion/Ioff =105 and drive current (Ion) of 

20 A, which are comparable to experimentally reported CNTFET values [17]. To model 

the vacancy, we set the onsite potential to 106eV at the carbon vacancy site, which 

ensures that a channel electron is effectively repelled from the location of the vacancy 

[55]. 

 

 

(b)(a) 
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Fig. 2. 4. Effect of the vacancy on the transport properties of the CNTFET. (a) The 
conduction band of the control vs. vacancy defected CNT at Vg=0.4 V and Vd=0.4 V. (b) 

The carrier distribution along the channel of the two devices for the case (a). (c) The Id-Vg 
characteristics at Vd = 0.4V. Inset: The Id-Vd for Vg = 0.45, 0.35, 0.25V. 

 

 

2.3.1 The effect of a vacancy defect 

 

  It is well known that vacancies arise in graphite at low concentrations during 

defective growth or as part of the thermal equilibrium concentration [56, 57]. They are 

much more prevalent in irradiated materials and are believed to be the predominant 

defects on irradiated graphite surfaces and CNTs [58-61].  

  We find that the vacancy creates a localized state in the bandgap and a reduction 

of the transmission probability in both the conduction and valence bands as shown in Fig. 
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2.3. The reduction in the transmission probability based on -orbital model has been 

confirmed by non-orthogonal extended Hückel calculations using sp3-orbitals for each 

carbon [54]. The localized state in the bandgap appears in the Hückel calculations too, 

however it is slightly shifted towards the valence band. This behavior is also verified 

experimentally [62].  

  In this study, we placed the vacancy in the middle of the CNT channel. When the 

transistor is in the OFF-state, the conduction band edge (Ec) in the channel is 0.2eV 

above the source Fermi level, and the channel is almost empty of charge. In this case, the 

vacancy changes the transport characteristics mainly through the reduction of the 

transmission probability. As the transistor is turned on (Vg=Vd=0.4V), the localized state 

in the band gap gets partially filled, and causes changes in the potential profile and the 

carrier occupancy of the channel. There is pile up and depletion of the carrier density (Ne) 

to the left and right of the vacancy respectively, due to carrier reflections from the 

localized state as shown in Fig. 2.4 (b). This causes the conduction band profile to float 

up/down at the left/right sides of the vacancy, as shown in Fig. 2.4 (a). The combination 

of transmission reduction and the slight increase in the source injection barrier, reduces 

the drive current from 18.5 A to 13.5 A, a reduction of 28% (Fig. 2.4 (c)). We note that 

a 12meV shift in the threshold voltage (Vt) is also observed. This shift, however, is 

responsible for approximately only 8% of the total 28% of Ion reduction. We also 

considered the case where the vacancy sits near the source and drain ends, and find that 

the drive current decreases by a similar amount, indicating that the decrease in drive 

current is independent of the vacancy location. 

 

2.3.2 The effect of a negatively charged impurity defect 

 

  A second important source of scattering are charged impurities that reside either 

on the surface of the CNT, or in the gate oxide. These impurities can be charged ions, 

molecules, alkali metals or dopants that exchange charge with the CNT [63-66]. Here we 

investigate the effect of a negatively charged impurity having charge q , where q is the 

charge of an electron. Three different locations of the impurity are considered: (A) the 

interior of the CNT, (B) the middle of the oxide, and (C) the top of the oxide, 0.5nm from  
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Fig. 2. 5. Effect of a negatively charged impurity in different locations of the device. The 
charged impurity is placed (A) in the middle of the CNT, (B) in the middle of the oxide 
and (C) near the gate electrode. (a) The conduction band of the control vs. the different 

charged impurity cases at Vg=Vd=0.4V. (b) The carrier distribution along the channel for 
all the impurity cases at the case corresponding to (a). (c) The Id-Vg characteristics for 

Vd=0.4V. Inset: Id-Vg for Vg=0.45V. 

 

 

the gate electrode (inset of Fig. 2.5 (b)). We find that case (A) gives rise to a large 

scattering center in the conduction band as shown in Fig. 2.5 (a). Similar to the case of 

the vacancy localized state, electrons traveling from the source to the drain reflect from 

this barrier and pile-up/deplete to the left/right of the impurity (Fig. 2.5 (b)). The 

comparison to the case of vacancy is interesting. While the drive current is reduced by 

about 33%, which is similar to the case of the vacancy, there is now a large shift in the 

threshold voltage by about 40meV. For an operating bias of 0.4V, the threshold voltage  
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Fig. 2. 6. Effect of a positively charged impurity in different locations of the device. The 
charged impurity is placed (A) in the middle of the CNT, (B) in the middle of the oxide 
and (C) near the gate electrode. (a) The conduction band of the control vs. the different 

charged impurity cases at Vg=Vd=0.4V. (c) The charge distribution along the channel for 
all the impurity cases at the case corresponding to (a). (c) The Id-Vg characteristics for 

Vd=0.4V. Inset: Id-Vg for Vg=0.45V. 

 

 

shift is about 10%, a magnitude that might not be tolerated in circuit design and can lead 

to large Ioff variations. This can be a very serious problem since it degrades the low bias 

performance, for which CNTFETs are advantageous compared to conventional silicon 

MOSFETs, because they can provide large current densities at lower operating biases. In 

comparison to case (A), the drive current and threshold voltage are affected very little in 

cases (B) and (C) (5% and 0.5% reduction respectively). This behavior can be attributed 
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to an effective screening of the impurity by the surrounding gate electrode, enhanced by 

the high k-dielectric of the gate insulator.  

 

2.3.3 The effect of a positively charged impurity defect 

 

  Next, we investigate the effect of a positively charged impurity placed at the same 

locations as in Fig. 2.5 (b). While a negatively charged impurity in the center of the CNT 

creates a large barrier in the conduction band, a positive impurity creates a large well as 

shown in Fig. 2.6 (a). The carrier density in the channel (Fig. 2.6 (b)) slightly oscillates, 

and electrons are attracted around the positive impurity site in the middle of the channel. 

The top of the barrier is not affected significantly in this case, and as a result the drive 

current deceases by only 11% as shown in Fig. 2.6 (c). Quantum mechanical scattering 

from a potential well is weaker than scattering from a barrier. It is also interesting to see 

here that the shift in Vt is much smaller (5meV) and now negative. Finally, we find that 

cases (B) and (C), for which the impurity is placed in the oxide further away from the 

CNT shell, have an insignificant effect on the device performance. We would like to 

mention here, that for a p-type device, the relative role of the positive and negative 

impurities would be reversed. 

 

2.3.4 Vacancy defects in metallic CNT channels. 

 

  Introduction of a vacancy defect in the channel of metallic CNTs, similarly to the 

case of semiconducting CNTs, alters both the density of states and the transmission near 

the Fermi level due to the change in bonding between the vacancy and its nearest 

neighbors, and introduces localized states. In Fig. 2.7 (a-b), the non-self consistent 

simulated density of states (DOS(E)) and transmission (T(E)) for a (12,0) CNT is shown 

respectively, with and without a single vacancy present in the channel. The model device 

in this case, is just a two unit cell channel, with open boundary conditions for the 

contacts.  

  The density of states around the Fermi level (Fig. 2.7 (a)) rises due to the broken 

-network at the vacancy site. The transmission on the other hand (Fig. 2.7 (b)) decreases  
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Fig. 2. 7. Density of states (DOS(E)) and transmission (T(E)) for metallic CNT channels 
consisting of two unit cells with open boundary conditions. (a) The DOS(E) for a (12,0) 
CNT with ~1 nm diameter for the control (defect-free �– dash line), vs. vacancy included 
(solid line). The unit cell consists of 48 atoms. (b) The T(E) of the control (12,0) CNT 

(dash) vs. the defected one (solid). (c) The DOS(E) for a (42,0) CNT with ~4nm diameter 
for the control (defect-free - dash), vs. vacancy included (solid). The unit cell consists of 
168 atoms. (d) The T(E) of the control (42,0) CNT (dash)  unit cell vs. the defected one 

(solid). 

 

 

close to one quantum unit (q2/h per spin, where q is the charge of the electron and h is 

Plank�’s constant) in the vicinity of the Fermi level in agreement with Chico et. al. [53]. 

For CNTs with larger diameters, i.e. (42,0) with 4nm diameter, similar behavior is 

observed as in the case of the (12,0) CNT as shown in Fig. 2.7 (c-d). In this case, 

however, the reduction in transmission is more localized near the middle of the energy 

spectrum of the CNT. The same effect is observed for the increase in the density of states, 

which is mostly localized in the middle of the energy spectrum. These differences will 

significantly affect in the I-V characteristics of the two devices.  

The self-consistent simulated charge and potential energy distribution along the 

channel of the coaxial (12,0) CNTFET of Fig. 2.2 are shown in Fig. 2.8 (a-b). The  
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Fig. 2. 8. The effect of the vacancy on the electronic properties of a metallic (12,0) 
CNTFET. (a) The charge distribution along the channel of the control (dash) vs. the 

vacancy contained (solid) CNTFET for VG=0.1, 0.3, and 0.5V, under equilibrium 
conditions (VD=0 V). (b) The corresponding potential energy profile for the cases 

described in (a). (c) The charge distribution along the channel of the control and the 
defected CNTFET for VG=0.5 V, under non-equilibrium conditions (VD=0.2 V). Large 

scattering is observed at the vacancy site. Charge is accumulated in the left of the 
vacancy. (d) The corresponding potential energy profile for the case described in (c). (e) 

The charge distribution along the channel of the control and the defected with two 
vacancies CNTFET for VG=0.5 V, under non-equilibrium conditions (VD=0.2 V). (f) The 

corresponding potential energy profile for the case described in (e). 

 

vacancy is placed in the middle of the channel. Fig. 2.8 (a) indicates an accumulation of 

charge at the vacancy location, which is associated with the increased local DOS(E). The 

amount of charge increases as the bias on the gate electrode increases, because more of 
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the vacancy induced states are now filled with electrons. This charge accumulation raises 

the electrostatic energy of the channel locally (Fig. 2.8 (b)). Under non-zero gate and 

drain biases (VG=0.5V, VD=0.2V), shown in Fig. 2.8 (c-d), the local accumulation of 

charge near the defect site creates a scattering center, and causes changes in the potential 

profile and the carrier occupancy of the channel in its entire length. There is  

accumulation and depletion of the carrier density (n) to the left and right of the vacancy, 

respectively, due to carrier reflections from the localized state as indicated in Fig. 2.8 (c). 

This causes the potential energy profile to float up (down) at the left (right) sides of the 

vacancy (Fig. 2.8 (d)). Introduction of two vacancies in the channel of the device as 

shown in Fig. 2.8 (e-f), has a similar local effect in the places where the vacancy is 

present. In this case the vacancies are located at L/3 (~6.7nm) and 2L/3 (~13nm) from the 

source contact, where L is the length of the channel (20nm). The two peaks in the charge 

distribution indicate the location of the defects, which cause pile up of the charge and the 

potential energy to the left side of the device, and depletion to the right side. 

  The ID-VD characteristics are computed by self consistent NEGF simulations 

performed in the ballistic limit. The current is calculated in the Landauer formalism as 

( )( ) ,f fS DI T E E E dE  where (EfS -EfD) is the difference between the Fermi levels of 

the source and the drain electrodes. As indicated in Fig. 2.9 (a), the self consistent 

transmission of the control (12,0) CNT device is constant at two quantum units over the 

entire energy range of interest (within the EfS - EfD window). For a device with a single 

vacancy the transmission is reduced to one quantum unit, and for the case of two 

vacancies in the channel, it reduces even further. Since the reduction happens over a large 

energy range, shifting the EfS-EfD window (for example by using a different gate bias or 

different workfunction for the gate), will not help in improving the defected devices�’ 

transmission probabilities. Figure 2.9 (b) shows the self consistently computed ID-VD 

characteristics for a (12,0) CNT with and without vacancy defects in the channel. 

Because of the constant transmission of the control CNT around the Fermi level, the 

metallic CNT ID-VD characteristics are linear with the slope being the conductance of the 

channel, as shown in Fig. 2.9 (b) (solid line). A single vacancy defect in the middle of the 

channel reduces the conductance by a factor of two (dashed line). Two and three 

vacancies are considered, placed in equal distances from one another in the channel. The  
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Fig. 2. 9. The effect of the vacancy defects on the drive current capabilities of the 
metallic CNTFET. (a) The self consistent transmission coefficient of the (12,0) CNTFET 
with none (solid), one (dash) and two (dash-dot) vacancies in the channel. The window 

EfS-EfD indicates the important electron transport energy region. (b) ID vs. VD for control 
vs. vacancy defected (12,0) CNTFETs. Control (solid), single vacancy (dash) and two 

vacancies (dash-dot) in the channel. INSET: The resistance of the channel as a function 
of the number of vacancies. (c) The self-consistent transmission coefficient of the (42,0) 
CNTFET for the control (solid), single vacancy (solid-grey), four-vacancy device (solid) 

at VD=0.1V. Also, the four-vacancy device at VD=0.1V (dash-dot). In all cases, the 
vacancies are placed in equal distances from each other in the channel, i.e. in the case of 

the two vacancies, they are placed at L/3 and 2L/3 distances in the channel, where L is the 
channel length. (d) ID vs. VD for control vs. vacancy defected (42,0) CNTFETs. 

 

 

drive current reduces by almost half every time another defect is introduced in the 

channel and the corresponding channel resistance increases (inset of Fig. 2.9 (b)). It is 

also found, that the exact position of the defect does not significantly alter the ID-VD 

characteristics. Variations in the defect position can cause small shifts and oscillations in 

the transmission spectrum; however they cannot affect the overall drive current 

characteristics significantly.  
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  The control (42,0) CNT, with larger diameter (~4nm), has the same transmission 

as the (12,0) CNT (2 quantum units), and therefore delivers the same amount of current 

under small drain biases. (The (42,0) CNT will deliver more current at higher drain biases 

since other energy bands appear in much lower energies than the (12,0) CNT). The 

transmission plots of the control CNT, the CNT with one and four vacancies for the case 

of VD = 0.1V, are shown in Fig. 2.9 (c). The transmission curve for the case of the four-

vacancy CNT at VD = 0V (dotted line) is also shown for comparison to the four-vacancy 

device at VD = 0.1V. This shows that the shape of the transmission of a certain channel 

does not significantly change with VD, except from a small shift in its energy spectrum 

(smaller than the VD window). The transmission curves for the cases of two and three 

vacancies fall in between these curves, however for simplicity they are not shown here.  

  The ID-VD characteristics for both control and defected (42,0) CNTs are shown in 

Fig. 2.9 (d). (Due to numerical convergence issues at high biases for the defected devices, 

the ID-VD characteristics were extracted for the entire bias range by using the self 

consistent transmission coefficient derived at VD = 0.1V, considering that the shape of the 

transmission profile does not change significantly with VD as shown in Fig. 2.9 (c)). At 

low drain biases, the drive current in all the devices is almost unaffected. The reason is 

that the reduction in transmission for all the defected devices is more localized within a 

smaller energy range (compared to the (12,0) CNT case) and initially falls out of the EfS-

EfD window of width 0.1V. This, however, depends on the choice of the initial placement 

of this energy window (by changing the gate bias or the workfunctions of the electrodes). 

As the drain bias is increased and the reduced transmission region (around -0.2eV), falls 

within the EfS-EfD window, the drive current of the defected devices reduces. At even 

higher biases, the transmission, as well as the conductance of the channel (slope of the ID-

VD) is rectified. Due to this dynamic dependence of the current on the drain bias, a single 

value for the channel resistance cannot be easily defined as in the case of the (12,0) CNT. 

Physically this difference between the performances of the two different diameter 

defected devices, can be explained by the fact that in the larger diameter CNT, the 

electrons have larger phase space and more paths to avoid scattering off the vacancy, 

making its effect less important.  
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Fig. 2. 10. Density of states (DOS(E)) and transmission (T(E)) for 1.5nm cross section, 
7nm length [110] oriented Si nanowire channels with open boundary conditions. (a) The 
T(E) for the control (defect-free �– red line), vs. the same nanowire with 2 dangling bond 

defects/nm included (blue line). (b) The DOS(E) for the case described in (a). (c) The 
T(E) for the control (defect-free �– red line), vs. the same nanowire with 10 dangling bond 

defects/nm included (blue line). (b) The DOS(E) for the case described in (c). 

 

 

2.4 Dangling bond defects in ultra scaled cross section nanowires 

 

  The sensitivity of to single atomistic defects is observed in ultra scaled nanowires 

channels too. Here, the behavior of dangling bond defects in square nanowires with 

1.5nm cross sections and 7nm in length is examined using an atomistic sp3d5s* TB model 

(see Appendix B) for the Hamiltonian description and the NEGF approach for the 

transport properties calculation. The transmission T(E) and density of states DOS(E) is 

presented in Fig. 2.10. The whole range all the way from the valence to the conduction 

band is presented in the energy axis. The control device with no dangling bond defects 

characteristics is shown in red, whereas cases for 2 dangling bond defects (Fig. 2.10 

(a,b)) and 10 dangling bond defects per nanometer are presented (Fig. 2.10 (c,d)). 

Introduction of defects are in the case of CNTs, lowers the transmission significantly in 



 

 

25

both 2 defect and 10 defect cases. The DOS(E) loses the perfect 1D behavior, and 

oscillations are now observed in the plots. In the case of the 10 defects/nm, localized 

states start to appear in the bandgap, which are both the unpassivated bonds�’ states, and 

an effect of 1D localization due to imperfections in the wire. 

 

2.5 Summary 

 

  In this chapter, a 3D real space quantum simulator for CNTFET electron transport 

was used to study the effect of charged impurity defects and vacancy defects in altering 

nanotube transistor device characteristics from the ballistic limit. A single vacancy can 

cause drive current reduction by approximately 28%, independent of the location of the 

vacancy in the channel.  

  While a single negatively charged impurity near the channel also decreases the 

drive current by a similar amount, it leads to a much larger threshold voltage shift, 

comparable to 40meV (10% of the power supply). The scattering strength of the charged 

impurity weakens, and finally becomes negligible when the scatterer is placed away from 

the CNT channel, close to the gate electrode. For a n-type device, a localized positively 

charged impurity causes a much less performance degradation and Vt shift (only 5meV) 

compared to the negative impurity.  

  Vacancy defects in metallic CNTs have similar effects. In small diameter metallic 

CNTs, a single vacancy defect can reduce the drive current capabilities of the CNT by 

half. Multiple defects can decrease the performance even more. The reduction, however, 

is much less in larger diameter CNTs. Atomistic defects affect the transport of nanowires 

similarly by reducing the transmission coefficient.  

  It is quite remarkable that a single defect can cause such large degradation in 

drive current and threshold voltage shift. Design of circuits using these quasi-one 

dimensional transistors should take this into consideration. 
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3.  SIMULATIONS OF BALLISTIC TRANSPORT IN 

NANOWIRE TRANSISTORS: A SELF-CONSISTENT  

     ATOMISTIC MODEL 
 

 

3.1 Introduction 

 

  The physical dimension of 1D nanowires and the enhanced cross sectional 

quantization, call for models beyond effective mass approximation (EMA) in evaluating 

their electron transport performance. Tight-binding atomistic models, as explained in 

chapter 1, account for the new physics that need to be included, such as non-parabolicity, 

confinement level position beyond the effective mass approximation (for both structural 

and electrostatic confinement), the effects of strain in the electronic structure (uniform 

and non-uniform), the effect of surface roughness, as well as a more accurate distribution 

of charge in the device channel. Atomistic treatment provides automatically the 

dispersion of nanowires in arbitrary orientations and includes information about band 

coupling and mass variations as functions of quantization. In this chapter a model for 

evaluating the ballistic transport properties of nanowire transistors is described. The 

model is based on atomistic representation of the lattice to capture all essential physics 

described earlier. Cases where the EMA can still be applied are presented; however, 

EMA is not always valid. A crucial step in the model is accounting of the potential 

variations of in the cross section of the nanowire, which affect the device properties at 

large.  

 

3.2 The empirical nearest-neighbor (NN) sp3d5s* tight-binding (TB) model 

 

  The atomistic model used is the sp3d5s* empirical nearest-neighbor (NN) tight- 
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binding (TB) model. The basis set of the model is composed of orthogonal localized 

orbitals. This type of basis makes it very attractive for accurate electronic structure of 

truncated nanostructures of finite sizes and composition variations on the nm-scale. It is a 

very convenient method to treat material and potential variations as well as strain fields at 

the nanoscale. The parameterization was performed using a genetic algorithm in [40, 41], 

and the parameters extracted can reproduce the band edges of the bulk silicon 

bandstructure over the entire Brillouin zone. (Figure 3.1 (a) shows the constant energy 

surface ellipsoids of the first Brillouin zone of Si). The model is described in detail in 

references [39, 41-45]. The energy bands obtained for nanowires, as well as in the bulk 

case in energy regions away from the bulk minima, are in good quantitative agreement 

with other theoretical calculations using pseudopotential and ab-initio GW methods [46]. 

In this work, the electrostatic potential for charge self consistency is also included on the 

on-site energies of the Hamiltonian in an effective potential approach which shifts the 

bands with no further change in connectivity.  

  Validation of the model through experimental data: Since the accuracy of the 

results presented here strongly depends on the validity of the TB model used, and 

especially on its transferability to nanostructures, it is convincing to mention that the 

same model and calibration parameters were used to explain experimental data in a 

variety of applications with excellent qualitative agreement. Some examples include 

explaining resonant tunneling diode applications for transport under high bias with 

charge self consistency [67-69], explaining experimental data for the bandgap of ultra 

scaled nanowires [70-72] (shown in Fig. 3.1 (b)), valley splitting of tilted and disordered 

quantum wells [73], and the electronic structure of silicon systems with phosphorus 

impurities [74]. Further theoretical work presented in reference [75] examines the 

performance of core shell nanowires and validates against experimental data. 

Specifically, the theoretical calculation of experimental measurements of the bandgap of 

ultra scaled [112] oriented nanowires in [70-72] as shown in Fig. 3.1 (b), is a strong 

validation that the model captures the essential non-parabolicities in a large part of the 

Brillouin zone of Si. As it will be shown later on, non-parabolicites and anisotropies at 

high energies strongly influence the masses and band edges of nanowires. Since the  
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Fig. 3. 1. The sp3d5s* model and validity: (a) The constant energy surfaces of the first 
Brillouin zone of Si. (Adopted from Anisur Rahmans�’ dissertation [76]). (b) Comparison 
between the calculated and experimentally resolved bandgaps in [112] oriented silicon 
nanowires. Experimental results are extracted form [70]. TB calculation indicates good 

match (Adopted Jing Wang�’s dissertation [71]). 

 

 

bandgap of quantized systems is a strong function of the quantization masses in the two 

transverse directions, a verification of the experimentally deduced nanowires�’ bandgap,  

supports the theoretical prediction for the behavior of the wires�’ masses under strong 

quantization, and in extent the validity of the model. 

 

3.3 The simulation scheme  
 

  The simulation approach: The devices that can be treated are nanowires of 

arbitrary cross sectional shapes and transport orientations. The atomic arrangement of 

wires in different orientations is different as shown for the [100], [110] and [111] 

nanowires in Fig. 3.2 (b). Atomistic description of the device in arbitrary orientations, has 

the advantage of automatically capturing the valley projections and extract the 

dispersions of the channels in arbitrary transport orientations.  

  The simulation procedure consists of three steps as shown in Fig. 3.2 (a) and 

described below: 

 

 

(a) (b) 
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Fig. 3. 2. The 2D self-consistent model: (a) Simulation procedure schematic. Using an 

atomistic sp3d5s*-SO tight-binding model, the bandstructure of the nanowire under 
consideration is calculated. A semiclassical ballistic model is then used to calculate the 

charge distribution in the wire from the source and drain Fermi levels. The charge is used 
in a 2D Poisson for the electrostatic solution of the potential in the cross section of the 
wire. The whole process is done self consistently. (b) The lattice in the wire transport 

orientations (surfaces) used �– [100], [110] and [111]. 

 

1. First, the bandstructure of the wire is calculated using an atomistic tight-binding 

model. In this case, each atomic side in the zincblende lattice is represented by a 

sp3d5s* basis in the wire Hamiltonian. (In the case of conduction band 

calculations the spin-orbit coupling can be ignored. This approximation favors 

computational efficiency, without affecting the accuracy of the results [26]). The 

atoms that reside on the surface of the nanowire are passivated in the sp3 

hybridization scheme [45]. This technique successfully removes all dangling 
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bonds which otherwise will create surface states with eigen-energies in the 

bandgap of the device. Any effect of surface reconstruction or surface 

imperfections is not considered in this study. Only the channel atoms enter the 

atomistic calculation in the Hamiltonian construction. At this step, the energy of 

the dispersion states and their wavefunctions are computed. Bandstructure effects 

such as valley splitting and effective mass change under physical quantization are 

investigated at this step for the nanowire of interest, using the equilibrium 

dispersion (flat electrostatic potential in the Hamiltonian).  

 

2. A semiclassical top-of-the-barrier ballistic model is used to fill the dispersion 

states and compute the transport characteristics [77, 78]. This model assumes that 

the positive going states are filled according to the source Fermi level, whereas 

the negative going states according to the drain Fermi level. Once the occupancy 

of the dispersion states is computed, using their wavefunction from step 1, the 

charge distribution in each of the orbital sites of the system (and therefore the 

spatial distribution of charge) is obtained (see Appendix C for details).  

 

3. Using the charge distribution obtained in step 2, the 2D Poisson equation is solved 

in the cross section of the wire to obtain the electrostatic potential. The Poisson�’s 

equation is solved in 2D and all the atomic locations are collapsed on the 2D 

plane [79]. The Poisson domain is described by a finite difference mesh and 

contains the nanowire core on an atomistic mesh, the dielectric and the metal. The 

electrostatic potential is added to the diagonal elements of the atomistic 

Hamiltonian for recalculating the bandstructure until self consistency is achieved 

(numerical details are provided in Appendix C). An insulator surrounds the 

channel, which is assumed to be SiO2 of 1.1nm thickness throughout the results 

presented in chapters 3, 4 and 5 of the dissertation. This dielectric is not included 

in the Hamiltonian, but only treated in the Poisson equation as a continuum 

medium. Any effects due to the potential variations along the transport direction 

are ignored. This falls under the assumption that at the ballistic limit the carrier 

injection at the top of the barrier is of most importance to the transport properties.  
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Fig. 3. 3. The 2D cross sections of the devices treated. The finite element mesh and the 
atomic positions (dots) are indicated. Top row: (a) Cylindrical, (b) Rectangular, (c) 

Triangular. Bottom row: (d) The tri-gate device structure, (e) The device domains for tri-
gate structure. [80] 

 

 

 Further numerical details of the model are described in Appendix C.  

 Although the transport model used is simplistic, it allows for examining how the 

bandstructure of the nanowire alone will affect its ballistic transport characteristics, 

ignoring any short channel effects or quantum mechanical tunneling under the potential 

barrier. The same conclusion to this work can be obtained from full 3D quantum (NEGF) 

simulations [27, 81], but the simple model used here provides physical insight. Although 

the results presented in this thesis are for rectangular nanowires, the basic conclusions 

will hold for wires with different cross sectional shapes [34].  The model, however, has 

been extended to treat arbitrary cross sectional shapes as shown in Fig. 3.3 using the 

Finite Element Method for meshing the structure for solution of the Poisson equation 

[80]. It is noted here that in all the calculations performed the potential variations 

between the atomic locations in the wire are small compared to the tight-binding 

parameters used, so the tight-binding approximation is still valid. 

 The Poisson solution on a 3D zincblende lattice poses an interesting challenge for 

typical regular mesh solvers, zincblende is not a space-filling mesh. The lattice can be 
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Fig. 3. 4. The 3D zincblende lattice and Poisson mesh: (a) The position of the atoms in 
the zincblende lattice. (b) 3D mesh nodes for the equivalent 2D Poisson. (c) Time 

comparison between a full 3-D atomistic lattice and a quasi 2-D solution. (d) ID-VG 
characteristics computed for quasi 2-D and full 3-D Poisson solution. [80] 

 

 

symmetrised and solved in standard finite difference/element methods in 3D (Fig. 3.4 

(a,b)). The 2D solution (with all the zincblende atomistic charge collapsed on the 2D 

plane) corresponds in the 3D representation of Fig. 3.4 (a,b) indicating that the 2D 

approximation spreads out charge in real space significantly different than the original 

zincblende lattice. We have conducted extensive tests to validate the 2D Poisson solution 

compared to the actual 3D solution. A maximum deviation of 2% on band edges between 

the two approaches was found, and ignorable deviation in the I-V characteristics [80]. 

However, the 2D method reduces the Poisson computational time by almost 5X 

compared to the 3D solution, and it is the one used in the subsequent studies in this 

thesis. 

 

3.4 Electronic structure of Si nanowires under bias 

 

  Potential and charge variation in the device cross section is a crucial step in 

device performance evaluation, even for nanowires of 3nm cross sectional sizes. This has 

a large impact on the semiconductor capacitance of the device (CS). Potential variations 

cause changes in the equilibrium bandstructure of the wire. Similar to effective mass 

calculations, the levels shift according to the electrostatic confinement. The shifts in the 
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Poisson Mesh points
(a) (b)

3D atom 
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Fig. 3. 5.  Device features for a 3nm rectangular wire. (a-b) The 2D cross section showing 
the charge distribution under low and high gate biases, respectively. The dots indicate the 

underlying atomic positions. (c-d) E(k) plots for the cases (a-b). Efs is the source Fermi 
level. 

 

 

levels are, however, qualitatively and quantitatively different that the shifts obtained from 

an effective mass solution. Details on these issues will be addressed in chapters 4 and 5. 

In this section, however, it is indicated that considering these effects in transport through 

nanowires, one obtains quantitatively significantly different results than just considering 

transport through the empty lattice bandstructure as it was performed in previous models 

[34, 82], for both, small nanowires (3nm width) as well as in wires with larger cross 

sections.  

  Figure 3.5 shows the self consistent results for the charge distribution in a 3nm x 

3nm square, [100] transport direction, Si nanowire, under low and high gate bias 

conditions, i.e. when the channel is partially and fully inverted. The underlying structure 

of the atoms is evident in the case where the channel is fully inverted (dots). A nanowire 

dispersion curve is usually considered to be a material and geometry dependent quantity, 

independent of the filling of the states. The difference between Fig. 3.5 (c-d), however, 

indicates that the dispersion in Fig. 3.5 (d) is not a solid shift in energy from Fig. 3.5 (c). 

The first set of excited states shifts below the band-edge minima at k=0.405. The filling 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Fig. 3. 6. Device features for a 6nm rectangular wire. (a-b) The 2D cross section showing 
the charge distribution under low and high gate biases, respectively. The dots indicate the 
underlying atomic positions. (c-d) The corresponding E(k) plots for the cases (a-b). Efs is 

the source Fermi level. 

 

 

of the states in the device changes the electrostatic potential, which in turn changes the 

lateral confinement. The change in the lateral confinement in turn changes the dispersion 

in the transport direction.  

  Larger nanowires show another interesting behavior under inversion conditions. 

With increasing gate biases the charge shifts from being confined in the center of the wire 

to be confined in the corners of the wire. The electrostatics of the device force these 

corner regions into stronger inversion (Fig. 3.6 (a,b)). Figures 3.6 (c-d) also shows 

significant changes in the bandstructure of the nanowire between the low and high bias 

conditions cases. This �“corner effect�” is observed in corners of strongly inverted multi 

gate devices. 

  Changes in the bandstructure and spatial distribution of charges reflect on the I-V 

device characteristics. Figure 3.7 shows a comparison between the ID-VG characteristics 

of the device for two simulation approaches: (i) the Poisson equation is solved in the 

cross section of the rectangular nanowire and the potential variation is considered in the 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Fig. 3. 7. The ID-VG characteristics calculated using the empty (non-SC) E(k) diagram 
and using the charge filled (SC) E(k) diagram for rectangular nanowires. (a)  The 3nm 

device. (b) The 6nm device. 

 

 

bandstructure calculation, and (ii) a simple planar capacitance (oxide capacitance) is 

considered for the electrostatics of the device (no potential variation is considered in the 

cross section). The spatial variation of the charge, however, (i.e. volume inversion for 

small wires) makes the simple capacitance assumption inaccurate. This results in 

significant differences in the ID-VG characteristics obtained by the two methods, for both, 

small 3nm diameter (Fig. 3.7 (a)), and larger, 6nm diameter (Fig. 3.7 (b)) wires. 

Considering only a simple shift of the bands due to the gate bias will result in 

overestimating the drive current of the device. The small variation of the E(k) levels 

through self-consistency (especially for larger wires) by itself, does not have large effect 

in the transport characteristics in this case. It should be though, however, as connected to 

its corresponding wavefunction that causes the particular changes in the E(k). The 

variations themselves can have a larger effect in the case of the valence band, where the 

bands deform drastically under potential variation in the lattice, as it will be shown in 

Chapter 5. In addition, in low drain bias and low temperature cases, where the transport 

window can be resolved within a few meV, these changes can show up in the transport 

characteristics. 

 

3.5 sp3d5 s* TB vs. effective mass approximation (EMA) for nanowires 

   

  Although in ultra scaled nanowire channels the atomistic approach will be more 

(a) (b)(a) (b)
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appropriate, in certain cases, the effective mass approximation (EMA) can give very 

similar results, once the masses are adjusted to masses extracted from sp3d5s*. In this 

section, a few cases are presented, in which the EMA can match the atomistic results 

quite good. The examples presented are only for the conduction band. The strong 

interactions in the valence band, as will be shown in chapter 5, make the use of effective 

mass extremely difficult.  

  The EMA is formulated in the same model way as the sp3d5s* formalism. The 

only exception is that the Hamiltonian elements are a single 1x1 elements rather than a 

multi-orbital block. The bandstructure under such an approach, consists of parabolic 

bands centered at the  point, with the specified transport direction effective mass. An 

effective mass Hamiltonian can be built on a zincblende lattice, in which case the on side 

and the coupling parameters need to be changed in such a way in order to get the correct 

effective mass and quantization levels in the directions of interest. However, it is more 

convenient for the EMA Hamiltonian to be built on a cubic lattice, where the coupling 

parameters and the on-sites of the Hamiltonian are directly related to the effective masses 

in the specified directions of interest. The formulation of the 3D Schrodinger equation 

using a 3D Hamiltonian based on a 3D cubic lattice can be described as follows: 

 

     3 , , , ,DH x y z E x y z                                            (3.1) 

 

An ellipsoidal parabolic energy band with a diagonal effective mass tensor is assumed. 

This equation needs to be solved three times due to the three different types of ellipsoids 

in the Si conduction band bandstructure. The 3D Hamiltonian is expressed as:  

 

  
2 2 2 2 2 2

3 * 2 * 2 * 2 ( , )
2 2 2D

x y z

H U y z
m x m y m z

                  (3.2) 

 

where *
xm ,  *

ym , and *
zm are the electron effective masses in the x , y , and z directions 

respectively, and ( , )U y z  is the electrostatic potential energy in the 2D cross section. The 
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Fig. 3. 8. [100] transport orientation wire features. (a) The effective mass at the  point 
increases, as the dimensions of the wires shrink below 5nm. (b) The Si conduction band. 
(c) The E(k) for a 3nm wire in the EMA using the bulk Si masses. The 2D quantization 

levels are indicated. (d) The E(k) for a 3nm wire in the TB model. Different masses than 
the bulk ones are needed to calculate the 2D quantization levels. mx and my denote the 

quantization masses, and mz the transport mass. 

 

 

reference of this potential energy is assumed to be the valence band edge of the bulk band  

profile. (This is arbitrary within a constant). The solutions of this equation will give the 

resulting bandstructure for the quantized structure according to the masses specified in 

the three directions.  

  Using the atomistic model, Fig. 3.8 (a) shows that the effective mass of NWs in 

the [100] transport orientation strongly depends on their diameter, which can be 

attributed to non-parabolicity in the Si bandstructure. Since both quantization and 

transport masses are affected, this will affect both the positioning of the quantized levels 

and the injection velocities, and will reflect on the I-V characteristics. To compare the TB 

model to the EMA, all types of ellipsoids (  and off- ) in the Si conduction band need to 

be included (Fig. 3.8 (b)). The transport and quantization masses used for each valley are  
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Fig. 3.9.  ID-VG characteristics for the tuned EMA vs TB after the masses are calibrated. 
(a) The 3nm device. (b) The 6nm device. VD=0.5V. 

 

 

obtained from the TB model. Figure 3.8 (c) shows the E(k) of Si for a 3nm rectangular 

NW in the [100] direction. The dispersion is drawn using the bulk effective masses 

(ml=0.89m0 and mt=0.19m0). The in-plane pairs B and C, are shifted to k=0.41 for direct 

comparison to the sp3d5s* solution since in the EMA model all parabolas in the 

dispersion are centered at k=0. As shown in Fig. 3.8 (c), the subband levels agree well 

with the values obtained from a 2D quantization analytical calculation (horizontal lines) 

using the bulk quantization masses, noted mx and my in the figure. In the atomistic model, 

however, the quantization masses are no longer the bulk masses. To map the subband 

levels, using the simple analytical 2D quantization formula: 

 

  
2 22 2

2 22
y z

y y z z

n nE
m L m L

,                                           (3.3) 

 

heavier quantization masses need to be used (Fig. 3.8 (d)).  After the correct quantization 

(mx, my) and transport masses (mz) are extracted from TB, they are used in the EMA 

model.  

  After this adjustment in the masses, the ID-VG characteristics obtained by the two 

methods show very good agreement for both, small (3nm cross section) and larger (6nm 

cross section) [100] NWs (Fig. 3.9). In the case of the 6nm device, the masses are closer  

 

(a) (b)(a) (b)
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Fig. 3. 10. [110] transport orientation wire features: (a) The E(k) for a 3nm wire obtained 
from TB. The 2D quantization levels and the quantization masses are indicated (mz is the 
transport mass). (b) The E(k) for the wire in (a) under high gate bias. VD=0.5V. (c) The 

ID-VG for high VD for the EMA vs. TB. mx and my denote the quantization masses, and mz 
the transport mass. 

 

 

to the bulk values, as expected. More subbands are occupied as the device now starts to 

move from 1D towards a 3D device, and the interractions between them increase. The 

small divergence between the tuned EMA and the TB model in the 6nm case, is attributed 

to this different nature of band coupling between the two models, i.e. the valley splitting  

captured in the atomistic model, and enhanced under high biases, and the slightly 

different shifting of the subbands in the two models under potential variations in the 

lattice. Using a correctly calibrated EMA will result in large computational savings, while 

still including bandstructure effects to a large degree. 

  The [100] orientation is an example of how the EMA can successfully match with 

the TB model results. This is not true, however, in general. The 3nm [110] orientation 

dispersion shown in Fig. 3.10 (a), obtained from TB will look different than the [100] 

dispersion. The degeneracy in this case is 2 at , and the mass is m*=0.16m0, reduced 

from the bulk value. The off-  valleys also have degeneracy of 2 each. A certain 

(c)

(a) (b)

(c)

(a) (b)
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combination of quantization masses can be extracted to match the quantization levels, 

however, at least at , once the first level is matched, the second cannot be matched 

accurately. To match this level, mx=0.92m0 and my=0.16m0 are used. Other, very 

different combinations of masses can be used, however values similar to the bulk masses 

are more reasonable, especially for the heavy quantization mass which is less sensitive to 

structural quantization. Under self-consistent simulations, however, there is significant 

valley splitting in the [110] wire case, and all valleys became gradually single degenerate 

as more charge is introduced in the lattice (Fig. 3.10 (b)), an effect that cannot be 

captured in EMA. The effective mass model, under self consistency, results in different 

valley placement in energy, and none of the valley splitting is captured.  

  The overall current, however, using the TB and EMA still matches very nicely 

(Fig. 3.10 (c)). Energetic dispersion details might be pronounced at low temperatures and 

biases and the two models might not agree well. In the examples presented here, at room 

temperature and under high biases, the carriers are injected over a large energy range and 

bandstructure details are smeared out in transport calculations. 

  What had been described above were conduction band examples for which the 

EMA can be successfully implemented. However, this is not always the case. Next, the 

bandstructure of ultra scaled 1.5nm cross section wires is investigated and two examples 

in which the EMA will fail to reproduce the TB results are indicated. The NEGF [24] 

approach, is also used to calculate the transmission T(E) of the wires, still described in 

the sp3d5s* TB approximation. Figure 3.11 shows the E(k) and the corresponding T(E) for 

wires in the [100], [110] and [111] directions. The effect of valley splitting is particularly 

evident in the [110] wire case (Fig. 3.11 (b)) which makes all bands single degenerate 

and the T(E) for these wires to start at 1 quantum unit (Q.U.) per spin channel (Fig. 3.11 

(e)) rather than 4Q.U. as in the case of the [100] wires. (Since we are interested in the 

conduction band properties of Si, we can safely ignore spin-orbit coupling and reduce the 

compute time without loss in accuracy). The splitting is expected to reflect on the I-V 

characteristics. Under such small cross sections, the EMA might need further adjustments 

to map correctly to the atomistic model and proper degeneracies need to be used. In the 

[111] wire case, things are different. For large dimension (>3nm) [111] wires, there are 6  
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Fig. 3. 11. The effect of different transport orientations on the E(k) (upper row) and 
transmission coefficient, T(E), (bottom row) of 1.5nm cross section wires. (a,d) [100]. 

(b,e) [110]. (c,f) [111] wire orientations. Inset of (c): The dispersion of a 3nm [111] wire. 

 

 

degenerate valleys resulting from the 6 degenerate Si ellipsoids that are all quantized 

similarly. These are shown as (3+3) in the E(k) of a 3nm [111] wire in the inset of Fig.  

3.11 (c). For [111] wires of 1.5nm diameter, however, at the band minima, due to 

interactions between the valleys, the dispersion is almost flat and there are only 3 much 

heavier bands now (Fig. 3.11 (c)). The T(E) in this case captures the three-fold 

degeneracy as a T=3 Q.U. after E=2eV. Just before 2eV, the transmission is at T=4 Q.U. 

for a few meV because for that small energy region two of the subbands have not 

collapsed into a heavier flat band yet. Effects such as this type of band interactions are 

difficult to be treated in EMA.    

  

 

3.6 Summary 

 

  An atomistic TB approach to calculate the electronic structure of nanowire 

devices self consistently with the 2D Poisson equation is described. The sp3d5s* TB 

(a) (c)(b)

(d) (f)(e)

(a) (c)(b)

(d) (f)(e)

(a) (c)(b)

(d) (f)(e)
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model is used for the electronic structure calculations. Using a semiclassical model, the 

transport characteristics are computed. The lattice potential is calculated using a 2D 

Poisson solver and is self consistently included on the on-site energies of the 

Hamiltonian. Correctly accounting for the charge distribution in the wire affects the 

device characteristics at large, compared to models which only use the bandsructure 

features to assess the device performance. It is also shown that although atomistic 

description of the bandstructure is essential in nanoscale devices, the effective mass 

approximation can still be used in some cases, for the conduction band, after the masses 

are calibrated to the TB masses. This, however, is in general not possible.  

  In chapters 4 and 5, this model will be used to investigate the ballistic transport 

properties of n-type and p-type Si nanowire devices accordingly, in different transport 

orientations.  

  Finally, it is mentioned that the simulator used in this study will be released as an 

enhanced version of the Bandstructure Lab on nanoHUB.org [83]. This simulation engine 

will allow any user to duplicate the simulation results presented here and in chapters 4 

and 5. Over 800 users have utilized the already existing Bandstructure Lab, which does 

not contain the charge self-consistent models, in the year 2007 alone.  
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4. BANDSTRUCTURE EFECTS IN SILICON NANOWIRE 

ELECTRON TRANSPORT 
 

 

  This chapter investigates the ballistic transport characteristics of square n-type 

nanowires of 3nm width, oriented in [100], [110] and [111] transport directions using the 

self-consistent model described in chapter 3. The results presented are based on reference 

[49]. 

  The chapter is organized as follows: Section 4.1 examines the behavior of 

bandstructure under charge filling of the lattice for nanowires in different orientations for 

3nm cross section square nanowires. Section 4.2 compares the performance of the 

nanowires in terms of total gate capacitance, quantum capacitance, injection velocity and 

drive current capabilities for nanowires in different orientations.  

  Section 4.3 examines how structural quantization will impact the dispersions of 

wires with different cross sectional areas. The valley splitting and the mass variation in 

wires of different cross sections are examined. In general, the degeneracies of and masses 

of nanowires are controlled by the orientation of the wire. Strong band coupling, 

however, can cause valley splitting of degenerate valleys, which can be possibly 

identified under low temperature and drain bias measurements [84]. Strong quantization 

can also result in effective mass variations. Section 4.4 provides an intuitive explanation 

of the dispersion mass variation using extracted subbands from the Si bulk bandstructure. 

Section 4.5 summarizes and concludes the chapter.   

 

4.1 Effect of potential variations on the NW dispersion and charge distribution  

 

 Description of the dispersion in [100] oriented wires: The dispersion of a [100] 

oriented nanowire is shown in Fig. 4.1 (c). It has a four-fold degenerate valley at the  
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Fig. 4. 1. Device features for a 3nm [100] rectangular wire. (a-b) The 2D cross section 
showing the charge distribution under low and high gate biases, respectively. Even under 
high bias, the charge distribution is located almost half a nanometer away from the oxide. 

This causes degradation in the total capacitance of the wire. The dots indicate the 
underlying atomic positions. (c-d) E(k) plots for the cases (a-b). The bandstructure 
features change under self consistency. Efs is the source Fermi level. (Zero energy 

indicates the conduction subband edge.) 

 

 

point (kx=0) resulting from the k-space projection of the four silicon ellipsoids that reside 

in the plane of quantization (here the y-z plane). There are two more valleys residing off-

 (one in the positive and one in the negative kx axis), that result from the two off-plane 

ellipsoids. The first four appear lower in energy because of their heavy quantization mass 

(my~ml=0.89m0 and mz~mt=0.19m0) and have lighter transport mass (mx~mt=0.19m0). The 

other two appear at higher energies because of the lighter quantization masses 

(my~mt=0.19m0 and mz~mt=0.19m0) and have heavier transport mass (mx~mt=0.89m0). 

(The wire masses mx, my, mz are close, but not exactly the bulk longitudinal and 

transverse masses for reasons that will be addressed later on).  

  Change of the [100] wire dispersion due to potential variations / charge filling: 

The first part of the results section investigates how potential variations in the cross 

(a) (b)

(c) (d)

~0.5nm

(a) (b)

(c) (d)

~0.5nm
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section of a wire can change the dispersion and how the wavefunction shape changes as 

the lattice fills up with charge. Figure 4.1 shows device features for a 3nm square [100] 

oriented nanowire under low and high gate biases. (The drain bias used is VD=0.5V in all 

cases throughout this work). Under low gate biases, the lattice is almost empty of charge 

(Fig. 4.1 (a)) and the dispersion relation (Fig. 4.1 (c)) is the equilibrium dispersion. Under 

high biases, there is significant charge filling of the lattice as shown in Fig. 4.1 (b). The 

charge distribution takes the shape of the underlying atomic positions. In these 

simulations, even under high inversion conditions, the wavefunction is pushed almost 

0.5nm away from the Si/SiO2 interface. The dispersion of this small size nanowires, on 

the other hand, is usually considered to be a material parameter, and under strong 

confinement a property of the geometry, but independent of charge filling of the lattice. It 

is shown, however, in Fig. 4.1 (d), that charge filling of the lattice causes changes in the 

dispersion of the nanowire even at the 3nm wire length scale. Here, the excited states at  

shift down, and reside now below the off-  point valleys. In this case the change in the 

dispersion is small, but since it is associated with the wavefunction shape that gives rise 

to the charge distribution in the wire cross section, it can affect the devices capacitance 

and to some extent its transport characteristics.   

  Change of the [110] wire dispersion due to potential variations / charge filling: 

The change in the dispersion under potential variations is also observed in different wire 

orientations, which have different dispersion relations. The position of the bands shifts 

and degeneracies can also be lifted. Figure 4.2 (a-b) shows the E(k) of a [110] oriented 

nanowire under low and high biases. The dispersion looks different from the [100] 

dispersion, with a two-fold degenerate band at , and pair of two-fold degenerate bands 

off- . A larger variation in the dispersion under charge filling of the lattice is observed 

compared to the [100] wire case. The band degeneracies are lifted (from 2 to 1) by 

several meV. This is an effect that cannot be captured in a simple EMA treatment. 

  Change of the [111] wire dispersion due to potential variations / charge filling: 

Figures 4.2 (c,d) show the same features for a [111] oriented wire. The degeneracy of the 

bands of this wire is 3 (for each valley) because of the symmetry between the transport 

axis (or equivalently the quantization plane in the perpendicular direction) and the three 

pairs of ellipsoids in the Si bandstructure. High biases increase band coupling, which  
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Fig. 4. 2. Self-consistent vs. non self-consistent bandstructure features: (a-b) The 
bandstructure of a 3nm [110] oriented nanowire under low bias (VG=0V) (a) and high 

bias (VG=0.8V) (b), and VD=0.5V. Under high biases the degeneracies of the  valley are 
lifted from 2 to 1. (c-d) The bandstructure of a 3nm [111] oriented nanowire under low 

bias (VG=0V) (c) and high bias (VG=0.8V) (d) and VD=0.5V. (e) The charge in the wire as 
a function of the difference of the conduction band edge from the Fermi level for two 

cases: (1) The Fermi level �“scans�” the equilibrium bandstructure and the charge is 
extracted, and (2) the charge is extracted from the self-consistent calculations with 

potential variations in the lattice taken into consideration. (f) The injection velocity for 
the same case as (e). The changes in the dispersion themselves do not reflect much on the 

charge distribution or the injection velocities. The differences between the two models 
result form the spatial information of the wavefunction that corresponds to the 

bandstructure changes. 

 

 

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)
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slightly lifts the degeneracies. It is noted that in the case of [100] and [110] wires the 

conduction band minima is located at the  point since the quantized  valleys project 

there. In the [111] case, however, the conduction band minimum is located at 0.37 of the 

Brillouin zone (normalized to 1) as seen in Fig. 4.2 (c,d) for reasons explained in [85].  

  Charge / velocity are invariant to self-consistency: Just by looking at these 

variations in the dispersion, however, it is not clear that these will result in changes in the 

transport characteristics. Indeed, Fig. 4.2 (e,f) compares the density of states and 

velocities at the same Ef-Ec (difference of the Fermi level from the conduction band edge) 

between the equilibrium dispersion and the dispersion at various biases and little 

difference is observed. Quantities for two cases are calculated: (a) The Fermi level 

�“scans�” the equilibrium bandstructure and the charge and injection velocities are 

extracted, and (b) the results are extracted from the self-consistent calculations with 

potential variations in the lattice taken into consideration. The charge and injection 

velocity is plotted as a function of Ef. (Ec is shifted to zero for all wires). There is no 

significant difference in these extracted quantities due to the potential variations, and the 

self-consistent vs. non-self-consistent curves fall almost on top of each other. For this 

example a large drain bias (VD=0.5V) is used. Under low drain biases (VD=1meV) and 

low temperatures, however, where the transport energy window can be comparable or 

even smaller than the changes in the bandstructure, evidence of the bandstructure 

differences in these two quantities as well as other quantities such as the 

transconductance are more likely to appear.  

  Charge distribution is strongly dependent on self-consistency: Although the 

charge and velocity appear to be only weakly modified by the self-consistent calculation, 

the self consistently extracted bandstructure corresponds to a different wavefunction 

shape which reflects to a different charge distribution in space. This is the quantity that 

causes degradation of the total gate capacitance as will be shown later and affects the 

transport characteristics, and not the dispersion changes by themselves. One therefore, 

has to also consider the change in the wavefunction that is associated with the dispersion 

changes. (As shown in chapter 3 and in [48], the current-voltage characteristics can be 

significantly overestimated if the spatial variation of the charge is not considered). 
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  Orientation differences in the charge: The fact that the charge in Fig. 4.2 (e) for 

any position of the Fermi level is always the highest in the [111] wire case, is due to the 

higher density of states and valley degeneracy. This particular wire orientation has the 

valleys with the heaviest mass (0.47m0, where m0 is the free electron mass) and the 

largest degeneracy (D=6). Therefore, at a certain energy level (Ef-Ec), there are more 

states occupied compared to the other wires. The [100] wire with mass 0.27m0 and D=4 

of the lowest valleys, follows. The [110] wire has the lowest charge density at a certain 

energy level because of its lighter mass (0.16m0) and lower degeneracy (D=2) at .  

  Orientation differences in the velocity: The reverse trend is observed in Fig. 4.2 

(f), where [110] wire has the highest velocity due to its lighter mass (0.16m0). As higher 

k-states are occupied, the velocity increases since it is proportional to the slope of the 

bands. Noticeable here, is the fact that the carrier velocity in the [100] wire approaches 

the [110] velocity as the Fermi level is pushed into the conduction band. The lighter 

masses (0.16m0) of the two-fold  valleys in the [110] wire give an initial advantage over 

the heavier (0.27m0) [100] wire  valley masses. Once the heavier four-fold degenerate 

off-  valleys (with mass 0.61m0) of the [110], and the heavy two-fold degenerate off-  

valleys (with mass 0.94m0) of the [100] start to populate, the carrier velocities become 

comparable in the two cases. The exact reasons why the masses have these values will be 

addressed later on in the paper, however this analysis can guide through the reasons why 

wires in different transport orientations have different properties.   

 

4.2 Device performance comparison of NWs in different orientations 

 

  One of the points made in the previous paragraph, are comparisons of the 

different wire orientations at the same Fermi level position into the dispersion of the 

wires. Although this is a rough estimate of the wires�’ properties, the Fermi level is not at 

the same position for all devices, except under special cases. In this section, the full self 

consistent model is implemented to compare the performance of the nanowires. Figure 

4.3 shows a performance comparison between the wires in the [100], [110] and [111] 

orientations. The various performance quantities shown further on, are all compared at 

the same OFF current (IOFF) for all devices.   
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Fig. 4. 3. Performance comparison of the 3nm square wires in the [100], [110] and [111] 
directions at the same OFF-current (IOFF). (a) The gate capacitance CG vs. gate bias (VG). 
The capacitance is similar for all wires, and degraded from the oxide capacitance ([86]) 
by an amount that corresponds to an increase in the effective oxide thickness of 0.54nm. 
(b) The quantum capacitance CQ vs. VG of the three devices, which is a measure of the 

density of states at the Fermi level. (c) Comparison between the injection velocities of the 
nanowires vs. VG. In all cases, the velocity is not constant, but increases as the gate bias 
increases. The increase is calculated by the difference between the value at high VG and 
the value at low VG. (d) The IDS vs. VG for the three wires at the same IOFF. The velocity 

difference directly reflects on the current differences. 

 

 

  Gating induces same capacitance / charge in all wire directions: Figure 4.3 (a) 

shows the total gate capacitance (CG) ([86]) vs. gate bias (VG) of the three wires at the 

same IOFF. The total capacitance in the three wires is very similar for all gate biases for 

reasons we will explain later on. However, this is an indication that the same amount of 

inversion charge is accumulated in all wires irrespective of their orientations. Our 

calculation supports this argument too, showing that the charge difference between the 

wires at high inversion does not exceed 2%. In a relative performance comparison for 

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)
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wires in different orientations, therefore, the amount of charge will not affect the relative 

performance. 

  Low semiconductor capacitance (CS) degrades the gate capacitance (CG) by 30%:  

It is important to notice that for all three wire cases, the capacitance value is degraded 

from the oxide capacitance by almost 30%. This is an amount that corresponds to an 

effective increase in the oxide thickness of 0.54nm, which is 50% of the physical gate 

oxide thickness (tox=1.1nm). This large gate control reduction is evidence of low 

semiconductor capacitance (CS) in low dimensional channels. The gate capacitance of a 

device is the series combination of the oxide capacitance (COX) and the semiconductor 

capacitance (CS) given by the simple relation
OXS

OXS
G CC

CC
C . For an electrostatically 

well behaved MOSFET device, CS should be an order of magnitude larger than COX so 

that the CG and therefore the charge in the device is totally controlled by the gate. In this 

example, the oxide capacitance of the rectangular structure is 0.483nF/m, numerically 

calculated using a 2D Poisson solver that takes the fringing at the edges into 

consideration. With CG = 0.3nF/m (maximum value of Fig. 4.3 (a)), CS can therefore be 

computed to be mnFCS /8.0 , which is only twice the value of the oxide capacitance 

(less than an order of magnitude difference).  

  Cs controlling factors: Charge distribution peak, small CQ: CS is defined as the 

differential of the charge in the device with respect to the surface potential ( S). In 1D 

systems, under a single band effective mass approximation, the charge is the integral of 

the 1D density of states (g1D) convoluted with the Fermi function (f(Ef-E)) over energy as: 

 

1 [( ) / ]s
S D f c i B

s s

qn
C qg f E E k T dE            (4.1) 

 
where q is the charge of the electron, s is the surface potential, Ef is the Fermi level, Ec 

is the conduction band edge and i is the distance of the ith quantized subband above Ec in 

energy. Carrying on the integration, the equation above results in: 
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Q

s

C                                                                                        (4.4)           

   

  The first part of Eqn. 4.3, CQ, is the quantum capacitance, which is a measure of 

the density of states at the Fermi level. CS is degraded from CQ by a factor that is 

proportional to how much i (the difference of the ith subband to Ec) changes. Ideally, at 

high inversion conditions i should be constant, meaning that the quantized levels and Ec 

shift by same amount and the subband levels can easily get in the potential well that 

forms at the Si/SiO2 interface. This directly translates on the wavefunction been able to 

come closer to the interface as the surface is inverted more and more. However, i can 

float up as charge accumulates in the device, giving rise to the differential term in Eqn. 

4.4, and the wavefunction stays away from the interface. As shown earlier on in Fig. 4.1 

(b), this shift is almost 0.5nm. Other than the wavefunction shift, CQ being small is the 

second degrading factor of CS as indicated in Eqn. 4.4. Figure 4.3 (b) shows the CQ of the 

three nanowires as a function of VG, calculated as the density of states at the Fermi level. 

Clearly, for all wires the maximum value is below 3nF/nm, not even an order of 

magnitude above COX = 0.48nF/nm. The fact, that the position of the charge distribution 

degrades CS from CQ by almost four times, ( mnFCS /8.0 ), indicates its large 

significance on the device�’s capacitance. (Similar deviations of the semiconductor 

capacitance from the quantum capacitance have also been observed in thin body devices 

[87]). 

  Variations in CQ between different wire orientations: As shown in Fig. 4.3 (b), in 

all wire cases, CQ is not constant, but undergoes large transitions as the Fermi level is 

pushed inside the subbands at large gate biases. This is expected, since CQ is a measure of 

the density of states at the Fermi level, and the differences in the dispersion cause 
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differences in CQ. Comparing CQ for different wire orientations, the [111] wire has the 

largest CQ for most of the bias range because of the higher mass (m*=0.47m0) and higher 

degeneracy of its valleys (D=6). The CQ drop at high biases in the [111] case is 

associated with the decreasing 1D density of states away from the band edges, and due to 

the fact that its bands flatten out at  and do not extent as parabolic bands in k-space as 

shown in Fig. 4.2 (d). On the other hand, the [100] and [110] wires initially have lower 

CQ, because of their lower density of states (lighter masses and lower degeneracies). At 

high biases, the upper valleys of the [100] and [110] wires start to get populated, which 

allows a continuous increase in CQ for these wires. More specifically, since the charge in 

all cases is almost the same at a given bias, the same number of states in each wire need 

to be occupied. The Fermi level in the [110] wire with lower mass and smaller valley 

degeneracies reaches the upper valleys faster (at a lower gate bias) than the [100] wire in 

order to occupy the same number of states. Once this happens, the CQ of the [110] wire 

surpasses the CQ of the [100] wire (around VG=0.4V). 

  Variations in CQ do not cause variations in CG: The differences in CQ, between 

wires in different orientations, however, are not large enough to result in differences in 

the total capacitances. As seen earlier, CQ is only partially responsible for the total 

capacitance degradation. The small differences in CQ are smeared out in CG by the oxide 

capacitance, and the charge shift from the interface, that is very similar for all the above 

wires. (This observation can of course be different in the case of high-k dielectric oxides, 

in which the importance of CQ can be more pronounced).  

  Velocity controls the transport differences in different orientated wires: As 

explained above, the charge is almost the same in all three nanowires. Since in the 

ballistic limit the ON-current performance is given by the product of �“charge times 

velocity�”, if the charge is the same, any performance differences will result from 

differences in the carrier velocities. Figure 4.3 (c) shows the injection velocities of the 

wires vs. gate bias (VG). The [110] wire has the largest velocities whereas the [111] wire 

has the lowest velocities. In all cases, the injection velocities are not constant, but 

increase as the lattice is filled with charge because faster high energy carrier states are 

being populated. This increase in velocities, calculated form the initial value at low gate 

biases to the final value at high gate biases can reach up to 17% in the [110] wires and 
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even up to 27% in the [100] and 24% in the [111] wire orientation cases. When 

comparing the velocities of the different wires, however, the masses of the valleys 

determine the velocities of the carriers. (In 1D, under the parabolic band approximation, 

the velocity is proportional to */1~ mv ). As a result, the [110] wire with m*=0.16m0 

has the highest velocity, followed by the [100] wire with mass m*=0.27m0, and finally by 

the [111] wire of mass m*=0.47m0. The larger density of states of the [111] wire and its 

larger degeneracy do not allow the Fermi level to be pushed far into the conduction band. 

Therefore, only the lower energy and slower carries are used, and the velocity in this case 

is low. In the [110] wire case, the degeneracy is 2, and the subband density of states low, 

therefore the Fermi level will be pushed far into the conduction band, and faster carries 

will be utilized as shown in Fig. 4.3 (c).  

  Velocity differences affect the I-V differences: The velocity difference directly 

reflects on the IDS as shown in Fig. 4.3 (d) in which the drive current capabilities of the 

wires are compared at the same IOFF. The [110] and [100] wires perform better than the 

[111] wire in terms of ON-current capabilities. The current in the [110] wire stands ~5% 

higher than the [100] wire and ~20% higher than the [111] wire because of its lower 

mass. This result must be qualified since the bandstructure of the wires is a very sensitive 

function of their quantization. The results presented here are for these specific 3nm wire 

examples. In cases where important dispersion parameters such as the relative placement 

of the valleys in energy, masses and degeneracies, are altered, different conclusions 

might be drawn, especially for the relative performance of the [100] and [110] wires 

which is not that large. In the next section, an analysis is performed on how exactly these 

parameters (valleys splittings that lift degeneracies, and masses) are affected by 

quantization. 

 

4.3 Quantization influence on valley splitting and mass variation   

 

  Quantization strongly affects both factors that control the performance, the 

degeneracies and masses. In this section of the paper, the effect of quantization on these 

parameters is examined. Degeneracies are controlled mainly by the orientation, but can 
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be lifted due to valley splitting [88-90] under strong quantization (both electrostatic and 

structural).  

 

 

Fig. 4. 4. The effect of valley splitting in small nanowires. (a-c) The E(k) of a 2nm wire 
in the [100], [111] and [110] orientations respectively. (d) The effect of valley splitting in 

the [110] wire as the dimensions decrease. The  valleys are severely affected at cross 
sections below 3nm, whereas the off-  valleys are not affected as much. 

 
 
 
  Weak valley splitting in [100] and [111] quantized wires: Figure 4.4 (a,b) shows 

the E(k) of a 2nm wire in the [100] and [111] orientations. A slight valley splitting of the 

degenerate valleys under quantization is observed. In the case of the [100] the splitting is 

10meV and in the case of the [111] wire, 24meV. These values are less than the room 

temperature kBT = 26meV and are not expected to have a significant effect in the 

transport properties of the nanowires at room temperature [84].  

  Strong valley splitting in [110] quantized wires: In the case of [110] nanowires, 

valley splitting is significantly larger. As shown in Fig. 4.4 (c) in the E(k) of a 2nm [110] 

wire,  and off-  valleys experience valley splitting of their degeneracies by 76meV and 

(a)

(d)

(b)

(c)

(a)

(d)

(b)

(c)



 

 

55

14meV respectively. Figure 4.4 (d) shows how this effect varies with the spatial 

confinement in the [110] wire. Although large nanowires (>5nm) are not affected, the 

valleys splitting can reach up to 200meV for the  valleys of narrow wires with sizes as 

narrow as 1.5nm. The valley splitting of the off-  valleys, on the other hand, is not 

affected as much. Only a few tenths of meVs of splitting are observed in this case. (It is 

noted here that the splitting in the other wire orientations is smaller than the [110] wires 

of similar quantization sizes even for wires below 2nm [90]).  

  Generally, masses increase with increase in quantization: The effective mass is 

the second important transport performance dispersion property that is affected by 

quantization of the nanowire cross section. The injection velocity and quantum 

capacitance strongly depend on the masses. Both the quantization and the transport 

masses of nanowires under arbitrary wire orientations are certain combinations of the 

longitudinal (ml=0.89m0) and the transverse effective masses (mt=0.19m0) of the Si 

ellipsoids. Figure 4.5 (a) shows the three pairs of ellipsoids that form the conduction band 

minima in Si, each characterized by the x, y and z directional masses. The masses of the 

valleys that appear in the nanowire dispersion are automatically included in tight-binding. 

What will be shown is that under quantization, the exact values of these masses are 

changed from their bulk values. In most cases, quantization results in an increase in the 

effective mass. Figure 4.5 (b) shows the variation in the lowest valley transport masses as 

the dimension of the wire cross section reduces. At large wire cross sections, the mass of 

the [100] valley that is located at , approaches the bulk transverse mass mt=0.19m0. The 

bulk mass of the [111] wire is larger since it is a combination of mt=0.19m0 and 

ml=0.89m0 (the bulk value is 0.43m0) [36, 91]. The mass in the [100] case almost doubles 

as the dimension of the wire�’s side decreases from 7.1nm to 1.5nm (88% increase). (The 

3nm wire has m*=0.27m0 as mentioned earlier). The corresponding increase in the [111] 

wire�’s mass is 17%, with the 3nm wire having m*=0.47m0.  The off-  valley masses 

(upper valleys) of both [100] and [110] wires also increase as the dimension reduces as 

shown in Fig. 4.5 (c). In the [100] off-  valley case, a slight mass increase of 9% between 

the 7.1nm and the 1.5nm is extracted from the bandstructure calculations. The off-  

valley mass increase in the [110] case is 11%. 
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Fig. 4. 5. Mass variation in nanowires: (a) The three equivalent pairs of ellipsoids in the 
conduction band of Si are described by the longitudinal and transverse masses. A 
combination of these masses results in the quantization and transport masses of 

nanowires under arbitrary orientations. (b) The transport masses oriented in [100], [110] 
and [111] vs. wire dimension as calculated from TB. At large wire cross sections, the 

[100] and [110] that are located at , approach the bulk mt=0.19m0. The mass of the [111] 
wire is larger since it is a combination of mt and ml=0.89m0.  As the wire dimensions 
shrink, the mass of the [110] wire reduces, whereas the masses of the other two wires 
increase. (c) The off-  valley masses for the cases of the [110] and [100] wires. Both 

increase as the dimensions decrease. (The expected bulk mass values for every 
orientation are denoted). The percentage change denoted is the change in the effective 

masses between the 1.5nm mass value (mostly scaled wire) and the 7.1nm wire. 

 

 

  [110] wire  valley masses decrease with increase in quantization: In contrast to 

the rest of the valleys, the  valley mass of the [110] oriented wires decreases with 

increase in quantization. As shown in Fig. 4.5 (b) the mass decreases by 32% as the side 

of the wire reduces from 7.1nm to 1.5nm. As mentioned earlier, the mass of a 3nm [110] 

wire is m*=0.16m0, which gives an enhanced injection velocities and transport 

characteristics of [110] wires over the rest of the wires. Anisotropy and non-parabolicity 
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in the Si conduction band Brillouin zone cause this unintuitive behavior as explained in 

the next section. 

 

4.4 Understanding the nanowire mass variation as a function of quantization   

 

  Semi-analytical construction of the wire�’s dispersion: This distinctly different 

observation in the masses of wires is a result of the non-parabolicity and anisotropy of the 

Si bandstructure. Under any physical quantization, the subband levels will follow the 

�“particle in a box�” quantization, as shown in Fig. 4.6 (a). The smaller the physical 

domain, the larger the corresponding quantized k, and the higher the energy levels of the 

subbands. To estimate the quantization levels of the Si conduction band ellipsoid 

quantized along the longitudinal direction, the energy contour in the x-y plane near the 

band minima is plotted in Fig. 4.6 (b). (�“Cut�” through the ellipsoid along its longitudinal 

axis). Similarly to Fig. 4.6 (a), quantization of Lx of 2nm, 3nm, and 5nm will shift the 

energy levels to the vertical lines shown in the figure. The energy levels at these lines 

will be the relevant subbands in an ultra-thin-body (UTB) quantization �– with one 

quantized dimension. Figure 4.6 (c) now, shows the energy contour taken at the 3nm line, 

perpendicular to the contour of Fig. 4.6 (b) in the y-z plane. An extra quantization in the 

z-direction (the second quantized dimension, as in the wire case) will leave only one 

allowed k-space variable, the transport direction one. This forms the 1D dispersion of the 

wire. The relevant 1D bands are the ones located at the horizontal lines of Fig. 4.6 (c). 

Lines for Lz=2nm, 3nm and 5nm are shown. The solid line indicates a relative subband 

for an UTB device with Lx=3nm and Lz  (kz=0, only one quantization dimension). 

  Mass and band edge extraction from the semi-analytical construction: The 1D 

subbands of Fig. 4.6 (c) are plotted in Fig. 4.6 (d) for the cases of Lz=2nm, 3nm and 5nm. 

(The x-direction quantization is Lx=3nm in all cases). The mass of these bands is the 

transport mass (y-direction) that the wire has in the [010] orientation (equivalent to the 

[100] wire orientation described in the previous sections). Smaller cross sections raise the 

subband energy, and increase the masses. Through this process, both, the transport 

masses and the placement of the subband edges in energy can be deduced. From the 

subband edges the quantization masses can be extracted. The more non-parabolic the  
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Fig. 4. 6. Semi-analytical understanding of the nanowire�’s dispersion: (a) The energy 
levels of a quantized structure using the �“particle in a box�” picture. Under quantization, 

the subband edges and masses can be deduced from the materials�’ bulk dispersion with a 
numerical E(k) diagram. (b) Energy contour at the middle of one of the Si Brillouin zone 

ellipsoids calculated using the full 3D k-space information of the Si Brillouin zone. A 
�“cut�” through the Si ellipsoid along its longitudinal axis is shown. Under quantization in 

Lx=2nm, 3nm and 5nm, the relevant subband energies are indicated by the vertical 
kx=constant lines. (c) A �“cut�” through the Si ellipsoid perpendicular to its longitudinal 

axis at the kx line corresponding to the 3nm quantization line of (b). The non-parabolicity 
and anisotropy is evident in this figure. The horizontal lines indicate the relevant energy 

regions under another quantization in the y-direction for Ly=2nm, 3nm and 5nm 
quantized structures. The solid line labeled UTB is the relevant band for an ultra-thin-

body (UTB) device of Lx=3nm thickness in [001] with Lz . This is only quantized in 
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the x-direction. (d) The dispersions of the vertical lines in (c). The masses and the band 
edge of the dispersions will be the ones that appear in a quantized wire. (e) The 2D plot is 
the same as in (c). The 45° lines correspond to a quantization in the [0-11] for Lyz=2nm, 

3nm and 5nm. The solid line labeled UTB is the relevant band for an ultra-thin-body 
(UTB) device of Lx=3nm thickness in [001] with Lyz . (f) The dispersions of the 45° 

lines in (e). The non-parabolicity is evident in this orientation. (g) Zoom of the right 
(positive momentum) branch of (f) with all dispersions shifted to the origin for 

comparison. As the structure is quantized in [0-11], the mass becomes lighter. The 
anisotropy in the Brillouin zone is directly reflected on the masses in the different wire 

orientations (as in Fig. 4.5 (b)). 

 

 

bulk bandstructure is at higher energies in the direction of quantization, the slower the 

subbands rise in energy with quantization compared to the parabolic band case. This 

results in larger quantization masses. The more non-parabolic the bulk bandstructure is in 

the transport direction, the larger the transport masses will be. All these effects appear in 

thin body channel devices (UTB of Fig. 4.5 (d)), however, they are significantly more 

enhanced in the case of nanowires because of the extra quantization of one more physical 

dimension [37, 38]. 

  Different orientations, different anisotropies: The transport masses of wires in 

other orientations can be explained similarly. Evident in the bandstructure is the 

anisotropy which results in different behavior in the quantization of the [100] to 

quantization of the [110] axes. In [110] oriented wires, the [100] and [0-11] directions are 

quantized. The [100] quantization is the same step as the one in Fig. 4.6 (b). Quantizing 

the [0-11] direction, will result in extracting 1D bands by lines that cross Fig. 4.6 (d) at 

45°, (in Lyz, instead of horizontal). Figure 4.6 (e) shows the first subband of the 

dispersions of structures with Lx = 3nm and Lyz = 2nm, 3nm, 5nm, similar to Fig. 4.6 (c). 

Evident in this case is the non-parabolicity of the dispersion, as it is also evident in Fig. 

4.4(c). For comparison purposes, Fig. 4.6 (g) shows the positive kyz branch of the 

dispersion, with all the bands shifted to the origin. Clearly, as the structure is quantized in 

the [0-11] direction, the curvature of the dispersion increases, corresponding to a 

lowering of the transport mass of the wires. In contrast to the [001] quantization case of 

Fig. 4.6 (c), here the anisotropy in the bandstructure results in a reduction of the transport 

masses with increase in quantization, in agreement with the calculation for the actual 
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nanowire mass shown in Fig. 4.5 (b). The magnitude of the mass variation is however 

smaller in the [0-11] quantization direction compared to the [001] direction. (Similar 

anisotropic results have been also obtained using empirical non-local pseudopotential and 

ab-initio GW calculations [46]).  

  Limitations of the semi-analytical construction: This construction method can 

provide a rough guidance as to what the dispersion of a nanowire will look like. The 

method, however, does not include any of the interactions between the bands/valleys 

(which are enhanced when the material is physically confined in a nanowire), and lacks 

any band coupling information. Effects such as valley splitting, that are a consequence of 

band coupling, cannot be captured. The extracted mass values, as well as their variation 

trends under quantization, are however quite accurate. In the case of nanowire electronic 

transport for nanowires larger than 3nm, where the mass is an important transport 

parameter, a first order estimation of the nanowires�’ performance can be drawn by using 

this analytical mass extraction.   

 

4.5 Conclusions 

 

  Transport properties of nanowires in different transport orientations ([100], [110] 

and [111]) were examined using a 10 orbital sp3d5s* atomistic TB model self consistently 

coupled to a 2D Poisson solver. A semiclassical ballistic model was used to calculate the 

current-voltage characteristics of the nanowires. The dispersions of the nanowires 

undergo changes under gate bias, which at some cases can cause large lift of degeneracies 

and small subband shifts. Although these changes under self-consistency do not alter the 

velocity and density of states of the wires, they are associated with the spatial distribution 

of charge that together with the small 1D density of states can degrade the nanowire�’s 

capacitance by 30%. The quantum capacitance of the different oriented 3nm wires that 

were investigated is a strong function of gate bias, but of similar magnitude in all wires. 

Almost the same is also the total gate capacitance of all nanowire devices in different 

orientations investigated as well as the inversion charge. Due to their lighter mass, 3nm 

[110] oriented wires have the maximum injection velocities, whereas [111] oriented wires 

the lowest injection velocities due to their higher masses. The injection velocity reflects 
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directly on the current capabilities of the wires, where the [110] and [100] oriented wires 

indicate the best performance in terms of ON-current capabilities compared to the [111] 

wires which are the worst.  

  The masses of the wires are a sensitive function of the wire dimensions (below 

7nm), and strongly influence the output performance of nanowire devices. This is an 

effect that resides in the non-parabolicity and anisotropy of the Si Brillouin zone that is 

particularly important in strongly quantized devices. Valley splitting is another effect 

strongly dependent on quantization. [110] nanowires of dimensions below 3nm are 

extremely sensitive to this.  
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5. BANDSTRUCTURE EFFECTS IN SILICON NANOWIRE 

HOLE TRANSPORT 
 

 
  This chapter investigates the ballistic transport characteristics of square p-type 

nanowires of 3nm and 6nm width, oriented in [100], [110] and [111] transport directions 

using the self-consistent model described in chapter 3. This chapter is a continuation of 

chapter 4, for p-type nanowires and it based on [50]. The sp3d5s* atomistic tight-binding 

model self-consistently coupled to a 2D Poisson solver is used as described in chapter 3. 

  The problem of identifying the correct bandstructure for the valence band of Si in 

the inversion layers is much more complicated than the corresponding conduction band 

counterpart because of the strong non-parabolicity and anisotropy of the heavy-hole. k.p 

methods have been traditionally used [92, 93] for both un-strained and strained channels. 

De Michielis recently in [94] described the valence band through semi-analytical non-

parabolic and anisotropic description calibrated to k.p. Our work, shows that the valence 

band problem is exceedingly more complicated in the case of nanowires. Here, enhanced 

coupling due to structural quantization, and large sensitivity of the band shape/curvature 

to potential variations in the lattice, especially in the [100] wire orientation, make the 

effective mass approximation (EMA) and the k.p method insufficient, and call for 

atomistic treatment [26, 34, 35]. (This is in contrast to the variations of the curvature of 

the conduction bands which show much less sensitivity to lattice potential variations).  

  The chapter is organized as follows: Section 5.1 examines the behavior of 

bandstructure under charge filling of the lattice for nanowires in different orientations for 

3nm and 6nm cross section square nanowires. The anisotropy of the Si heavy-hole 

valence band strongly affects the preference of charge placement in the wires�’ cross 

section and differs for different oriented wires. The heavy quantization masses in the 
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[110] and [112] orientations cause preferable charge accumulation on the (110) and (112) 

surfaces rather than the (100) surfaces controlled by a lighter quantization mass. 

  Section 5.2 compares the performance of the nanowires in terms of total gate 

capacitance, quantum capacitance, injection velocity and drive current capabilities for 

nanowires in different orientations. The semiconductor capacitance CS, as also in the case 

of NMOS nanowires [49], is important and can degrade the capacitance of the device by 

up to ~30% for wires in all transport orientations. In terms of ON-current capabilities, p-

type nanowire transport will be preferable in the [111] oriented devices that have the 

largest carrier velocities closely followed by the [110] devices. [100] nanowires indicate 

much lower performance due to the enhanced band warping and curvature variations in 

their dispersions.  

  Section 5.3 provides an intuitive explanation of the dispersion shapes, curvatures 

and inversion charge distribution features under quantization in 2D and 1D for different 

orientation p-type devices by extracting energy surfaces from the 3D bulk bandstructrue.  

 

5.1       Effect of potential variations on the NW dispersion and charge distribution 

 

  In this section, an analysis of the transport properties of 3nm and 6nm square 

nanowires in [100], [110] and [111] orientations is performed. Strong interactions 

between the nanowire valence bands, as well as potential variations introduce non-trivial 

features in the dispersions. Their dispersion properties (in terms of carrier velocities, and 

quantum capacitance) and the shape of the charge distribution in the cross section of the 

each wire are analyzed. The relative performances are then compared. 

 

5.1.1 Hole transport in [100] oriented nanowires 

 

  The 3nm [100] wire: Figure 5.1 (a-d) shows device features for a 3nm square 

[100] oriented nanowire under low (VG=0V) and high (VG=1.2V) gate biases. (The drain 

bias used is VD=0.5V in all cases throughout this work). Under low gate biases, the lattice 

is almost empty of charge (Fig. 5.1 (a)) and the dispersion relation (Fig. 5.1 (b)) is almost 

the empty lattice equilibrium dispersion. The dispersion is a mixture of heavy- and light- 
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Fig. 5. 1. Device features for a [100] rectangular wire. (a-d) The 3nm square wire. (a-b) 
The 2D cross section showing the charge distribution and dispersion E(k) under VG=0V 

gate bias conditions. (c-d) The 2D cross section showing the charge distribution and 
dispersion E(k) under VG=1.2V, high gate bias conditions. The dots indicate the 

underlying atomic positions. Efs is the source Fermi level. (Zero energy indicates the 
conduction subband edge). (e-h) Same features as in (a-d) for the 6nm square wire. 

 

 

hole bands, indicating strong band coupling and warping. Under high biases, there is 

significant charge filling of the lattice as shown in Fig. 5.1 (c). Figure 5.1 (d) shows the 

dispersion of the nanowire under high gate bias. Similar to the case of electron 

conduction band transport [49], charge filling of the lattice causes changes in the 

dispersion of the nanowire even at the 3nm wire length scale (Fig. 5.1 (d)). The nature of 

the changes in the dispersions is not a simple shift in the bands�’ position, but rather 

strong warping, splittings and change of shape/curvature. Qualitative explanations on the 

shape of the dispersion will be given in section 3 of this chapter. 

  The 6nm [100] case: Figure 5.1 (e-h) shows for a 6nm square wire the same 

characteristics as shown for the 3nm wire of Fig. 5.1 (a-d). Under low bias conditions, the 

charge shown in Fig. 5.1 (e) is also placed in the middle of the channel. As the bias 

increases, the charge shifts towards the corners of the device as shown in Fig. 5.1 (g). 
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Similar corner effects in 6nm wires have also been calculated for the case of NMOS 

nanowire devices [48]. The corner effect is an electrostatic one, since the corners can 

reach inversion faster than the rest of the surfaces. Significant changes are also observed 

in the dispersion of the charge filled lattice (Fig. 5.1 (h)) compared to that of the empty 

one (Fig. 5.1 (f)). 

 

5.1.2 Hole transport in [110] oriented nanowires 

 

  The 3nm [110] case: Fig. 5.2 (a-d) shows the same quantities for the 3nm [110] 

oriented wire, as shown in Fig. 5.1 (a-d) for the 3nm [100] oriented wire. The [110] 

wire�’s valence band dispersion shown in Fig. 5.2 (b) is significantly different than that of 

the [100] wire. Its�’ highest energy valley can be roughly described by effective mass, 

estimated to be ~0.14m0. (This is done using a parabolic dispersion constructed to fit the 

dispersion up to 0.1eV). The change in the dispersion under potential variations is also 

evident in this wire as shown in Fig. 5.2 (d). An estimate of the effective mass of the 

highest energy valley of this dispersion is calculated to be ~0.17m0. 

  An obvious difference between the [110] and the [100] wire is observed in the 

charge distribution in the cross section of the wire. As clearly observed in Fig. 5.2 (a), 

under low bias the charge distribution is centered in the middle of the channel, preferably 

along its vertical y-axis along the [1-10] direction rather than the x-axis along [001]. This 

is an effect resulting from the anisotropy of the quantization mass in the [1-10] and [001] 

directions. Quantization in the 100  equivalent direction is subject to a lighter mass, and 

the wavefunction is shifted farther away from the Si/SiO2 interface. The quantization 

mass in 110  is heavier, forcing the wavefunction more towards the (1-10) surface (see 

Fig. 5.2 (a)). This is even more evident under high biases as shown in Fig. 5.2 (c). 

Although the potential distribution in the cross section of the wire (inset of Fig. 5.2 (d)) is 

symmetric, the charge distribution in the cross section is preferably accumulated on the 

(1-10) surface (top/bottom) rather than the (001) surface (left/right).  

  This is an effect that should be taken into serious consideration when evaluating 

multi-surface type of devices. Kobayashi et al. in [15], showed experimentally that 
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Fig. 5. 2. Device features for a [110] rectangular wire. (a-d) The 3nm square wire. (a-b) 
The 2D cross section showing the charge distribution and dispersion E(k) under VG=0V 

gate bias conditions. (c-d) The 2D cross section showing the charge distribution and 
dispersion E(k) under VG=1.2V, high gate bias conditions. Inset of (d): The electrostatic 
potential contour in the cross section of the nanowire. The dots indicate the underlying 
atomic positions. Efs is the source Fermi level. (Zero energy indicates the conduction 

subband edge). The masses indicated are approximate effective masses for the highest 
energy level subband. (e-h) Same features as in (a-d) for the 6nm square wire. 

 

 

different quantizations impact the performance of nanowire devices through VT 

fluctuations and ON-current variations. In that work, PMOS nanowire devices of height 

30nm were built on (100) surfaces. Both [110] and [100] transport orientated wires were 

investigated as a function of width fluctuations ([1-10] width direction for the [110] wire, 

and [010] width direction for the [100] wire. Fluctuations in the [1-10] width of the [110] 

wire had much smaller effect on the wire characteristics than fluctuations of the [010] 

width of the [100] oriented wires. This is evidence of the heavier   mass quantization that 

does not allow large subband variations with size fluctuations.      

  The 6nm [110] case: Figure 5.2 (e-h) shows the same features for the 6nm x 6nm 

[110] wire as Fig. 5.2 (a-d) for a 3nm x 3nm device. Under low bias conditions (Fig. 5.2 

(e)), the charge distribution still shows the preferential distribution along the y-[1-10] axis 
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as in Fig. 5.2 (a). The low bias dispersion at energies close to the valence band edge 

indicates light masses that, however, get heavier for lower energies (Fig. 5.2(f)). At high 

biases, as shown in Fig. 5.2 (g), the charge distribution shifts towards the corners of the 

device. Unlike the 6nm [100] wire case in Fig. 5.1 (g), however, the charge is closer to 

the interface, and preferably accumulates on the top/bottom (1-10) surfaces rather than 

the left/right (001) surfaces. Comparing the charge distribution in Fig. 5.2 (g) with that of 

Fig. 5.2 (c), it appears that the inversion lobes that form along the (1-10) surface of Fig. 

5.2 (c) are now on the four corners of Fig. 5.2 (g). It is reasonable to assume that the 6nm 

wire behaves as two 3nm wires, with two inversion lobes in the left/right each. (Looking 

at the dispersion of Fig. 5.2 (h), a second pair of light mass subbands above the Fermi 

level now appears as compared to the dispersion of the 3nm wire in Fig. 5.2 (d)). 

 

5.1.3 Hole transport in [111] oriented nanowires 

 

  The 3nm [111] case: In Fig 5.3, the same analysis is performed for the [111] 

oriented wire. The [111] wire�’s valence band of Fig. 5.3 (b) is again different than that of 

the previous two described wires. Its highest valley can be roughly described by an 

approximate effective mass, estimated to be ~0.13m0. Under high bias, the dispersion 

changes (Fig. 5.3 (d)), and now the effective mass of the highest energy valley becomes 

~0.11m0. Under low bias, the charge distribution in Fig. 5.3 (a) is centered in the middle 

of the channel. Under high bias (Fig. 5.3 (c)), the charge is still mostly symmetric in the 

cross section. This originates from the similarity in the dispersions along the quantization 

surfaces of this wire which are the (1-10) and the (11-2) surfaces, although a small degree 

of asymmetry can be observed. More details on this will be provided in section 3. 

  The 6nm [111] case: Fig 5.3 (e-h) again shows the same analysis for the 6nm 

square [111] wire. Under low bias conditions, the charge distribution is almost symmetric 

in the center of the wire as shown in Fig. 5.3 (e). The dispersions�’ curvature at energies 

close to the valence band edge is large, indicating light masses. As the energy increases, 

however, the curvature reduces, and the bands become heavier (Fig. 5.3 (f)). At high 

biases, the charge accumulates close and along the surfaces, slightly preferable along the  



 

 

68

 

Fig. 5. 3. Device features for a [111] rectangular wire. (a-d) The 3nm square wire. (a-b) 
The 2D cross section showing the charge distribution and dispersion E(k) under VG=0V 

gate bias conditions. (c-d) The 2D cross section showing the charge distribution and 
dispersion E(k) under VG=1.2V, high gate bias conditions. The dots indicate the 

underlying atomic positions. Efs is the source Fermi level. (Zero energy indicates the 
conduction subband edge). The masses indicated are approximate effective masses for the 

highest energy level subband. (e-h) Same features as in (a-d) for the 6nm square wire. 

 

 

(1-10) top/bottom surfaces rather than the (11-2) left/right surfaces. The quantization 

masses of (1-10) and (11-2) surfaces are similar, which makes the charge distribution 

more symmetric. They are heavier than the (100) quantization masses, which allows the 

charge placement closer to the interfaces (comparing at the same gate overdrive). The 

high bias dispersion of this wire in Fig. 5.3 (h), as also observed in the case of the [110] 

wire, has light dispersion features for energies above the Fermi level, similar to the light 

bands in the low bias case for the 3nm wire of Fig. 5.3 (d). Just by looking at the 

dispersions, the 6nm wire under inversion behaves similarly to the 3nm wire, with a 

larger number of subbands. 

 

 

 

Low gate bias High gate bias Low gate bias High gate bias

3nm x 3nm wire 6nm x 6nm wire
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5.2      Device performance comparison of NWs in different orientations 

 

  Figure 5.4 shows a performance comparison between the wires in the [100], [110] 

and [111] orientations for the 3nm and 6nm square nanowires. The various performance 

quantities shown further on, are all compared at the same OFF current (IOFF) for all 

devices. 

  Gating induces same capacitance / charge in all wire directions: Figure 5.4(a) 

shows the total gate capacitance (CG) vs. gate bias (VG) of the three wires at the same 

IOFF. The total capacitance in the three wires is very similar for all gate biases, as also 

observed in the case of the n-type transport in nanowires [49]. This is an indication that 

the same amount of inversion charge is accumulated in all wires irrespective of their 

orientations.  

  Low semiconductor capacitance (CS) degrades the gate capacitance (CG) from the 

oxide capacitance (COX) by ~30%:  This amount corresponds to an effective increase in 

the oxide thickness of 0.35nm, ( ~30% of the physical gate oxide thickness of tox = 

1.1nm). From )/( OXSOXSG CCCCC , with CG = 0.35nF/m (maximum value of Fig. 5.4  

(a)), and COX = 0.483 nF/m [86], CS can is calculated to be mnFCS /27.1 , which is only 

~3 times larger than the value of the oxide capacitance. Comparing the CS value to the 

quantum capacitance of the nanowires shown in Fig. 5.4 (b), (CQ<3nF/nm for all wire 

orientations), the CS is reduced from CQ by a factor of ~2. This situation is the same in 

the case of the conduction band transport properties, and has also been observed in thin 

body devices and even bulk MOSFETs [87]. As discussed by Pal, this happens whenever 

the potential well formed in the channel is bias dependent. Equivalently, the charge 

centroid is placed further away from the interface, and CS is reduced. CQ being very 

similar for all nanowires, on the other hand, results in very similar final gate capacitances 

for all wires as well.  

  Velocity controls the transport differences in different orientated wires:  Figure 

5.4 (c) shows the injection velocities of the wires vs. gate bias (VG). The [111] wire has 

the largest velocities, followed by the [110] wire, whereas the [100] wire has the lowest 

velocities, as would be expected from the subband masses estimated earlier for the [110] 

and [111] wires. (In 1D, under the parabolic band approximation, the velocity is  
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Fig. 5. 4. Performance comparison of the square wires in the [100], [110] and [111] 
directions at the same OFF-current (IOFF). (a-d) The 3nm square wire: (a) The gate 

capacitance CG vs. gate bias (VG). The capacitance is similar for all wires, and degraded 
from the oxide capacitance by an amount that corresponds to an increase in the effective 
oxide thickness of 0.35nm. (b) The quantum capacitance CQ vs. VG of the three devices, 

which is a measure of the density of states at the Fermi level. (c) Comparison between the 
injection velocities of the nanowires vs. VG. In all cases, the velocity is not constant, but 
increases as the gate bias increases. The increase is calculated by the difference between 
the value at high VG and the value at low VG. (d) The IDS vs. VG for the three wires at the 
same IOFF. The velocity difference directly reflects on the current differences. (e-h) The 

6nm square wire: Same features as in (a-d) respectively. 

 

 

proportional to */1~ mv ). The lowest velocity in the [100] wire, is a result of the 

enhanced warping in its dispersion, which slows carriers down. 

The injection velocities increase as high energy carrier states are being populated. This 

increase in velocity with gate bias can reach up to 40% in the [100] wires and even up to 

29% in the [111] and 21% in the [110] wire orientation cases.  

  Velocity differences affect the I-V differences: Since the charge is the same in all 

devices, the velocity difference directly reflects on the ballistic IDS as shown in Fig. 5.4 

(d) in which the drive current capabilities of the wires are compared at the same IOFF. The 

[111] and [110] wires perform better than the [100] wire in terms of ON-current 

capabilities. Comparing to the [100] wire, the [110] wire can transport almost 2 tims as 

much current, whereas the [111] wire almost 2.5 times higher current.  

3nm x 3nm wires 6nm x 6nm wires

(a) (b) (e) (f)

(c) (d) (g) (h)
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  Transport characteristics for the 6nm wires: The same analysis has been 

performed in Fig. 5.4 (e-h) for the 6nm x 6nm wires. Similar observations as in the 3nm 

wire case are concluded for the total capacitance (Fig. 5.4 (e)), the quantum capacitance 

(Fig. 5.4 (f)), the velocities (Fig. 5.4 (g)), and the relative IDS performance between the 

different orientation wires. The relative differences in the performance are slightly 

different than in the 3nm case, however, qualitatively the same conclusions can be drawn. 

Comparing to the 3nm wire case, the gate capacitance and the quantum capacitance 

doubles for the 6nm wire. The velocity is lower than that in the 3nm wire cases because 

slower carrier velocity subbands are now been occupied. Finally, the current is increased 

by ~60% (comparing at the same gate overdrive) when going from the 3nm x 3nm wire 

to the 6nm x 6nm wire (while the area is increased by 4 times).   

 

5.3 Understanding the nanowire valence band dispersions and quantization  

           through the 3D bulk E(k) 

 

5.3.1 The k-space energy surfaces under different orientations-quantization     

            behavior 

 

  In this section, intuitive explanations to the quantization behavior and the shape of 

the transport dispersions in different transport orientations are provided. The study of the 

curvatures and masses of the surface slices through the 3D bulk E(k) in different 

directions can guide some understanding of the nanowire quantization behavior. The 

main reasoning comes from the anisotropy of the heavy-hole bandstructure, which 

defines the transport and quantization masses in different orientations. The heavier the 

quantization mass of a surface, the closer the charge will accumulate near the surface 

under inversion conditions. The heavy-hole (100), (110), (112) and (111) surfaces are 

investigated in Fig. 5.5. (The light-hole band is almost isotropic and does not force 

preferable charge distribution on any surface). 

  The (100) E(k) surface: Figure 5.5(a) shows the 2D E(k[100],k[010]) of the (100) 

surface. The contours at E=0.2eV and E=1eV are plotted. The bandstructure is  
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Fig. 5. 5. Semi-analytical understanding of surface quantization: (a-d) Energy surface 
contours of the heavy hole calculated using the full 3D k-space information of the Si 

Brillouin zone. The energy contours for E=-0.2eV and E=-1eV are plotted. (a) The (100) 
surface. The anisotropy is evident in the [100] and [110] directions. (b) The (110) 

surface. (Or equivalently, 45° �“cut�” through the center of (a) into the surface. (c) The 
(111) surface. (d) The (112) surface. The [1-10] and [111] in plane directions are 

indicated. (e-h) Extraction of relevant quantization subbands. (e) The (100) energy 
surface with a few relevant quantization lines under quantization in the (010) (vertical 
k[100]=constant lines) and (1-10) (45° lines) surfaces. Under quantization in (010), the 
shift in the k-value is given by k=n. /L, where n is the subband index, and L is the 

quantization length (6nm in this case) (f) Relevant subbands in (010) surface quantization 
and [100] transport. (g) Relevant subbands in (1-10) surface quantization and [110] 
transport. (f) Relevant subbands in (1-10) surface quantization and [111] transport. 

 

  

anisotropic, with heavier mass dispersion along the [110] direction (m*[110] = -0.581m0) 

and lighter along the [100] direction (m*[100] = -0.276m0). Quantization in [110] will 

utilize heavier quantization masses, than quantization in [100] directions. At the same 

inversion conditions in a nanowire, the charge distribution will preferably reside closer to 

the (110) surface than the (100) surface, which is exactly what observed in Fig. 5.2 (d) 

and 5.2 (g). On the other hand, the symmetry of the heavy hole in the [001] and [010] 

directions, results in the symmetric charge distribution in the [100] oriented wires of Fig. 

5.1. Of course, the [100] wire can be quantized in the [110] and [1-10] directions. The 

(a)-(100) surface (b)-(110) surface (d)-(112) surface(c)-(111) surface

(e)- quantization
(f)-[100] subbands (g)-[110] subbands (h)-[111] subbands
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charge distribution in this case will reside closer to the interface than what is shown in 

Fig. 5.1 (c,g).  

  The (110) E(k) surface: The differences in the quantization behavior in the [110] 

directed wire (with (100) and (110) equivalent quantization surfaces) is more evident in 

the E(k[1-10],k[001]) shown in Fig. 5.5 (b). This energy contour is a cross section along the 

45° diagonal line of Fig. 5.5 (a). The [010] and [10-1] orientations indicated, are the 

quantization directions of the [110] oriented wire.  

  The (111) E(k) surface: The quantization of the [111] channels described earlier is 

determined from the (111) E(k) surface, with [1-10] and [11-2] quantized sides, shown in 

Fig. 5.5 (c). The energy surface does not look very different in the two directions, 

although minor details can be found. The charge distribution of Fig. 5.3 is due to this 

reason almost symmetric in the two quantization directions (with some minor 

differences).  

 

5.3.2 Understanding the transport dispersion features 

 

  Relevant band extraction method: The bulk energy contour surfaces can provide 

indications for the shape of the dispersions in different orientations (either quantum wells 

or nanowires). Under any physical quantization, the relative energy/subband levels will 

follow the �“particle in a box�” quantization, and move away from the center of the band 

minima at a rate of kn=n. /L, where L is the quantization size. The smaller the physical 

domain, the larger the corresponding quantized k. For example, the relevant energy 

dispersion for a quantum well quantized in the [010]-direction, will be the horizontal 

energy surfaces in the [100]-[001] plane, passing through the lines drawn in Fig. 5.5 (e). 

Similarly, the relevant energy dispersions in [110] transport direction with quantization of 

the (1-10) surface are given by surfaces drawn through the 45° lines shown in Fig. 5.5 

(e). (The relevant dispersions in the [111] transport direction with quantization of the (1-

10) surface, will be surfaces perpendicular to the 45° lines of the (112) surface of Fig. 

5.5(d) along [111]). Figures 5.5 (f-h) show the transport direction subbands for the [100], 

[110] and [111] orientations as the (010), (1-10) and (1-10) respectively are quantized, 

and for the k-vector in the remaining quantization direction set to k=0 (i.e. the 
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quantization lines in Fig. 5.5 (e)). The quantization assumed is L=6nm (equivalently 12, 

17 and 7 unit cells in the [110], [110] and [111] wires respectively). 

   Band shape in [100]: Figure 5.5 (f) shows energy subbands of the (010)/[100] 

structure. These will be relavant subbands in [100] orientation and partially explain the 

oscillating behavior observed in the subbands of the [100] wire dispersions of Fig. 5.1. 

(This is just an indication on where these subbands originate from. The method for an 

exact reconstruction of the nanowire subbands from the bulk bandstructure will be 

presented in the next section). Strong band coupling however, allows only qualitative 

understanding for the subband form, in contrast to the case of n-type wells, for which a 

good agreement can be achieved between this semi-analytical method and the full TB 

dispersions.  

  Band shape in [110]: The (110)/[110] direction subbands are drawn in Fig. 5.5 

(g). (45° lines in Fig. 5.5 (e)). The subband passing through the center of the energy 

contour is of heavy-mass, however, as the structure is quantized in the [110] direction, 

the subbands shift away from the center and become lighter. This explains partially the 

shape of the subbands in the [110] wires of Fig. 5.2 (c), where the 3nm quantized wire 

has light mass subbands, whereas the 6nm quantized wire in Fig. 5.2 (g) has heavier 

subbands. Of course under electrostatic quantization in Fig. 5.2 (h), the highest energy 

subbands become lighter again (similar to the case of structural quantization).  

  Band shape in [111]: The [111] case, is similar to the [110] case as shown in the 

subbands of Fig. 5.5(h). Here, the subbands are drawn by taking lines at 45° in Fig. 5.5 

(d) along [111] perpendicular to the [1-10] direction. Lines passing from the center (weak 

quantization), are heavy subbands, but as the structure is more quantized the subbands 

become lighter. The subband features in this case shine light into the [111] nanowire 

dispersion features of Fig. 5.3 (b) under strong quantization, and Fig. 5.3 (f) under weak 

quantization. Stongly quantized subbands will look more like the large n-value subbands 

(with lighter masses), while weakly quantizated subbands will look like the smaller n-

value subbands (with heavier masses). Electrostatic quantization will have a similar effect 

as physical quantization in the curvature of the subbands, transforming the equilibrium 

dispersion of the 6nm wire (Fig. 5.3 (f)) into a dispersion with subbands similar to the 

3nm wire subbands.   
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Fig. 5. 6. Semi-analytical understanding of nanowire dispersion: (a-d) The E(k) 
dispersions for square nanowires calculated using the full numerical TB model. (a) 12nm 
[100] wire. (b) 12nm [110] wire. (c) 3nm [100] wire. (d) 3nm [110] wire. (e-h) The E(k) 
dispersions for square nanowires calculated using the semi-analytical construction from 

the bulk bandstructure. (a) 12nm [100] wire. (b) 12nm [110] wire. (c) 3nm [100] wire. (d) 
3nm [110] wire. 

 

 

5.3.3 Semi-analytical construction of the NW dispersion from the bulk E(k) 

 

   The study of the surface slices through the bulk E(k) in different directions can 

guide some understanding of the nanowire dispersions. After picking a surface in a 

particular direction, the two remaining k-directions are quantized due to the lateral 

nanowire confinement. The quantized point on the plane corresponds to a single k-point 

in the transport direction dispersion. To obtain all k-points of the 1D subband in the 

transport direction, the surface slice needs to be translated further into the bulk dispersion 

and the lateral quantization must be redone. All relevant 1D subbands from the bulk 3D 

E(k) along the transport direction are obtained by shifting in k-space in both two relevant 

quantization directions kA=n. /LA and kB=m. /LB, where kA , kB and LA, LB are the two 

quantization k-space directions and quantization lengths, for all n, m.  

  Figure 5.6 compares the full numerical dispersions to the semi-analytical 

dispersions constructed from the bulk E(k) for different wire cross sections (3nm, 12nm) 

and wire directions [100] and [110]. All heavy-hole, light-hole and split-off bands are 

12nm x 12nm wires 3nm x 3nm wires

(a) (b) (e) (f)

(c) (d) (g) (h)
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included in this construction. In the cases of the 12nm wires, the envelope of the bands in 

the semi-analytical dispersion in both the [100] and [110] cases approximates the actual 

nanowire dispersion very closely. Enhanced band interactions in the case of the 

dispersions of the actual wires create qualitative differences in these multi-band 

dispersion figures. Potential variations are however not part of this analysis, which can 

have large impact on the dispersions in the actual wire. In the case of the smaller (3nm) 

wires, both in [100] and [110] orientations (Fig. 5.6 (c,d,g,h)), some of the trends and 

band shapes are captured, however due to the enhanced coupling, only small qualitative 

similarities can be observed between the actual and the semi-analytical constructed 

dispersions.  

  The semi-analytical construction method can only provide qualitative indications 

as of the subband form of the different oriented nanowires. Band interactions and the 

effect of potential variations is not included in this approach, however, reasonable 

understanding about the subbands of nanowires can be extracted from the simple bulk 

bandstructure. It is noted here, that in the case of the conduction band dispersion, or 

valence band of 2D quantum wells, where the band coupling is reduced, the semi-

analytical construction method gives a much closer result to the actual dispersion of the 

structure [49, 95]. 

 

5.4 Conclusions 

 

  Transport properties of nanowires in different transport orientations ([100], [110] 

and [111]) are examined using a 20 orbital sp3d5s*-SO atomistic TB model self-

consistently coupled to a 2D Poisson solver. A semiclassical ballistic model is used to 

calculate the current-voltage characteristics of the nanowires. The dispersions of the 

nanowires cannot be described within the EMA because of the enhanced band coupling 

that induces large warping in the dispersions, especially for the [100] oriented wires. In 

addition, the dispersion shapes are strongly bias dependent.  

  The [111] wire has the largest carrier velocities and ON-current capabilities, 

followed by the [110] wire. The [100] wire is the worst in terms of both carrier velocities 

and drive current capabilities. The semiconductor capacitance (CS) is important for 
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nanowire devices and degrades the gate capacitance by ~30%. This effect is very similar 

for all wire orientations, for both 3nm and 6nm square wires.  

  The shape of the charge distribution in the cross section of the different oriented 

wires differs for each wire according to the quantization mass that each surface feels. The 

[100] wire examined with (010)/(001) quantization surfaces has a symmetric charge 

distribution in its cross section. In the case of [110] wires, with (1-10)/(100) quantization 

surfaces, the charge preferably accumulates on the (1-10) surface due to its largest 

quantization mass. The [111] wire, with similar quantization mass in the (1-10)/(11-2) 

surfaces has only slightly non-symmetric charge distribution profile on the two surfaces. 

These observations can give guidance towards the design of multi surface devices such as 

nanowires and FinFETs.  
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6. PERFORMANCE ANANLYSIS OF 60nm GATE LENGTH III-V  

InGaAs HEMTs:  SIMULATIONS vs. EXPERIMENTS 
 

 

6.1 Introduction 

 
  Field-effect transistors with III-V channel materials have recently received much 

attention because of their potential as switching devices for future digital technology 

nodes.  Both heterostructure based high electron mobility transistors (HEMTs) [2-4] and 

MOSFETs [5, 6, 96] have been reported.  Due to their higher mobility, the III-V channel 

materials should reach the ballistic limit at longer channel lengths than Si devices. The 

low effective mass of the III-Vs should also boost the ballistic carrier velocity and 

improve the ID-VD characteristics.  Trade-offs are involved (e.g. the light effective mass 

leads to a density-of-states bottle neck [97, 98] and to source-drain tunneling [23]), but 

III-V FETs have the potential to outperform Si MOSFETs under low-voltage operation.  

In that regard, high-performance HEMTs based on III-V compounds with channel lengths 

below 90 nm have recently been demonstrated [3, 4, 99, 100]. Good control of the wide 

bandgap insulator thickness down to 3nm was achieved while still maintaining relatively 

low gate leakage currents �– even under high biases.  This paper is a simulation study of 

the results reported by Kim et al. [3].  Our objective is to examine the experimental data 

with a fully quantum mechanical, ballistic model in order to understand what can and 

cannot be explained. 

  In this chapter, a two-dimensional, ballistic quantum transport HEMT simulator 

based on the real space Non-Equilibrium Green�’s Function (NEGF) approach [24, 25] is 

employed. Simulation results show that for these In0.7Ga0.3As HEMTs with a gate length 

of 60 nm and zero series resistance, a ballistic device of this kind would deliver about 

twice the on-current of the measured device. With external series resistors added, the 
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simulated I-V characteristics are close to the measured results, except at the highest gate 

voltage. The simulations show good agreement with the subthreshold swing and drain-

induced barrier lowering vs. channel length, but they do not show the drop in on-current 

with increasing gate length that is observed experimentally.  The simulations shed light 

on the internal physics of these devices and identify issues for further study. 

 

6.2 Approach 

  For simulation purposes, the device geometry is simplified as shown in Fig. 6.1.  

In the experimental device [3], the source and drain contacts are located on the top of the 

device, and the current flow is two-dimensional through a doped heterostructure stack.  

Rather than attempting to simulate the contacts (and the associated metal-semiconductor 

contact resistance), we placed ideal contacts at the two ends of the channel as shown in 

Fig. 6.1 and added extrinsic series resistors to the source and drain.  The simulated 

HEMT consists of a 15nm In0.7Ga0.3As layer between two In0.52Al0.48As buffer layers. 

The gate electrode in the simulated device is placed on top of the In0.52Al0.48As layer, 

which (in the simulated structure) has the same thickness throughout the entire length of 

the device. A silicon -doped layer [101] in the In0.52Al0.48As buffer layer effectively 

dopes the source/drain regions of the device. The -doped layer is located 3nm away 

from the channel layer. Devices with insulator thickness of tins = 3nm, 7nm and 11nm 

were described in [3]. Later, better estimate of the 7nm and 11nm devices were given as 

6.5nm and 10nm [101], and these were the values used in our simulations. In the 

simulating the tins = 3nm device, the -doped layer was placed on top of the insulator, and 

the gate electrode on top of a thin layer on top the -doped layer. In the simulation, the -

doped layer is given a finite thickness of 0.40 nm and the thin layer on top of the d-doped 

layer was 0.40 nm.  The result was an insulator thickness of tins = 3.8nm in the simulation. 

This is within the experimental uncertainty in the insulator thicknesses of +/- 1nm [101]. 

The uncertainty in insulator thickness is not substantial for the thinnest insulator device 

and this is discussed in Sec. 6.4. 

  The far left/right regions of the -doped layer are doped to 5x1013/cm2 to mimic 

additional doping from the n+ cap layers (In0.7Ga0.3As/In0.52Al0.48As) used in the 



 

 

80

experimental device to facilitate ohmic contacts to the source and drain.  There are, 

therefore, two different doping regions in the simulated device. The region that is directly 

 

 

Fig. 6. 1. HEMT device description: (a) The simplified HEMT device structure. An 
In0.7Ga0.3As between two In0.52Al0.48As layers acts as the channel. A -doped layer 3nm 
away from the channel layer, effectively dopes the source/drain regions of the device to 

2.2x1012/cm2. (b) The conduction band profile taken at a cross section of the HEMT 
device at the region of the source/channel boundary when the device is under large gate 
bias. The workfunction difference between the gate and the In0.52Al0.48As buffer layer is 

adjusted to B = 0.5eV.  The conduction band discontinuity between the 
In0.7Ga0.3As/In0.52Al0.48As layer is assumed to be Ec = 0.6eV. The dielectric constant of 

In0.52Al0.48As is assumed to be  = 14 and of the In0.7Ga0.3As  = 14.5. 
 

 

adjacent to the channel to its left/right, has a carrier density of 2.1x1012/cm2, which is the 

value specified by the experimental group [101]. The far left/right region has a larger 

doping of 1013/cm2. This level of doping is unrealistically high for this type of material, 

but it favors numerical stability of the simulation and does not affect the device.  This is a 
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way to mimic the extended source/drain regions of the actual device.  In addition, 

although the lightly doped region in the experiment has Lside = 1 m [101], for 

computational efficiency Lside is set to Lside = 60nm in the simulations. As will be 

discussed later, under high gate bias, the source design becomes important.  Because of 

the simplified source design used in the simulation, we will be able to draw only 

qualitative conclusions about the high gate bias performance.  The channel region is the 

region directly under the gate electrode and has LG  = 60 nm as in the experimental 

device.  Longer channel lengths were also examined experimentally, and these devices 

are briefly considered in Sec. 6.4. 

  It should be pointed out that the source and drain contacts in the simulated device 

should not be regarded as real contacts with an associated contact resistance.  Rather, 

they are idealized contacts to the extended source/drain regions which are assumed to be 

maintained in thermodynamic equilibrium by strong scattering.  Venugopal et al. 

examined this assumption for silicon transistors and found that scattering in typical 

contacts of heavily doped silicon is sufficient to maintain thermodynamic equilibrium 

[102].  Nevertheless, this assumption may need to be reconsidered as devices continue to 

shrink and for new channel materials such as the III-V�’s considered here.  Indeed, 

Fischetti has discussed the phenomenon of �“source starvation�” which is a manifestation 

of non-equilibrium contacts in III-V FETs [103].  For this study, we assume extended 

contacts that are maintained in thermodynamic equilibrium.   

  Figure 6.1b shows the simulated conduction band profile normal to the channel 

taken at a location near the source end of the channel (about at the top of the potential 

energy barrier between the source and the channel) when the device is under large gate 

bias. The workfunction difference between the gate and the In0.52Al0.48As buffer layer is 

adjusted to B = 0.5eV in order to match the threshold voltage of the simulated devices 

to the experimental measurements. The thickness of the In0.52Al0.48As layer in this case is 

3nm, and the -doped layer is adjacent to the gate/In0.7Ga0.3As interface. The conduction 

band discontinuity between the In0.7Ga0.3As/In0.52Al0.48As layer is assumed to be Ec = 

0.6eV [101, 104]. The dielectric constant of In0.52Al0.48As is assumed to be  = 14 and 

that of the In0.7Ga0.3As is  = 14.5 [105]. 
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The effective mass of the In0.7Ga0.3As channel is an input to the simulation.  Because of 

conduction band non-parabolicity, quantum confinement will increase the effective mass  

 

 

Fig. 6. 2. The dispersion of the composite 15nm thick In0.7Ga0.3As structure calculated 
using atomistic tight-binding calculations with no distortions taken into account. The 

wafer orientation is (100) and the transport orientation is [011]. The parabolic band (red-
dotted) of m* = 0.048 m0 is adjusted to match the density of states up to 0.2eV above the 

conduction band edge. 

 

as compared to its value in the bulk.  In principle, the appropriate effective mass could be 

extracted by sophisticated atomistic calculations (e.g. tight-binding atomistic methods), 

however, this is a difficult task because the masses can be a function of the exact 

placement of the atoms in the structure and the distortions within the structure. In this 

work a simplified approach is followed; we extract the effective mass from atomistic, 

tight-binding [106] calculations for a 15 nm wide In0.7Ga0.3As quantum well structure 

without assuming any lattice distortions. The dispersion of the quantum well is shown in 

Fig. 6.2. The wafer orientation is (100) and the transport orientation is [011]. The 

parabolic band drawn on top of the first valley is adjusted to match the density of states 

up to 0.2eV above the conduction band edge and results in an effective mass of m* = 

0.048m0, which is the effective mass used in the simulations.  (We chose to fit from the 

bottom of the conduction band to 0.2 eV above the bottom because the maximum 

position of the Fermi level above the conduction band edge under high gate bias is 

usually close to or below 0.2eV).  Similar parabolic bands that match the bulk E(k) 

bandstructures of the InAs and GaAs at  up to 0.2eV above the conduction band minima 
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were also extracted. A weighted average of these masses according to the 70% indium 

and 30% gallium composition results in a very similar value for the effective mass. The 

mass value is higher than the weighted average of the literature bulk masses, which is 

m*=0.037m0, (m*InAs = 0.027m0, m*GaAs = 0.063m0).  Our use of a larger effective mass 

accounts for the effect of non-parabolicity in an approximate way. In addition, as shown 

in Fig. 6.2, the L valleys are very high in energy compared to the  valleys and are, 

therefore, ignored in our simulations. (This is expected since the composite channel in 

this case due to the 70% indium composition has stronger InAs properties rather than 

GaAs properties which will tend to place the  and L valleys closer in energy.) 

  The non-equilibrium Green�’s function approach [24, 25] for ballistic quantum 

transport is self consistently coupled to a 2D Poisson solver for treatment of the 

electrostatics. Since the channel is relatively thick (15nm), significant potential variations 

are expected in the cross section along the transport orientations. The NEGF Hamiltonian 

uses a real space technique in the parabolic, effective mass approximation (EMA) and 

accurately accounts for the mode coupling when large potential variations exist. The 

NEGF transport equation is solved in the channel area as well as in the upper 

In0.52Al0.48As buffer layer in order to capture the wavefunction penetration in that layer. 

The 2D Poisson�’s equation is solved in the entire cross section of the device in order to 

accurately capture the 2D electrostatics of the device. 

 

6.3 Results 

 

  In order to compare the measured to the simulated data, two fitting parameters 

were used, a value of external series resistance (RSD) that is added to the device, and the 

workfunction difference ( B) between the gate and the In0.52Al0.48As buffer layer. The 

effect of the series resistance will be explained in the following section. The 

workfunction difference, B, is used to adjust the VT of the simulated to that of the 

experimental data. The adjustment is done once for the LG = 60 nm device with a 3nm 

thick insulator. The result, B = 0.5eV, is a reasonable number for the workfunction  
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Fig. 6. 3. 2D electrostatics of the HEMT: (a) The experimental (red-circle) and simulated 
(blue-solid) ID-VG data for the LG = 60nm, tins = 3nm, 7nm, 11nm devices.  A 

workfunction difference between the gate and the In0.52Al0.48As layer of B = 0.5eV is 
used in order to match the VT for all devices. A negative shift in VT by 0.25V is observed 

as the oxide thickness increases. (b) The DIBL and subthreshold swing (SS) of the 
experimental and simulated data. 

 

 

difference between the two materials. Figure 6.3a shows the ID-VG characteristics for the 

three devices �– each with a 60nm channel length but with three different insulator 

thicknesses. The measured and simulated curves agree fairly well.  In the case of the 7nm 

insulator device, the simulated and measured VT differs by ~0.04V. This small deviation 

might be due to various reasons such as interface traps, charged impurities, or 

uncertainties in the thickness of the layers in the experimental device. As the insulator 

thickness increases, there is a large negative shift in the VT by almost 0.25V, which is 

attributed to the -doped layer and its increasing effect on the electrostatics of the channel 

as the gate electrode moves farther away. The threshold voltage shift is well-described by 
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T

ins ins
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 (6.1) 

 

where WN  is the -doping concentration per cm2, and �ˆx is the centroid of the charge 

distribution in the insulator [107]. 

  The Drain Induced Barrier Lowering (DIBL) and the subthreshold swing (SS) 

extracted from the simulated data are shown in Fig. 6.3b, and both are seen to increase as 

(a) (b) 
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the insulator thickness increases, which is expected from 2D electrostatics.  The 

simulated results agree with the experimental data both qualitatively and quantitatively.  

  The second adjustable parameter in the simulation is the series resistance.  The 

series resistance originates from the complicated ohmic contact between the n+ cap layer, 

the In0.52Al0.48As layer and the barrier between the interface of the In0.52Al0.48As/ 

In0.7Ga0.3As layers.  Figure 6.4a shows the experimental ID-VD data and the simulated 

ballistic ID-VD characteristic at the same gate overdrive (VG = 0.5V). The simulated, 

ballistic ON-current is almost double than the experimental value, and the channel 

resistance of the simulated ballistic device is RB = 170 - m (inverse slope of the linear 

region). In order fit the simulated results to the experimental data, a series resistance 

(source plus drain) of RSD = 400 - m was added to the ballistic data in order to match 

the total resistance measured in the experimental data (inverse slope of the high VG 

experimental ID-VD). 

  Once the series resistance is fit to the linear region of the highest gate voltage 

data, the simulated data at low drain voltages shows very good agreement with the 

experimental observations for all three gate bias cases reported experimentally (VG = 

0.1V, 0.3V, 0.5V). The agreement at high drain voltage is also good, except for a ~15% 

discrepancy between ON-current of the measured and simulated data.  For this LG = 60 n 

nm device, the experimental results can, to a reasonable approximation, be explained by 

an intrinsic, ballistic FET with two series resistors attached to it, except for the 

overestimate of the on-current, which will be discussed in Sec. IV.  Longer channel 

lengths appear to operate at a lower fraction of the ballistic limit, as will also be discussed 

in Sec. 6.4. 

  Similarly, the experimental ID-VD data for the tins = 7 nm and tins = 11nm devices 

can be explained by using slightly different values of RSD (RSD = 350 - m and RSD = 310 

- m, respectively). The value of the fitted series resistance increases as the insulator 

thickness decreases.  This was also observed in the experiments and was attributed to the 

isotropic etching that was used before gate deposition to produce the three different 

insulator thicknesses [3]. As more of the insulator sidewall is etched, the series resistance 

tends to increase. Figures 6.4b,c show the experimental ID-VD for various VG values 

compared to the simulated results after the series resistance has been fit. 
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Fig. 6. 4. Comparison between the experimental (red-circle) and simulated ID-VD with 
series resistance added to them (blue-solid). (a) The tins = 3nm device. Data for VG = 0.1V, 

0.3V and 0.5V are shown. The black-dashed curve indicates the ballistic ID-VD at VG = 
0.5V with RSD = 0 - m. A RSD = 400 - m is added to the simulated data. (b) The tins = 
7nm device. Data for VG = 0V, 0.2V and 0.4V are shown. A RSD = 350 - m is added to 
the simulated data. (c) The tins = 11nm device. Data for V G = -0.1V, 0.1V and 0.3V are 

shown. A RSD = 310 - m is added to the simulated data. 

 

Good agreement between the experimental and simulated data is observed, but for each 

of the three cases, the ON-current of the simulated device is ~10-15% more than that of 

the measured device. 

(b)

(c)

(a)
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  The mobility of a field-effect transistor is often extracted from the linear region 

current. Although mobility has no physical meaning in our ballistic simulations, the 

simulated ballistic drain current is linearly proportional to the drain voltage at low VDS, so  

we can extract a �“mobility�” by equating the channel resistance to a conventional 

MOSFET expression, 

 

  ,
/ ( )
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DS B ins G T

V LR
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 (6.2) 

 

where  B  is the  so-called ballistic mobility by [108-110]. From our simulations, Rch at 

high gate bias (before adding the effect of RSD), varies between Rch = 170 - m �– 240 -

m as the insulator thickness varies from 3nm to 11nm.  From these channel resistances, 

a value of the ballistic mobility is extracted to be B ~ 170-450 cm2/V-s. Although the 

mobility of bulk In0.7Ga0.3As is measured to be ~10,000 cm2/V-s, the �“apparent�” mobility 

(in the sense of eqn. (2)) that a short channel HEMT can display is limited to a few 

hundred ].  Alternatively, one could deduce a mobility for the device by plotting the total 

resistance between the source and drain as a function of channel length. The y-intercept 

of this curve would be the fixed, external series resistance and the inverse of the slope 

would be proportional to the channel mobility.  In that case, a ballistic FET would show 

zero slope, corresponding to an infinite mobility. 

 

6.4 Discussion 

 

6.4.1 The effect of RSD 

 

  Within the uncertainties of the simplified structure used in the simulations and in 

our knowledge of various device parameters, the results presented in the previous section 

show that the LG = 60 nm  HEMTs reported by Kim et al. [3] can be described as ballistic 

FETs with two external series resistors.  The only significant discrepancy between the 

simulated and experimental results is the consistent 10-15% over-estimate of the  
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Fig. 6. 5. The gm vs. VG data for the tins = 3nm device. Measured data (red-circle), and 
simulated data with RSD = 0 - m (black-solid), RSD = 400 - m (blue-square), and RSD = 

800 - m (green-square) are shown. 

 

 

ON-currents. The experimental transconductance, gm, vs. gate voltage characteristic is 

shown in Fig. 6.5 for the tins = 3nm device. The observed degradation in gm at high gate 

voltages might be attributed to various causes. Scattering at high gate biases could reduce 

mobility and degrade gm. Another possibility is population of heavy effective mass upper 

valleys. 

  Figure 6.2 shows, however, that the L valleys are too high in energy to be 

populated. Parallel conduction in the upper layer, which has much heavier masses (~5 

times heavier) than the channel layer, could also be a possibility. As shown in Fig. 6.1b, 

however, our simulations show no significant wavefunction penetration in the upper layer 

�– even under high inversion conditions. Series resistance could be yet another possibility.  

Figure 6.5 shows the simulated gm vs. VG characteristics for three different values of 

series resistance (RSD = 0, 400, 800 - m). For the RSD = 0 and 400 - m cases, the gm 

follows the experimental curve, but saturates at much higher VG than the experimental 

curve. For the 800 - m characteristic, we obtain roughly the correct magnitude of gm, 

but this value of RSD is too large to be consistent with the experimental measurement.  

The fact that gm degradation occurs even in the ballistic simulation tells us, however, that 

there might be other possibilities. Two other plausible causes, the design of the source, 
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Fig. 6. 6. The source exhaustion mechanism. The energy resolved current spectrum is 
shown. (a) The device at OFF-state. (b) The barrier collapses as VG is applied at ON-

state. (c) Further increase in VG causes the lightly doped region to collapse. The top-of-
the-barrier that has now shifted to the highly doped region and the gate loses control over 

the device. 

 

 

and the effects of non-parabolicity are discussed below. 

 

6.4.2 Source design and source exhaustion 

 

  For III-V transistors, the design of the source can be an important factor [103, 

111].  Transistors operate by modulating potential energy barriers [112, 113]. As the gate 

voltage increases, the potential energy barrier decreases, and the charge in the channel 

 

a) OFF state 

b) Barrier collapses  

c) Gate loses control  
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increases.  When the gate voltage increases to the point where the barrier is removed and 

the channel charge is equal to the charge in the source, transistor action degrades 

significantly.  Simply stated, there can�’t be more charge in the channel than in the source.  

For the HEMT under consideration here, the charge in the source (2.1x1012/cm2), is much 

lower than typical for Si MOSFETs, so these source exhaustion effects become apparent 

at relatively low gate voltages. 

  Source design limits are illustrated by the ballistic simulation shown in Fig. 6.6. 

Figures 6.6a, b, c show the energy-resolved current vs. position for the HEMT device 

under different gate voltages. The conduction and valence bands are indicated (white-dot 

lines), and the current flows above the top of the conduction band. The source/drain 

regions consist of two portions, an n++ region near the ideal contacts and an n+ region 

adjacent to the channel.  Figure 6.6a shows the OFF-state of the device, where the source 

Fermi level (Efs) is well below the top of the source to channel energy barrier. As VG 

increases, the barrier in the channel decreases �– eventually reaching the same level as the 

n+ source region (Fig. 6.6b).  The top of the barrier has in this case shifted to the 

beginning of the n++ source region. When VG increases even more (Fig. 6.6c), the gate 

can only modulate the energy barrier at the n++ to n+ junction through weak fringing 

fields. Transistor action is lost, and gm drops as shown in Fig. 6.5 for both the simulated 

and measured characteristics.  In our simulations, these effects are exaggerated by the 

assumption of ballistic transport in the n+ source, but the effect is primarily an 

electrostatic one and is also observed in drift-diffusion simulations [114]. 

  The gate voltage at which the transconductance begins to degrade is strongly 

dependent on the barrier between the channel and the source, which depends on the 

doping of the source.  Figure 6.7 shows the simulated gm for structures with different - 

doping densities above the source/drain. As the doping in the source decreases, this effect 

shows up at smaller gate voltages. The low gate bias part of the gm vs. VG characteristic is 

not doping dependent because under low gate voltage, the source is able to supply the 

charge demanded by the gate voltage. In the experimental results, the n+ source region 

was Lside = 1 m in length, whereas in our simulation, Lside = 60nm was used.  The 

differences in the source doping profiles may explain why the transconductance is 

experimentally observed to degrade ~0.2V before the simulated transconductance.   
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Fig. 6. 7. The effect of source/drain electron charge on gm degradation. As the �“doping�” 
decreases the degradation starts in lower gate biases. 

 

 

  Although we cannot unambiguously conclude that the observed transconductance 

degradation is due to source exhaustion, our simulations do clearly demonstrate that 

source design is an important issue for III-V MOSFETs.  Finally, note that the effects 

discussed here are purely electrostatic in nature and occur in both ballistic and drift-

diffusion simulations. Fischetti has discussed �“source starvation,�” which results from a 

difficulty in injecting carriers into transverse momentum states in the channel [103].  

Those effects were not included in our study and would only make source design an even 

more important issue. 

 

6.4.3 Charge and velocity 

 

  Two important parameters for a FET are the charge and velocity at the beginning 

of the channel.  Two questions arise. The first is:  How close is the charge at the top of 

the potential barrier to the equilibrium MOS capacitor value of )( TGG VVCQ ? The 

second question is: How the velocity extracted from the numerical simulator compares to 

the ballistic injection velocity expected from the bandstructure of the channel. To answer 

both of these questions, the top of the potential barrier in the numerical results needs to 
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be identified. Doing so is not as trivial, because of the large variation of the EC across the 

depth of the 15nm channel width. We employ two different methods to locate the top of 

the barrier.  The first is to take the weighted average of the charge distribution with the 

2D EC x, y  profile with the 2D charge density n x, y according to 
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                                  (6.3) 

 

Figure 6.8a shows the resulting EC (x)  (white-dotted line) superimposed on the electron 

density spectrum plot. Figure 6.8a is plotted at VG = 0.4V, and VD = 0.35V, which are the 

estimated intrinsic device voltages at the ON-state (after accounting for the effect of RSD). 

From Fig. 6.8a, the top-of-the-barrier can be identified to reside at 105nm (5nm inside the 

channel from the point where the gate electrode begins). 

  A second way to identify the top-of-the-barrier is by identifying the point of 

maximum gate control by locating the position where dNS x dVG  is maximized (where 

NS x  is the charge in the channel per cm2). This method places the top-of-the-barrier at 

104 nm. Both approaches give very similar results, so we take the top-of-the-barrier to be 

at 104.5nm. The corresponding charge and the velocity (defined as ( )ON SI N x ) at the-

top-of-the-barrier are 121.3 10SN  per cm2 and 72.7 10ave  cm/s as shown in Fig. 

6.8b,c respectively. The charge density and velocity are rather low due to the fact that the 

source Fermi level is less than 0.1eV above EC under ON-state conditions.  Figure 6.8 

shows that these quantities are very sensitive to the precise location of the beginning of 

the channel. This information is available in our simulator, but it is not available when 

analyzing experimental data. 

  To answer the first question about how close the charge is to )( TGG VVCQ , 

the simulated equilibrium carrier density vs. gate voltage is plotted in Fig. 6.8d (solid-

blue). The quantity )( TGins VVCQ with Cins = 0.032 F/m2 is shown as the solid-

square-black line of Fig. 6.8d. Assuming that CG = Cins clearly over-estimates the charge.   
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Fig. 6. 8. The intrinsic device parameters at ON-state. (a) The electron density spectrum. 
The density weighted EC and EV profiles are shown (dot-white lines). The top of the 

barrier is identified at 104.5nm. (b) The charge density along the length of the channel. 
(c) The average velocity along the length of the channel. (d) The equilibrium  (VD = 0V) 
carrier density vs. VG (solid-blue). The charge as Cins*(VG-VT) is shown in solid-square-

black. The charge as (Cins/2.5)*(VG-VT) is shown in dot-red. 

 

 

From the slope of the CG vs. VG plot (dashed-red line), we observe that CG is 2.5 times 

smaller than Cins. From  CG CinsCS Cins CS , we obtain a semiconductor capacitance 

of insS CC 67.0 . A simple calculation of the quantum capacitance, however, shows 

that insQ CC 5.1~ , which indicates that CS is a factor of ~2 less than CQ. As discussed by 

Pal [87], this occurs when the shape of the quantum well is bias-dependent.  

  According to Fig. 6.8d, at VGS = 0.4V, the charge at the top of the barrier under 

equilibrium conditions is 121.5 10SN  per cm2. The value found from the simulation 

under VDS = 0.35V is 121.3 10SN  per cm2, which is lower than the equilibrium value. It 

might be expected that DIBL would reduce VT and therefore increase the charge. Part of 

(a) 

(c) 
(d)

(b)
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the reason for the lower charge under drain bias could be that only the positive velocity 

states are occupied at high VD.  The quantum capacitance, therefore, decreases under 

large drain bias by a factor of two. The lower CQ lowers the semiconductor capacitance 

CS and offsets the DIBL. The result is that the charge at the top of the barrier is somewhat 

less under high VDS.   

  The second question had to do with the value of the ballistic velocity from the 

numerical simulation as compared to the value expected from the bandstructure. For a 

given  E k  and Fermi level, we can determine the corresponding  NS and ave  

under ON-state conditions where only +k states are occupied. Figure 6.9 shows the result 

for the parabolic effective mass (EMA) dispersion used in the quantum simulations 

(square-blue). For comparison, the InAs and GaAs velocities are shown, calculated using 

dispersions extracted from an atomistic tight-binding model [39]. The weighted average 

of these two results is also shown in Fig. 6.9 (solid-brown). The weighted average tight-

binding results resemble the effective mass results for the In0.7Ga0.3As channel. The EMA 

velocity is in good agreement with the �“weighted average�” curve at low carrier densities, 

but at higher densities, the EMA velocity is higher, because non-parabolicity reduces the 

velocity in the tight-binding model. At an inversion charge density of 121.3 10SN  per 

cm2, which corresponds to the charge at the top of the barrier in the numerical simulation, 

the velocity for the EMA is 74 10ave inj cm/s, while for the weighted average tight- 

binding curve it is 73.6 10ave inj  cm/s. These values are both higher than the 

72.7 10ave extracted from the NEGF simulation. 

  The difference in the velocities deduced from the bandstructure and that extracted 

from the NEGF simulation might have to do with tunneling currents and quantum 

mechanical reflections around the top-of-the-barrier, which tend to reduce the average 

velocity.  (In support of this conjecture, we note that the Fermi level in the quantum 

model is almost a kBT closer to EC than in the semiclassical model at the same carrier 

density, which indicated a carrier population below the top-of-the-barrier, and/or 

�“negative�” going state population in the quantum model).  It is also evident in Fig. 6.9 

that nonparabolicity can be important at this bias regime and can cause about 10%  
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Fig. 6. 9. The �“positive going�” average bandstructure velocity vs. inversion carrier 
density of a 15nm thick quantum well, using a simple semiclassical ballistic model. The 
velocities of InAs and GaAs are shown in solid-square-black. Their bandstructures are 
calculated using an atomistic tight-binding model. The EMA bandstructure velocity for 

the dispersion used in the quantum simulation is shown in solid-circle-blue. The weighted 
average of the InAs and GaAs (In0.7Ga0.3As) velocity is shown in solid-brown. 

 

 

degradation in the average carrier velocity. Nonparabolity is another possible 

contribution to the gm degradation observed in the experimental data but not captured in 

the EMA treatment. 

 

6.4.4 Scaling issues: Insulator thickness and gate length scaling 

 

  The main analysis of the discussion section up to now considered the tins = 3nm 

and LG = 60nm device. The experimental data show variations in both changes in the 

InAlAs insulator thickness as well as gate length dependence. These two issues are 

briefly discussed here. Figure 6.10a shows how the insulator thickness affects the 

performance of the LG = 60nm device. The equilibrium carrier density in the channel 

under VGS  = 0.4V is shown in solid-square-blue, extracted as in Fig. 6.8d for all devices 

at the same VG - VT. The carrier density in the channel doubles as the insulator thickness 

decreases from tins = 10 nm to tins = 3 nm �– as expected. Under a high drain bias of VD = 

0.35V, however, the carrier density at the top of the barrier (dash/dot-diamond-black),  
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Fig. 6. 10. tins dependence of the HEMTs: (a) The simulated carrier density and average 
velocity at the same VG-VT = 0.2V as a function of insulator thickness for the LG = 60nm 
device. Carrier densities for the VD = 0V (solid-square-blue) and VD = 0.35V (dash/dot-

diamond-black) are presented. The gate bias is VG = 0.4V. The VG-VT = 0.2V is the same 
for all insulator thickness devices at VD = 0V. No further VT adjustment was performed 

for the VD = 0.35V case. The average velocity (dash-circle-red) is calculated at VD = 
0.35V. (b) The simulated and measured data are presented in a similar way to Fig. 6.4a 

for VG = 0.1V 0.3V and 0.5V and for tins = 3nm (black-diamond), and 3.8nm (blue-solid). 
Variations in the insulator thickness do not introduce significant variations in the on-

current. 

 

 

does not vary as significantly with insulator thickness. This occurs because under high 

drain biases CQ decreases by a factor of ~2, which drives the device toward the quantum 

capacitance limit in which variations in COX are not as significant. Larger DIBL in the 

low COX devices lowers the VT and increases the charge in the channel. An interplay 

between these two effects reduces the charge variations as a function of tins. The increase 

in charge as the tins is scaled from 10nm to 3nm is only ~30%. The velocity at the top of 

the barrier (dash-circle-red) shows an increase of ~20% with insulator thickness scaling. 

Scaling the insulator thickness down to 3nm can, therefore improve performance. Further 

scaling of the insulator, however, might not offer additional advantage at the on-state. 

Figure 6.10b shows the effect of scaling the insulator from tins = 3.8nm to tins = 3.0nm. 

This figure is the same as Fig. 6.4a, with the tins = 3.0nm result also shown in black-

diamond, plotted at the same VG-VT. The difference at the on-state is less than 5%.   

  We next investigate the gate length dependence of the tins = 3 nm HEMTs. 

Experimentally in [3], LG = 60nm, 85nm and 135nm devices were reported. Significant 

gate length dependence was observed experimentally, with the ON-current decreasing as 

(a) 

(b) 
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Fig. 6. 11. Gate length dependence of the 3nm oxide thickness device. The simulated and 
measured data are presented in a similar way to Fig. 6.4a for VG = 0.1V, 0.3V and 0.5V 

and for LG = 60nm, 85nm, 135nm. The simulated and measured data are in good 
agreement for the lower gate bias cases. Significant deviation is observed for the high 

bias cases, which is reduced as the gate length reduces. The simulated data do not show 
significant gate length dependence. 

 

 

the gate length increases. This trend is shown in Fig. 6.11. This figure is the same as Fig. 

6.4a, with all the three gate length data included (for clarity, we have shown only the 

highest gate voltage in each case). The solid-circle-red lines present the experimental data 

for the different gate lengths and for VG = 0.5V, 0.3V, and 0.1V. The solid-blue lines 

present the simulated results for the same devices after the series resistance was included. 

Although it is not shown in the plots, a good match was observed between the simulated 

and measured data for lower gate biases. For the high gate bias case, the simulated results 

show little gate length dependence �– as it is expected from a ballistic model. The small 

differences originate from the changes in the electrostatics. The measured high VG data, 

however, show a significant gate length dependence. The longest device is about 40% 

below the ballistic simulation while the shortest device is only ~15% below.  These 

results indicate increased scattering in the LG = 85nm device and even stronger scattering 

in the LG  = 135nm device.  

  Finally, we should mention once again some of the uncertainties and 

simplifications that affect our analysis. The first is the 1 nm uncertainty in the etched 

AlInAs layer thickness, which however does not introduce considerable uncertainty at the 
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ON-state. Second, the simplified device structure for the simulation had the source/drain 

regions that were only 60 nm long rather than 1 m as in the experimental device.  This 

simplification is likely to affect the high current region, where source design issues are 

expected to become important. Lattice distortions and the effect of strain in the channel 

were not considered and may have an impact on the effective mass of the channel. Except 

for two-dimensional electrostatics, a ballistic model should show no channel length 

dependence. The observed channel length dependence of the experimental devices 

suggests that the longer channel length devices are not as close to the ballistic limit as the 

60 nm device that we examined. 

 

6.5 Conclusion 

 
  The performance of recently demonstrated high-performance In0.7Ga0.3As HEMTs 

was investigated using a quantum ballistic model self consistently coupled to a 2D 

Poisson solver for electrostatics. With the addition of external series resistors, reasonable 

agreement between the ballistic simulation and the experimental data was obtained. All 

of the 60 nm channel length devices with insulator thicknesses of 3nm, 7nm, and 11nm 

can be explained in this way using values of series resistance consistent with those 

measured in the experiments. Despite the simplifications in the model and the 

uncertainties in the exact values of the insulator thickness, series resistance and channel 

effective masses, these results suggest that 60nm channel length III-V HEMTs operate 

close to the ballistic limit.  The on-current performance of longer channel lengths HEMTs 

appears to be degraded by scattering although they still operate at over one-half of the 

ballistic limit. 

  For operation near the ballistic limit, the ballistic injection velocity rather than 

bulk mobility becomes the parameter of interest. The ballistic injection velocity for this 

device was found to be relatively low for this light effective mass material, because of the 

relatively low inversion charge operating conditions, quantum tunneling and reflections, 

and conduction band non-parabolicity. The semiconductor capacitance also plays an 

important role by increasing the effective oxide thickness (EOT) of the thinnest insulator 

device by 2.5 times. Source exhaustion, an effect related to the sheet carrier density in the 
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source, was identified as a possible explanation for the transconductance degradation that 

is experimentally observed in these devices. The results reported here suggest that source 

design is an important factor for III-V FETs, as has been recently pointed out by Fischetti 

[103]. They also demonstrate that the key factors in improving III-V HEMT performance 

are reduction of the parasitic series resistance, optimization of the source design, and 

reduction of the insulator thickness. 
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7. CONCLUSIONS AND FUTURE WORK 
 

 

7.1 New physics in nanoelectronic devices 

 

  The focus of this thesis was to investigate issues that will influence the 

performance of a variety of possible future generation nanoelectronic devices. Quantum 

and atomistic effects were investigated for carbon nanotube, nanowire and III-V FETs. 

Quantum treatment that includes full atomistic effects or atomistic information is 

essential when the device dimensions scale down to the nanometer size. The effect of 

structure imperfections and atomistic defects on CNTFETs was investigated using a full 

quantum mechanical (NEGF) model and atomistic description of the channel. The results 

presented should be understood as a more general trend of the sensitivity of 1D transport 

channels to single atomistic deformations that hold for CNTs, NWs, and even as recently 

observed, graphene based channels [33, 115].  

  In the context of atomistic effects and their influence on nanoscale devices, the 

effect of bandstructure on the properties of the electronic structure of nanowires, both n- 

and p-type, was investigated using atomistic TB models. Important considerations on the 

influence of bandstructure on the dispersions of wires are addressed that clearly indicated 

that new physics appear at the nanoscale that cannot be captured by the traditional 

effective mass approximation, especially for the p-type devices. Understanding the scale 

at which these effects influence the device operation, can point towards directions of 

improving their operation. For example, understanding the shape of nanowire dispersion, 

can provide insight into the most efficient operating regime for nanowires, which 

includes the transport and quantization directions, as well as the quantization dimension 

and shapes. In the case of III-V devices, using the least amount of fitting parameters (a 

series resistance and the workfucntion difference between the gate electrode and the 

insulator), and the most amount of physics, we were able to determine the correct 
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parameters that have the largest impact on the performance of the device and provide 

useful guidance to the experimentalists.   

 

7.2 Carbon based electronics 

 

  Carbon electronics consisting of CNT and more recently graphene and 

nanoribbon based channels (GNR) [33, 115] have been investigated by various groups as 

a potential replacement of silicon, which served as the main electronic platform for 

decades. Much of the interest originated from the extremely high mobilities observed in 

CNT and GNR materials, and the indications of close to ballistic electron transport 

operation. Fabrication challenges, however, concerning issues such as the precise control 

over the CNT chirality, metallic vs. semiconducting tube separation, alignment and 

growth, still need to be overpassed for carbon devices to become technologically useful 

as computation elements. In additions to that, this work has rigorously shown that any 

atomistic variations and charged impurities in the CNT will have a large effect on the 

channel. This is up to the circuit designers finally, to implement variation insensitive 

designs to host such channels.  

  Other applications regarding the use of CNTs for electronic applications have 

recently drawn a lot of attention. One of them is the use of CNTs as band-to-band-

tunneling (BTBT) FET devices. The idea is to bias the CNT in a different way in order to 

utilize the tunneling current for the device operation. This approach has been both 

experimentally [116] and theoretically demonstrated [117], and seems to provide some 

advantage over the conventional thermionic FET operation in the OFF-state by reducing 

the subthreshold swing below 60mV/dec. This however, is still subject to the same 

fabrication issues that make the entire carbon technology inattractive at the moment. The 

second application is the use of CNT bundle network, of CNTs randomly distributed on a 

substrate for microelectronic applications such as sensors, solar cells, or their possibility 

as thermoelectric materials. This type of applications might not require the sensitivity in 

the CNT type as for logic applications. 
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7.3 Nanowire based electronics 

 

  Nanowire and multi-gate devices are promising devices for future technology 

nodes that can provide electrostatic integrity for controlling the short channel effects. 

Their properties are sensitive to channel variations, but not in a degree that cannot be 

controlled. FinFET type of devices scaled down to 10nm x 10nm cross section sides can 

be thought as nanowires, and have been already demonstrated [7-9]. The important about 

these is that at some degree, a designer can alter the electronic structure of these devices 

using strain engineering and the proper surface quantizations and transport orientations. 

This can offer some electrostatic advantage over the planar devices and since it is still 

based on silicon, potentially much easier to be implemented rather than alternative device 

architectures and materials.   

 

7.4 III-V based electronics   

 

  III-V electronics is a promising candidate for low power, high speed devices, and 

can offer some advantage over Si devices in gate delay, ft and power dissipation. InGaAs 

devices demonstrated down to 40nm gate lengths indicate that this is possible once the 

device is properly optimized [4]. III-V based devices, however, have their own problems 

that need to be addressed. In our work, we indicated that the source design is exceedingly 

more important than in the case of Si devices, and needs to be one o the main issues to be 

addressed. Large part of the problem comes from the low density of states of III-Vs, 

which does not allow a large amount of carriers in the source of the device. A properly 

optimized III-V device, can offer some advantage over Si in certain properties, however, 

the light mass advantage might be proven to be a burden at extreme scaling of the 

channel lengths down to the 5nm gate lengths, since tunneling might then be enhanced 

and dramatically increase the power dissipation of the transistor. Nevertheless, if not for 

logic devices at the end of the roadmap, III-V devices might be utilized as high speed, 

low power applications. 
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7.5 Future outlook 

 

  A list of possible future work is presented below: 

  Chapters 4 and 5 in this thesis have investigated bandstructure effects of n-type 

and p-type nanowire devices and compared the performance of devices in different 

orientations. A proper investigation of the performance of these devices needs to include 

treatment of the experimental device cross section, with rounded edges, surface 

imperfections, strain fields and distortion. FinFET type geometries are strong candidates 

for electronic devices, and similar studies on those geometries need to be performed in 

order to improve the understanding of nanowire and FinFET type devices. NEGF 

simulations on the full 3D device instead of the 2D cross section might need to be 

performed for this task. Limited size cross section devices can be simulated with NEGF 

with enough compute power [27, 81], however for realistic cross sections, 

approximations such as mode space techniques need to be implemented. The zone 

unfolding method [118, 119] has been recently developed within the tight-binding 

context in order to provide approximate bandstructures in systems with distortions. This 

technique can be used in order to extract approximate effective masses to be used in 

effective mass simulations, in order to avoid the computationally expensive NEGF 

formalism on atomistic TB Hamiltonians.  

  Recently a lot of attention has been drawn in III-V type of devices and an increase 

in the corresponding publications in IEDM, TED and EDL. This large interest, calls for 

the collaboration between the experimental and the simulation groups to identify crucial 

issues in III-V device operation. The work in chapter 6 points to several III-V HEMT 

design directions. The effect of variations and uncertainties in various parameters such as 

the insulator thickness, the confinement and transport masses, lattice distortions and 

strain, channel width need to be investigated. Devices with higher mobility InAs channels 

have also recently been reported. It is of technological interest to identify if these devices 

are much closer to the ballistic limit and can utilize in larger degree the high channel 

mobility.  

  Another direction will be the ballistic quantum treatment of p-type quantum well 

devices. For this, the full atomistic Hamiltonian with spin-orbit coupling needs to be used 
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within the NEGF formalism. This will include the non-parabolicity and anisotropy effects 

that are enhanced in p-type devices as shown in chapter 5. NEGF treatment on the 

atomistic Hamiltonian including all transverse k-space modes is computationally 

challenging, but can be simulated for thin (a few nm) quantum wells. For thicker 

quantum wells, advanced numerical algorithms and parallelization might need to be 

implemented.  

  Finally, the effect of strain in nanowire and III-V devices in various transport and 

confinement orientations is an additional direction of technological interest. Strain 

engineering is fully utilized in current technology nodes and it will continue towards 

future device generations, whether nanowire, FinFET, III-V quantum wells are utilized.       
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APPENDIX A 
 

A THREE-DIMENSIONAL (3D) ATOMISTIC QUANTUM 

SIMULATIOR FOR REALISTIC PLANAR CARBON NANOTUBE 

FET STRUCTURES 
 

  

A.1      Introduction    
 

  In this section a real space 3D quantum simulator based on atomistic nearest 

neighbor (NN) tight binding (TB) approach for treatment of electron transport in zigzag 

carbon nanotubes (CNT) is described. The code is based on the Non-Equilibrium Greens�’ 

Function method (NEGF) for quantum transport, and 3D electrostatics based on a finite 

element mesh (FEM) technique. The simulator is general enough to account for generic 

device geometries, coaxial as well as the experimentally realised planar device structures. 

This captures all the electrostatic effects that arise from the geometric features of the 

device. Furthermore, the real space atomistic representation of the CNT channel, allows 

for treatment of charge and potential variations around the CNT perimeter, as well as the 

study of atomistic defects in the device.  

  The appendix is organized as follows: The basic geometrical and electronic 

structure features of the CNT are presented. The construction of the 3D quantum 

simulator and its capabilities are then discussed. Finally, the parallelization scheme and 

the deployment of the simulator on nanoHUB.org is discussed.  

A.2 Structure of the SWNT - Geometry construction 
 

  A carbon nanotube (CNT) can be visualized as a rolled-up graphene sheet in the  
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Fig. A. 1. The CNT formed by rolling up the graphene sheet of carbon atoms. Depending 
on the chirality, zig-zag, armchair or chiral tubes can exist. 

 

 

shape of a cylinder of certain diameter and chirality. The chirality of a CNT can be 

characterized by the (n,m) numbers that control the direction that the sheet will �“roll-up�” 

and the size of the diameter. Depending on the diameter and the chirality, the properties 

of the CNT can vary from metallic to semiconducting. CNTs in which n=m are called 

armchair CNTs and are metallic. CNTs with m=0 are called zig-zag, and are metallic 

when n is a multiple of 3, otherwise they are semiconducting. Semiconducting CNTs are 

direct gap materials, with the gap depending on the diameter D, with roughly EG~1/D. 

Figure A.1 (a) shows the graphene sheet structure, in which the carbon atoms are placed 

in a hexagonal scheme, with the carbon-carbon (C-C) bond of length 1.44Å, and the form 

of a zig-zag (b) and a chiral (c) CNT.  

           Once the chiral vector (n,0) is indicated, then the coordinates of the unit cell of the 

CNT can be constructed in 3D space. This is the first step in the atomistic simulation 

process. The unit cell for the specific zigzag CNT under consideration consist of four 

rows of carbon atoms, which form the CNT rings when the graphene is rolled into a 

cylinder. The coordinates of the unit cell atoms and the bonding information, are 

constructed in the simulator from geometrical considerations by using commercially 

available codes [120]. The unit cell is then repeated in the CNT transport axis to create all 

the atomic coordinates of the full length of the nanotube. The CNTFET device (including 

the gate/source/drain electrodes and the dielectric constants) is then constructed around 

the nanotube utilizing the geometric information of the carbon atoms.  

 

(c) 

(b) (a) 
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  Figure A.2 shows the device structures the simulator can handle, the simple 

coaxial and the planar devices. The cylindrical device (Fig. A.2 (e)) is theoretically the 

one that offers the best performance because of excellent electrostatics, however, what is 

experimentally achieved is the planar device, both bottom and top gated ones (BG and 

TG). Figure A.2 (a) shows the TG structure. The BG structure has the same geometry, 

but the top gate electrode is missing. In the case of the coaxial device, the CNT is 

surrounded by the gate oxide and a coaxial gate. In the cases of the planar devices, the 

CNT lies on a rectangular substrate which is treated as an insulator with a certain 

dielectric constant. For the BG device, the bottom gate electrode is used as the gate 

electrode of the device. In the case of the TG device, a top gate electrode is placed on the 

top region of the device, and is separated from the CNT channel through another 

dielectric material. The interior of the CNT is assumed to be a third dielectric (vacuum in 

general). The CNT channel is connected to the source/drain reservoirs which are assumed 

to be metallic electrodes. In order to capture the correct parasitics and fringing effects in 

the device, the metallic electrodes used for the gate, source and drain are treated as 

rectangular boxes with a certain width and thickness, rather than just metallic surfaces, 

which gives a more accurate treatment of electrostatics for the 3D treated devices. The 

source/drain contacts experimentally are metallic electrodes that connect to the CNT 

channel through Schottky Barriers. Doped source/drain contacts have however been 

realized, by deposition of potassium on the left/right sides of the CNT [63-66]. This, 

results in partial charge exchange between the potassium atoms and the CNT, such that 

the conduction band lowers enough, making that part of the channel acting as MOSFET 

type doped source/drain contacts. In the simulator, the option to choose the doping in the 

entire CNT channel is available, in which case, doped source/drain contacts can be 

treated, rather than Schottky barrier ones. In this case, the metallic electrodes may or may 

not used in the simulator domain.  

         Having all the information of the atomic position and the positions of the 

electrodes and the dielectric regions, the mesh of the device is constructed using the 

commercially available mesh 2D finite element mesh (FEM) creator Easymesh 1.4, 

[121]. The choice of FEM instead of other methods such as finite difference method  
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Fig. A. 2. The device structures, mesh, and the atomistic capabilities of the 3D CNT 
simulator. (a) The planar TG structure. BG device is realized without the top gate 
electrode. (b) The mesh on the cross section of the planar device (created using 

EASYMESH). (c) The mesh near the carbon atomic positions. The mesh is built on the 
atoms. (d) A solution for the potential variation around the CNT under strong asymmetric 

bottom and top gate biases. (e) The coaxial structure. (f) The potential distribution in a 
cross section of the device. The atomic positions are evident. 

 

 

(FDM) has to do with the irregular geometry of the device. In the case of the cylindrical 

geometry, the mesh can be easily constructed with FEM rather than FDM which is more 

convenient for rectangular geometries. Even in the case of the planar structures, however, 

the merging of the cylindrical geometry of the CNT to the rectangular geometry of the 

surroundings of the device, is better accomplished using FEM. A 2D mesh is created, 

which includes information about all the regions of the 3D device (i.e. all the interfaces 

of the various regions are projected on a 2D plane). A cross section of the mesh and a 

zoom-in is shown in Fig. A.2 (b-c). The 2D mesh is then repeated in the transport 

direction, and each predefined region on the mesh is assigned to the properties of the 

specific cross section regions. For example, a 2D mesh cross section that is cut through 

the metallic electrodes, will be assigned to the properties of the metal contacts (properties 

include dielectric constant and boundary conditions, which are different for different 

device regions). When the same slice is cut through the middle of the channel, then it is 

assigned to the properties of the CNT channel and the insulators. 
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  Since the CNT atoms are placed in regular positions along the channel of the 

devices in rings of carbon atoms, the 2D mesh is built by constructing mesh nodes on the 

positions of the CNT atoms, as shown in Fig. A.2 (c) (here we assume an unrelaxed CNT 

geometry). In this way a proper merging of the TB and the Poisson mesh for correct 

charge placement during the self consistent simulations is allowed. A zigzag (n,0) CNT 

unit cell consists of two types of carbon atom rings (type A an B), both consisting of n 

carbon atoms, with the position of the B type ring shifted a certain angle with respect to 

the position of the atoms of the A type ring as shown in Fig. A.2 and A.1. The mesh at 

every slice is built on the atomic positions of all 2n atoms of both types of rings. In Fig. 

A.2 (c) the full and empty dots indicate the atomic positions of the two types of rings. 

The 2D mesh created, is then very fine in order to accommodate for atomistic resolution 

in that region. In the regions near the contacts and the gate electrodes, the mesh is sparser 

since less accuracy is needed there. In the transport direction, the 2D grid is repeated on 

every place that carbon atom sites are placed. For example, a zigzag CNT consists of 

rings of carbon atoms placed 1.44Å (ring A to the next ring B) or 0.72Å (ring B to the 

next ring A). The 2D mesh is placed directly on each ring. In this way, all atomic sites of 

the CNT reside on the full 3D mesh that is created by considering all 2D meshes. 

 

A.3 The real space non-equilibrium-Greens�’ function (NEGF) approach 
 

  The Hamiltonian of the device is described in the simple pz, tight binding (TB) 

orbital, nearest neighbor (NN) approximation by: 

 

       ,
i

H t t                     (A.1) 

 

with zeros for the on-site elements, t on the elements connecting the nearest neighbor 

sites and zeros elsewhere. Although there are four orbitals in the outer electron shell of 

carbon atoms (s, px, py, pz), only the  pz orbital is sufficient in electron transport because 

the bands involving the pz orbital are largely uncoupled from the bands involving the 

other orbitals. In addition to that, the bands with major contributions from the other 
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orbitals are far away from the Fermi level, and they do not play a role in transport. The 

coupling parameter is given by 3 ,t eV  (default value), to give the correct bandstructure. 

The Green�’s function for the device is given by:  

 

        ( ) 0 ,G E E i I H                           (A.2)  

 

where I is the identity matrix, and 1 and 2 are the self energies for the left and right 

reservoirs. In the real space pz orbital approximation, the Hamiltonian is of total size 

 x ,N N  where N is the number of atoms in the channel. Zig-zag CNTs, however, as 

shown in Fig. A.1 are composed of rings of carbon atoms (rolled up from the graphene). 

In real space Hamiltonian, every ring in the CNT structure can be identified as an x ,n n  

block in the Hamiltonian, where n is the number of atoms in the ring (same as the 

chirality index). The Hamiltonian can be written therefore in a block tridiagonal matrix 

form as:  
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          (A.4a-c) 

where Emi is the midgap potential energy of the ith atom on the shell of the CNT.  

  The local density of states is given by ( ) ( )( ) 1/ 2 ,  S D S DD E G G where 

( ) , S D S D S Di is the energy level broadening due to the source/drain 
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contacts. The charge density per unit length, (z)Ln , in the CNT is calculated by 

integrating the density of states in the channel over all energies,   

 

       (z) = ( ) . ( ). ( ). ( ).( ) ,FL e dE sgn E D E f sgn E E En                           (A.5) 

 

where e is the electron charge, sgn is the sign function and  (z)= ( )F FE E Em z  is the Fermi 

level minus the mid-gap energy of the nanotube. The grounded source electrode Fermi 

level is set to zero and acts as the reference of the entire simulation, (EF = 0). The 

nanotube middle gap energy is potential computed from the electrostatic potential at the 

CNT by ( ) ( ) / 2,Em z eV z Eg  where Eg is the band gap of the nanotube. The current is 

calculated after convergence in the Landauer formalism by using  

 

             4 ,s d
eI T E f E f E

h
        (A.6) 

 

where S DT E Trace G G . In the case that the source/drain are assumed to be 

infinite reservoirs, (MOSFET like devices), the self energies in the Green�’s function are 

computed as 1 1 1S g  where 1g  is the surface Green�’s function, calculated 

recursively using: 

 

      
1

1m m mg E i I g .                                (A.7) 

 

Here mg  is the surface Greens�’ function of the mth ring of carbon atoms and m  is the 

Hamiltonian block matrix of the mth ring. The infinitesimal  0  added to the energy 

ensures that the solution is the retarded Greens�’ function, rather than the advanced one. 

Applying this relation to the first two rings of the CNT, results to: 

 

      
1 1

2 1 1 1 1 3 2 2 2 2,    g E i I g and g E i I g     (A.8) 
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Fig. A. 3. The graphene lattice structure. When rolled up it forms the CNT device. When 
the �“A/B ring�” lines roll up, the atoms along these lines form the zig-zag CNT rings. The 
�“circle�” noted atoms form the �‘A�’ ring type, whereas the �“triangle�” noted atoms form the 
�‘B�’ ring type. The positions of the atoms of the two rings are shifted with respect to each 

other as shown. (Adopted from [29]). 

 

 

(Note here that the self energies are x ,n n  complex symmetric matrices and added on the 

first/last block of the  x ,N N  Hamiltonian matrix). Since the first atom ring of the source 

end, and the last atom ring in the drain end belong to the infinite reservoirs, the potential 

around the carbon atoms is the same (due to azimouthial symmetry). Due to this simple 

form of 1 , and by observing that all matrices that are involved in the calculation of 1g  

are diagonal except 2 , (that is in the zig-zag CNT case only), the surface Green�’s 

function can be calculated simply by diagonalizing the 2  by 2 2
D V V . The 

eigenvalues of 2  form the 2
D matrix, which replaces 2  in the recursive scheme for the 

surface Greens�’ function solution. This makes the calculation of the inverse a trivial 

inverse of a 1 x 1 element. Assuming that 2  is also equal to 1 , and can be written as a 
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number times the identity, then again the 3g  is just the inverse of 1 x 1 blocks. Using the 

formula (A.7), the exact surface Green�’s function for the CNT can be computed in two 

iteration steps as also described in [29]: 

 

   
2 22 2 2 2 2 2

1 2 1 2 1

2
1

4

2

D D
D

E E E
g

E
     (A.9) 

 

A back transformation will give the surface Greens function as a full complex symmetric 

matrix as: Dg V g V . (This process is equivalent in transformation from real space to 

mode space representations; connect all the modes, and then back-transform into the real 

space. It can be exact only when the azimouthial symmetry of the potential around the 

ring is retained (uncoupled modes), and the transformation that diagonalizes the 1  is the 

same as the one that diagonlizes 2 . Otherwise, a recursive scheme will need to be 

implemented. The computational efficiency for reducing the calculation of the self energy 

to an analytical function of energy can be very large compared to algorithms that will 

compute the self energies in an iterative scheme (i.e. the Sancho-Rubio [122], or the 

direct inversion scheme of Eqn. A.7). In the case of armchair or chiral CNTs the 

calculation of the self energy cannot be reduced to a single analytical function of energy, 

therefore the computation expense of such simulations is much larger (since depending 

on the case, a large portion of the computation time is spent in self energy calculations). 

It is noted here that the unit cell of a zig-zag CNT consists of four rings, however, the 

later two are equivalent to the first two and are redundant in the calculation of the self 

energy.  

 

A.4 Electrostatics �– Poisson equation solution 
 

  The 3D Poisson equation is solved by the FEM method. And a modified version  

of the 3D FEM simulator NESSIE is used. The mesh is created using the commercially 

available mesh generator software EASYMESH [121]. Since the coupled Schrödinger-

Poisson system is highly non-linear, in order to achieve convergence, the Poisson 
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equation is transformed into a non-linear equation. The implicit scheme used is that for a 

given potential Vn at the step n, the new potential Vn+1 is given by [123]: 

 

   
1

1

0

( ) ( ) ( ) ( )
n

n
r D n

T Vqr V r n r n r
T V

,     (A.10) 

 

where T is a function of V, and ( )Dn r  is the doping charge and ( )n r  is the mobile charge 

in the device entered as point charges on the mesh node that connects to the 

corresponding atomic position. Because of the exponential behavior of the electron 

density as a function of the potential V, a suitable choice for 

exp ,   with  1/n
BT V q V k T . Linearization of this coupled system leads to the 

Gummel iterative scheme, where for a given potential nV at the step n, the new potential 
1nV  is given by: 
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           (A.11) 

 

This method makes the coupled system of equations to converge in most of the cases. In 

studies of atomistic defects in the structures, when a large number of defects is 

introduced, at high biases the convergence behavior might suffer, however these are cases 

when severe oscillations in the potential and charge are introduced in the device.  

  

A.5 The simulation scheme 
 

  The overall simulation chart is as follows: 

(a) Input definition: 

1. a)  Define the type (n,0) of CNT and generate the coordinates of the unit cell. 

     b) Repeat the unit cell to create the coordinates of the entire CNT structure (x,y,z,  
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          azimouthial angle theta) 

    c)  Define the type and geometry of the structure. 

    d)  Create the 2D mesh according to the coordinates of the CNT and the geometry of  

         the structure. Repeat the 2D mesh to create the full 3D mesh. 

 

2. a)  Define the simulation parameters (VG/VD biases, electrode workfunction  

         differences between materials used, convergence criteria, number of iterations) 

 

(b) Simulation: 

1. a)  Initial guess simulation. A semiclassical ballistic model is used for calculation  

         of the charge density self consistently with the Poisson equation (Eqn A.11). 

    b)  Quantum simulation: Calculate charge density using Eqn. A.5 self consistently  

         with the poisson equation Eqn. A.11 using the semiclassical solution calculated in  

          the previous section as an initial guess. Iterate between the poisson and transport  

         solutions till convergence as shown in the scheme of Fig. A.4  

    c) Upon convergence, calculate the current using Eqn. A.6. 

 

  The most time consuming part of the simulation comes from the energy 

integration in the calculation of the Green�’s function. We employ two techniques in 

obtaining the Green�’s function, the Recursive Greens�’ Function (RGF) [124] algorithm, 

and solution of N-value problem using the ZGBEV banded matrix N-value problem 

solver routine from LAPACK, with similar performance. The RGF scheme recursively 

marches block by block from the upper left (source) to the lower right (drain) of the 

Hamiltonian, and calculating the left connected surface greens�’ function by inverting the 

individual blocks (rings). It then recursively marches backwards towards the source, 

formulating the total Greens�’ function elements of certain blocks that are needed in the 

computation of the charge density and the transmission coefficient. The advantage of this 

scheme is that each block can be built individually and the entire Hamiltonian does not 

need to be stored. In terms of memory, this method is only restricted by the size of the 

block of the device representing the individual rings. Also, the diagonal elements of the 

Greens�’ function are calculated trivially on the backward march. This can be particularly  
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Fig. A. 4. The simulation scheme. Given an initial potential distribution (Uscf), the charge 
(n) is calculated using the NEGF equations. The charge is fed back into the Poisson 

solver for an updated version of the potential distribution. The process continuous till self 
consistent convergence is achieved. 

 

 

helpful in the treatment of scattering, in which the diagonal elements are needed. When 

using LAPACK routines, all the Hamiltonian elements need to be stored. This which can 

be a disadvantage when simulating structures of larger number of atoms or a larger 

number of atomic basis sets. In addition to that, this method gives the columns of the 

Greens�’ function that are requested, i.e. the first/last �“n�” (number of atoms in the ring) 

which are adequate in the calculation of the charge density and the transmission 

coefficient in the ballistic case. In the case where incoherent scattering is implemented, 

the entire full Green�’s function matrix will need to be calculated by LAPACK, although 

only the diagonal elements are useful. This can be costly both for memory and 

computational time, and prohibitive for large scale simulations.  

  Finally, message passing interface (MPI) parallelization is implemented (through 

the use of the mpif90 module) in the integration procedure to calculate the charge density 

over the energy spectrum while the Green�’s function at each energy point is calculated by 

a serial algorithm. Various MPI inter-processor communication calls are employed in this 

integration phase making the scheme a truly parallel one. The resulting speed-up factor 
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(Fig. A.5) shows a satisfactory scaling behavior for up to 20 processors. This is also 

depicted in the inset of Figure A.5 where the simulation time is plotted w.r.t. the number 

of processors used. Please note the growing deviation from an ideal linear behavior. The 

reason of this declining behavior beyond 20 processors is attributed to the increased 

amount of time used in various MPI communication calls with large amount and size of 

data among the processors. 

 

                      

Fig. A. 5. The speed-up factor for the MPI parallelization scheme of the CNT simulator. 

 

 

A.6 Deployment as a community CNTFET software 
 

  The Carbon nanotube simulation project is now a part of a wider initiative, the 

NSF Network for Computational Nanotechnology (NCN). The Network for 

Computational Nanotechnology (http://www.ncn.purdue.edu) is a multi-university, NSF-

funded initiative with a mission to lead in nanotechnology research and education as well 

as outreach to students and professionals by offering a set of cyber services (accessible 

through the nanoHUB portal www.nanoHUB.org) including interactive online 

simulation, tutorials, seminars, and online courses packaged using e-learning standards.  
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Fig. A. 6. Rappture: Revolutionizing tool development. 

 
 

 

 

 

 

 

 

 
 

 

Fig. A. 7.  Remote access to simulators and compute power. 

 

 

  In the year 2006, the educational and outreach services were accessed by over 

16,200 users.  More than 3,500 users performed over 94,000 online simulations. Over 30 

applications are available online ranging from toy models to sophisticated simulation 

engines not yet available commercially. All the NCN services are freely open to the 

public. 

  NanoHUB is dedicated to offer services to real users such as experimentalists and 

educators, not to computational scientists alone. Therefore, a user friendly GUI is 

required for these tools to be operated by non-experts. The tool should be available for 

anybody without any installation requirements. From a deployment perspective the tool 

development and GUI development must be streamlined, the codes must be 
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benchmarked, and quality tested, and adequate computational resources must be 

available. Rappture is the new nanoHUB.org created toolkit that enables the rapid 

development of GUIs for applications. Two approaches can be followed: (1) The legacy 

application is not modified at all and wrapper script translates Rappture I/O to the legacy 

code. (2) Rappture is integrated into the source code to handle all I/O (see Fig. A.6). The 

first step is to declare the parameters associated with one�’s tool by describing Rappture 

objects in the Extensible Markup Language (XML). Rappture reads the XML description 

for a tool and generates the GUI automatically. The second step is that the user interacts 

with the GUI, entering values, and eventually presses the Simulate button. At that point, 

Rappture substitutes the current value for each input parameter into the XML description, 

and launches the simulator with this XML description as the driver file. The third step 

shows that, using parser calls within the source code, the simulator gets access to these 

input values. Rappture has parser bindings for a variety of programming languages, 

including C/C++, Fortran, Python, Perl, Tcl, and in the near future, MATLAB. And 

finally, the simulator reads the inputs, computes the outputs, and sends the results through 

run file back to the GUI for the user to explore. 

  A preliminary version of the simulator within a framework called CNTFET has 

been recently deployed on the nanoHUB.org for community use. The process of web-

based deployment of this and other tools is depicted in Fig. A.7. A user visits the 

www.nanohub.org site and finds a link to a tool. Clicking on that link will cause our 

middleware to create a virtual machine running on some available CPU. This virtual 

machine gives the user his/her own private file system. The middleware starts an 

application and exports its image over the Web to the user�’s browser. The application 

looks like an Applet running in the browser. The user can click and interact with the 

application in real time taking advantage of high-performance distributed computing 

power available on local clusters at Purdue University. Large scale calculations will soon 

be launched on the NSF TeraGrid or the open science grid. 
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APPENDIX B 

 

ATOMISTIC MODELING OF NANOWIRE BASED STRUCTURES: 

GENERIC HAMILTONIAN CONSTRUCTION 
 

 

B.1 Introduction 
 

  The sp3d5s*�–SO TB model formulation for calculating the electronic structure of 

nanostructures  (3D bulk, 2D quantum wells, 1D nanowires) is described. The description 

below is a generic formalism for the formulation of a generic TB Hamiltonian of a 

semiconductor under arbitrary crystal orientations and types, bonding, lattice 

deformations, TB model and arbitrary basis set number, and cross sectional structural 

shape. It is valid for EMA as well as more complex sp3s* and sp3d5s* TB models, for 

cubic, zincblende and wurtzide lattices (as long as the appropriate parameterization is 

provided). It is restricted only by the computational burden, which can be eliminated by 

using fast and parallel numerical techniques. Once the Hamiltonian is constructed, 

obtaining the dispersion of the structure becomes a simple eigenvalue problem. The non-

equilibrium Greens�’ function NEGF [24] formalism can be also used on the atomistic 

Hamiltonains, however, this is computationally expensive in terms of both memory and 

computation time and maybe prohibitive for realistic device sizes. The Hamiltonian 

construction here is for the case of nanowires, however, a generic formulation for 

quantum wells can be formed in a similar way. 
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B.2 The nanowire atomistic description for arbitrary crystal orientations 
 

B.2.1 The unit cell of a semiconductor lattice 
 

  The starting point for the calculation is the creation of the atomistic description of 

the lattice and extraction of the connectivity information.  

 

(a) Zincblende lattice 

Semiconductors such as silicon, germanium and the III-V materials as InAS, GaAS, InSb 

are built on a zincblende lattice. The unit cell of zincblende structures consists of two 

atoms, the anion and the cation. The coordinates of the two atoms in the orthogonal 

Cartesian coordinate system are: 

Anion: (0, 0, 0),   

Cation: (a0/4, a0/4, a0/4), 

where a0 is the length of the zinblende atomic lattice. Each atom is connected to four 

neighboring atoms in the perfect structure. The directions of the four bonds are: 

Anion: 1 2 3 4[1 1 1],  [1 1 1],   [1 1 1],   [1 1 1] a a a a , 

Cation: 1 2 3 4[1 1 1],  [1 1 1],   [1 1 1],   [1 1 1] b b b b . 

 The cation to anion bonds are in the opposite directions since the anion is connected to a 

cation and backwards. The entire bulk atomic structure can be constructed by repetition 

of the primitive unit cell in the 3D space in the direction of the basis vector set of the 

lattice. In the zincblende case, this basis vector set is: 

1 2 31/ 2 [1 1 0],  1/ 2 [1 0 1],   1/ 2 [0 1 1] v v v  

 

(b) Cubic lattice 

Effective mass approaches in Tight Binding are mostly built on a cubic lattice (although 

by using the appropriate parameters the effective masses in certain directions can be 
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achieved). The unit cell of the cubic structure consists of two atoms (one atom in the case 

where the material is not a compound of two materials), the anion and the cation. The 

coordinates of the two atoms in the orthogonal Cartesian coordinate system are: 

Anion: (0, 0, 0),  

Cation: (a0, 0, 0), 

where a0 is again the length of the cubic atomic lattice. Each atom is connected to six 

neighboring atoms in the perfect structure. The directions of the six bonds are: 

Anion: 1 2 3 4 5 6[1 0 0],  [1 0 0],   [0 1 0],   [0 1 0],   [0 0 1],   [0 0 1]a a a a a a  

Cation: 1 2 3 4 5 6[1 0 0],  [1 0 0],   [0 1 0],   [0 1 0],   [0 0 1],   [0 0 1]b b b b b b . 

Again, the cation to anion bonds are in the opposite directions since the anion is 

connected to a cation and backwards. The entire bulk atomic structure can be constructed 

by repetition of the primitive unit cell in the 3D space in the direction of the basis vector 

set of the lattice. In the cubic case, these basis vector set are: 

1 2 3[1 1 0],  [1 0 1],   [0 1 1] v v v . 

 

B.2.2 Construction of the nanowire channel under arbitrary orientations 
 

  The geometry of the device can be constructed using the unit cell information 

which can be repeated in the whole 3D space in the directions of the basis vector set of 

the lattice. In order to create a certain wire structure, the approach that is used is as 

follows: 

 

Step 1 �– Identify the lattice/unit cell: 

  The lattice in which the device is build from, is indicated and the unit cell 

information identified (cubic or zincblende).  

 

Step 2 �– Rotate the unit cell: 

  The unit cell is then rotated from its original 0 0 0[ , , ]x y z  axis to the [ , , ]r r rx y z  

axis, for which the xr indicates the transport direction and yr the growth direction of the 

wire. For example, the wire can be oriented for growth/transport in the (100)/[110] 
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directions. This is achieved by a rotation transformation as of: 0 0 0[ , , ]  [ , , ]r r rx y z R x y z , 

where [ , , ]r r rx y z  denotes the new coordinates of the rotated unit cell atoms with initial 

coordinates in the lattice 3D space 0 0 0[ , , ]x y z . R is the rotation transformation matrix 

given by [ , , ],x y zR r r r  formed of the vectors of the new axis basis. The same rotation 

transformation is applied on the bond directions and the lattice basis vector set in order to 

be rotated in the new coordinate system. 

 

Step 3 �– Strain the unit cell: 

  The unit cell is strained according to a specified 3D strain tensor. The strain can 

be uniaxial, biaxial or hydrostatic. A new unit cell is then generated with displaced 

atomic coordinates and bond lengths and directions. In the case of uniaxial and biaxial 

strain, the atomic displacement in the directions which are not strained is calculated using 

piezoelectric coefficients according to Poisson�’s ratio (volume conservation). In the case 

of hydrostatic strain, all x, y and z directions are strained similarly. The strain 

transformation is done as: [ , , ]  [ , , ]s s s r r rx y z S x y z , where [ , , ]s s sx y z  denotes the new 

coordinates of the strained unit cell atoms resulting from the already rotated coordinates 

of the 3D lattice, [ , , ]r r rx y z . The matrix S, as used in this scheme, is assumed to be 

diagonal with the diagonal elements been 1 ,ii iiS e where eii is the fraction of the 

lattice displacement in the ii direction under strain (i can take x,y or z). In the same way 

as the coordinates of the atoms, the bond vectors and the lattice basis vector set are also 

transformed.    

 

Step 4 �– Create a large set of atoms: 

  Using the new information for the rotated and strained unit cell, a large �“bulk�” 

size material is created by repeating the rotated and strained unit cell in the three 

directions of the basis set of the new lattice structure.  

 

Step 5 �– �“Cut�” the device cross section: 

  The next step is to identify the region of the unit cell of the wire that will be used 
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Fig. B. 1. The cross sections of nanowires oriented in different directions. (a) The [100] 
oriented wire. (b) The [110] oriented wire. The red dots (larger) represent the atomic 
positions. Black dots (smaller) are the hydrogen atoms for H-passivation. The bond 

connectivity between the atoms is indicated. 

 

as the channel of the device. A cross section of the device channel to be constructed is 

identified (i.e. a rectangular or a circular cross section). The �“bulk�” size structure is then 

�“cut�” in the shape of the cross section specified. The atoms that are located insight the 

cross section will be used as the device, whereas the atoms that are outside of the cross 

section are thrown away since they are not needed any more. In the transport direction, at 

this point only a unit cell of the wire is kept. In order to identify a unit cell, one has to 

choose a specific atom, and move in the transport direction until the same type of atom is 

found in the lattice. Once this happens, a unit cell is identified. The technique 

implemented here is as follows: Starting from an initial atom of certain type (anion or 

cation), the vector along the transport direction passing from that atom is calculated. All 

the perpendicular distances of all atoms on that vector are then calculated, and the ones 

that are zero (the atom is on the same axis as the original atom) are identified. The nearest 

same type atom that lies on the initial vector is then found. The distance of this atom to 

the initial atom indicates the length of the unit cell. All atoms that are located within the 

initial and final atoms, excluding the atoms that lie on the plane of the last atom, form the 

unit cell of the wire. Figure B.1 shows the cross-sections of two nanowires oriented in the 

[100] and [110] directions created using the above description.  

(100)/[100] (100)/[110] 
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Step 6 �– Connectivity: 

  Once the unit cell of the wire is created, the entire wire which will form the 

channel of the device is formed by repetition of the unit cell in the transport direction 

until a wire of a specified length is formed. The information about all the atoms and their 

bonds can then be extracted. Particularly, all locations of the atoms and all directions of 

the bonds are known. The connectivity matrix can then be constructed by locating for 

each bond of each atom its connection. Starting from the location of each atom, and the 

direction and length of each bond, the �“target�” location for a potential connection is 

identified. The coordinates of the rest of the atoms are then checked to identify if there is 

an atom in the nearby region (for numerical issues) of that specific location. The 

information of this atom is then identified. Similarly, this is done for all bonds in the 

wire. There are two more types of bonds. If a bond of an atom reaches outside of the 

cross sectional area specified previously for the structure, then that particular bond is not 

connected anywhere, and is identified as bond type subject to passivation (in the sp3d5s* 

TB model) as shown in Fig. B.1 (black/smaller dots). If a bond is located in the cross 

sectional area, but in the left and right outside the transport length of the wire, then this 

bond will be subject for applying periodic boundary conditions on it (in the case of 

bandstructure calculation).  

  For speeding up this process of creating the connectivity matrix information, 

especially in the case of large structures with large number of atoms, the information is 

extracted on the unit cell, and then is translated to the rest of the unit cells of the device, 

rather than recalculated for all the unit cells. This however, is not possible in the case of 

non-uniform variations in the wire length. In this case the connectivity information for 

the entire wire needs to be computed.  Figure B.2 shows an example of a 3D wire built on 

the atomistic lattice, indicating the bonds that connect all atoms and the bonds that are to 

be passivated in the simulations. 

  In this way the geometry of the underlying atomistic structure is created, and 

information about the bonding is identified. This will function as the basis for both the 

creation of the Laplacian for the solution of Poisson�’s equation and the creation of the 

Hamiltonian matrix for the quantum part of the problem. 
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Fig. B. 2. The 3D wire built on an atomistic lattice representation. The red dots (larger) 
are the atomic positions. The black dots (smaller) are the hydrogen positions (for H-

passivation). The bond connectivity is indicated. 

 

 

B.3 The multi-orbital Hamiltonian structure 
 

B.3.1 Construction of the Hamiltonian from the atomistic structure representation 
 

  The Hamiltonian of the device is constructed according to the connectivity 

information. The atoms are given an index according to their appearance in the device 

structure. The indexing of the atoms scans the rows (x) and columns (y) of each cross 

section of the wire, always starting from the beginning of each row. This is the way they 

also appear in the Hamiltonian. Each atom will occupy a diagonal block in the device 

Hamiltonian of size equal to the number of basis sets (number of orbitals) that are used 

for its�’ description. Once the diagonal elements have all been placed, the off-diagonal 

blocks of the Hamiltonian are then populated, according to the connectivity information 

as shown in Fig. B.3 (a,b). If a certain bond is not connected to another atom, then there 

is no diagonal block associated with that bond, and special treatment (either periodic BCs 

or passivation is later on applied). The Hamiltonian structure in 3D is block penta-
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diagonal, where each cross section of the device constitutes a block-tridiagonal part of the 

Hamiltonian, which is then connected to the next cross section through another block, 

finally creating a penta-diagonal structure (as shown in Fig. B.3 (c)). The size of the  

 

 
 

Fig. B. 3. The construction of the wire Hamiltonian from the lattice discritization. Once 
the connectivity is identified, the on-site and the coupling elements are built (a), the 
Hamiltonian can be built by placing the relevant elements in a matrix form.  (c)The 

Hamiltonian structure for the entire wire device. The periodicity in the atomic layers is 
evident in the periodicity of the Hamiltonian down the main diagonal. The highly sparse 

matrix makes it possible for its solution through highly optimized parallel linear 
algorithms. 

 

 

entire matrix depends on the size of the underlying atomic structure. Since each atom is 

represented by a block of nb basis sets, the Haniltonian is of size (N* nb x N* nb), where N 
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is the number of atoms in the wire. A wire of cross section (3nm x 3nm) and 10 nm 

length will consist of approximately 3000 atoms. In the sp3d5s* TB representation each 

atom is represented with nb =10 (without spin orbit - SO) or nb =20 (with SO). Therefore, 

the total size of the Hamiltonian matrix can easily reach 30,000 x 30,000 (w/o SO), or 

60000 x 60000 (with SO). The system however, is sparse enough to allow sparse matrix 

solution techniques and recursive algorithms to be applied for extraction of relevant 

quantities for electron transport applications. In effective mass approaches, where the 

basis set is only nb=1, the matrix size is much smaller and can be relatively easily 

handled.   

 

B.3.2 The nearest-neighbor (NN) tight-binding (TB) sp3d5s*-SO atomistic  

            description 
 

Description of the Model: 

 
 

Fig. B. 4. The zincblende lattice: Consists of two FCC lattices (one for the anions, and 
one for the cations), misplaced by a quarter of the main diagonal in the direction of the 

main diagonal. 

 

 

  TB is an empirical model for bandstructure calculation based on local 

combination of atomic orbitals (LCAO).The pioneer work for application of TB in 

semiconductor devices was done by Slater/Koster (1954) [43]. In this model, the 

Hamiltonian of the device is based on local combination of atomic orbitals. Each atom in 

the lattice is represented by 10 orbitals (sp3d5s*) if spin orbit coupling is not included, 
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and 20 orbitals (sp3d5s*-S0) if spin orbit is included. The on-site terms of the 

Hamiltonian and the coupling between the various orbitals between nearest-neighbors 

(NN) are fitting parameters. The TB parameters are calibrated using a genetic algorithm 

to match the bulk bandstructure over the entire BZ [40, 41].  

  The zincblende lattice consists of two FCC lattices misplaced by a quarter of the 

main diagonal along the direction of the main diagonal as shown in Fig B.4. The atoms 

that form the two lattices are identified as the anions and the cations. In materials such as 

silicon and germanium, the anions and cations both consist of the same atoms and are 

indistinguishable. In compound materials however, such as GaAs, InAS, InSB, etc, the 

two lattices are different, and the parameterization upon which the TB Hamiltonian is 

constructed is different. Therefore the unit cell of the TB model for the bulk consists of 

these two atoms (anion/cation). Each atom has four bonds (sp3 hybridization), connecting 

each anion to four cations and reversely, each cation to four anions.  

 

On-site and coupling terms in the Hamiltonian: 

  The first step towards the construction of the Hamiltonian blocks is the 

connection of an anion to the cation. The bond that connects the two atoms is described 

by the coupling between them. The two atom Hamiltonian can be described as shown in 

the equation B.1 below. (Note that the coupling described here is for one of the four 

bonds only): 

 

aa ac

ca cc

H H
H

H H ,   where , ,aa i j i jH E ,  and  ,,  
i j

B ac
ac i jH g V ,    (B.1a-c) 

 

with i,j running through all the orbital indexes i.e.: 

 
2 2 2 2, , , , *, , , , ,x y z xy yz zxs p p p s d d d x y z r , 

 

,i jE  are the on-site elements describing the anion orbitals. ccH  is composed of the 

corresponding on-site elements for the cation atomic orbitals, which in the case of 



 

 

139

elemental semiconductors like Si is equal to aaH (which is an  x b bn n  diagonal 

matrix). caH  is defined as 
�†

ca acH H such that the total Hamiltonian matrix remains 

hermitian. acH is the coupling between the anion and cation matrices, and is a full 

 x b bn n  matrix, since all anion orbitals couple to all cation ones and the reverse. The 

elements that form the coupling elements are formed as , , ,, ,ac
i j i j u vV f l m n V . 

, ,l m n  are the directional cosines of the lattice, defined as 
2 2 2

, ,
, , x y z

x y z

a a a
l m n

a a a
. 

In the case of the undistorted structure, , , 1/ 3l m n . In the case in which strain is 

applied, the , ,l m n  are changed accordingly. , , ,i jf l m n  are the two center Slater-

Koster energy integrals [43, 76] that transform the orthogonal Lowdin [44] based 

described orbitals into the , ,  and  bonding.  ,u vV  are the TB fitting parameters that 

are generated using genetic algorithm in order to correctly describe the BZ of the material 

of interest [40]. The u,v indexes, still run over the individual orbitals, however, due to 

their symmetries, a lot of parameters are repeatedly used, and much less than x b bn n  

elements are needed. 

 

 

 

Fig. B. 5. An example of the symmetry and parity of the orbitals. (a) The coupling 
between s,s orbitals is the same for all four bonds. (b) The coupling between s,px orbitals 

is different for each bond. 
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  The ,
B
i jg , are the elements of an x b bn n  matrix, which is a sign matrix, different 

for every one of the four bonds (B) between the anion and the cations. The reason is the 

different parity of the matrix coupling elements of orbitals residing on different atoms. 

This is explained in the Fig. B.5. The coupling between ,s sV orbitals is the same for all 

bonds between anion and cations. In the case of the , xs pV coupling, although the 

magnitude is the same, the sign of the matrix element changes according to the bond 

considered. In order to build the sign matrix, the following four components are defined: 

 

      

0

1

2

3

[1  1  1  1]
[1  1 -1 -1]
[1 -1  1 -1]
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                          (B.2) 

 

These four components can actually describe all the bonding parity information of all 

orbitals. For example, 0g represents orbitals with the same coupling parity for all four 

bonds as the ,s sV  shown in Fig. B.5. 1g  represents orbitals with the same coupling parity 

for bonds B1, B2 as the , xs pV  shown in Fig. B.5. Using these four components, a matrix 

BG  that includes all the symmetry information about all the bonds can be constructed as: 
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The matrix elements ,
B
i jg can be extracted from the matrix BG by taking all the nb rows 

with all first elements of the g vectors when considering bond B1, the second elements of 

the g vectors for B2, etc.  

  Finally, these on-site and coupling matrix elements for each bond, will serve as 

the basic block in the Hamiltonian construction.  

 

The Bulk Hamiltonian: 

  The bulk Hamiltonian can be obtained by applying periodic BCs in the equation 

of the two atom Hamiltonian (eqn. B.1). The BCs are applied only on the coupling 

elements as phase factors as:  
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  (B.4) 

 

Each term of the above equation represents the contribution due to each of the four bonds 

of the anion, connected to four cations. The dispersion can be calculated then by solving 

an eigenvalue problem of the Hamiltonian for the k-values of interest as: 

 

     ( , , ) ( , , )x y z x y zE k k k eig H k k k    (B.6) 

 

Hydrogen �– Passivation (sp3 - Hybridization) [45]: 

  The passivation of the bonds that reside outside the domain of the device, is done 

using a sp3 hybridized scheme. The construction of the Hamiltonian, assumes the 

individual orbitals as the basis set. This means that each on-site element (orbital) has 

contributions from four bonds (couplings). In order to passivate a specific bond, a 

transformation to the hybridized space is performed. This means that the transformed 

matrix will have the bonds as the basis, with contribution on each bond from all orbitals. 

The on-side element of the bond that is to be passivated is then raised to a large value, in 
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order to be placed away from the energies of interest and does not affect the 

bandstructure calculation. The bonds from an anion to the four cations and vice versa, are 

formed primarily by sp3-hybridization as a linear combination of the only the s and p 

orbitals. The bonds from an anion to the cations are: 
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                     (B.7a) 

 

whereas the bonds from a cation to the four anions are: 
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                            (B.7b) 

The passivation is then achieved by a transformation as follows: 

 

                 3 3
�†

( )E spHybrid sp sp
H V H V ,      (B.8a)           

where: 
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( )

s

px
E sp

py

pz

E
E

H E
E

, is the on-site matrix consisting only of the s and p 

orbitals. Once the transformation takes place, the on-site elements of the hybridized space 

matrix of the bonds to be passivated are raised by (hsp3)i,i=30eV. Finally, a back 

transformation into the orbital space will give the passivated matrix elements: 

 

    3 3 3
�†

. HybridPassiv sp sp sp
H V H h V , where    (B.8b) 
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3

4

sp

a
ah a

a
, with ai been 30eV or zero, depending on whether the bond i is 

passivated or not. 

 

 

Spin-orbit (SO) interactions in the Hamiltonian (more details in [76]): 

In the previous section, the TB Hamiltonian is built without spin orbit (SO) coupling 

interactions included. Here, we will describe the formalism that includes SO interactions. 

In this formalism, spin orbit interactions follow the following properties: 

- They affect only orbitals associated with the s- and p-type orbitals. The spin orbit 

interaction of the d-type orbitals is ignored for semiconductors, because it does 

not have any effect on energies near the bandgap. 

- They affect only orbitals with different spins sitting on the same atom and not in 

different atoms. Therefore the off-diagonal blocks, coupling the different atoms 

are not affected by SO. Only the diagonal blocks Haa, and Hcc of the Hamiltonian 

are modified. 

Without SO, the bulk unit cell Hamiltonian is given by:  
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aa ac

ca cc

H H
H

H H        (B.9) 

 

With SO coupling, each block Haa (and Hcc) will be modified to: 

  

       
a a

a a

H
H

H           (B.10) 

 

for the spin-up and spin-down orbitals. The SO interaction, affecting only the spin 

orbitals on the same atom, has the following form:  

 

                                
SO SO

SO
SO SO

H H
H

H H .       (B.11) 

 

This will be added to the Hamiltonian without SO coupling as:  

 

            TOT no SO SOH H H .        (B.12) 

 

The various blocks HSO need to be calculated. The spin-orbit Hamiltonian is given by: 

 

                                                     2 2 .  x 
4SO

qH E p
m c

,     (B.13) 

 

where E is the nuclear electric field and p is the momentum operator.  are the Pauli 

matrices. Now,  
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where ,  ,  .x y zp i p i p i
x y z

             (B.14) 

 

The interaction between the different atomic orbitals of the spin-up to spin-up orbitals 

can then be calculated from: 

 

   0  0i SO j i SO jp H p p H p    (B.15) 

 

The interaction between the different atomic orbitals of the spin-down to spin-down 

orbitals can be calculated from:  

   0 0 i SO j i SO jp H p p H p    (B.16) 

 

The interaction between the different atomic orbitals of the spin-down to the spin-up (and 

vise versa) orbitals can then be calculated from: 

 

   0  0i SO j i SO jp H p p H p   (for down/up)  (B.17) 

 

    0 0 i SO j i SO jp H p p H p   (for up/down)  (B.18) 

 

In order to evaluate the different integrals for the SO elements, we need to take into 

account the properties below: 

- The E-field and the p orbitals are odd spatial functions along their respective axis. 
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- Products of even functions are even, products of even number of odd functions 

are even, and products of odd number of odd functions are odd functions. 

- The derivative of an even function is an odd function, and the derivative of an odd 

function is an even function.  

For example:  

2 2

 0
0

    
4

    

y
x SO y x SO

x x y y

p
p H p p H

q i p E E p
m c y x
i

         (B.19) 

 

After evaluating all the matrix elements, we get the following results: the HSO blocks 

that are added to the Hamiltonian are as follows: 
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       (B.20) 

 

with all other matrix elements been zero. 

 

The 
SO SO

SO
SO SO

H H
H

H H , with each of the four blocks in the HSO matrix 

consisting of the interactions between all of the sp3s*d5 orbitals: 
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3 3 3 5

5 3 5 5

* * *

*     

/ / /
  

sp s sp s sp s d
SO SO SO SO

d sp s d d

h h
H H H H

h h ,  (B.21) 

 

where h  takes the values / / /SO SO SO SOh h h h  as follows: 
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3 3* *
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3 3* *
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    (B.23(c)) 

 

3 3* *

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0 0 0

SO
sp s sp s

h i
i

     (B.23(d)) 

 

Finally, the total Hamiltonian is modified to include the SO part as in Eqn. B.12. 
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The wire Hamiltonian and bandstructure calculation: 

  To construct the TB Hamiltonian for a nanowire, the unit cell is identified as 

explained earlier in the chapter. Each atom enters the Hamiltonian as an (nb x nb) block 

and connected to the other atoms through the connectivity information that directly 

comes from the underlying structure as shown in Fig. B.1. If a bond points in the 

direction out of the wire, where there supposed to be an infinite wall (SiO2 or H) then that 

bond is passivated as explained above.  

  Once the Hamiltonian of the device is identified, the E(k) relationship of the 

nanowire can be extracted by imposing periodic BCs on the unit cell of the wire (i.e. only 

in 4 atomic layers in the [100] direction). For this, the coupling of the unit cell to the two 

neighboring unit cells, 01H , is identified, and used to impose periodic BCs in the 

Hamiltonian. Assuming that the quantization happens in the y-z plane, translational 

symmetry is broken in the y, z directions, but retained in the transport x direction (ky, kz 

are therefore not longer good quantum numbers). The Hamiltonian is translation invariant 

only in the x direction and the E(kx) calculation is therefore as follows: 

 

   0 0 0
00 01 00 01 01( ) 'x x x

x
n

ik a ik a ik aE k eig H H e eig H H e H e ,       (B.24) 

 

where only the kx component is retained.  

 

B.4 Summary 
 

  In this chapter the creation of the atomic underlying lattice and the construction of 

the bulk and the nanowire Hamiltonians based on this underlying lattice are presented. 

The construction of the sp3d5s* Hamiltonian, the coupling, the boundary conditions and 

the calculation of the bandstructure are also presented. Although the chapter elaborates 

more on the formation of the sp3d5s* TB-NN Hamiltonian, the method presented is a 

generic scheme that can be used for any number of orbitals (single orbital results to the 
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effective mass approximation). The Hamiltonian for a finite wire length can be 

constructed by using the connectivity and BC information of all atoms. For a uniform 

wire, in the interest of speed and memory, this information can be calculated on the unit 

cell and repeated through the wire length. The BCs in this case at the most left/right sides 

are the infinite BCs. In the case where the E(k) dispersion is computed, the BCs describe 

the periodicity of the lattice through the k-value described phase factor. During the NEGF 

formalism they are imposed as self energies.  
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APPENDIX C 

 

THE SELF-CONSISTENT BANDSTRUCTURE MODEL 
 

 

C.1 Extracting the charge distribution from the wire bandstructure 
 

  Calculation of the bandstructure of the nanowire is performed by calculating the 

eigenvalues of the Hamiltonian with periodic boundary conditions (BCs) imposed as: 

 

                                                   (C.1) 

Fig. C. 1. The self consistent (SC) loop between the transport and the Poisson equations. 
The charge is calculated by summing the contribution of each energy level over all bands 

of the k-space multiplied by its occupation probability (Fermi Function). The charge 
serves as an input to the Poisson equation to obtain the potential till convergence. 

 

 

  In the above model, 0n  is the equilibrium charge density when .0VU  The 

subscript  stands for each eigenvalue degree of freedom, the subband index and 

the valuek , i.e. xkm,  (assuming the x  to be the infinite direction). The total 

wavefunction (assuming a planewave basis in the infinite direction can be written as: 
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      ( , ).
x xik

m
x

e y z
L

               (C.2)  

The eigenvalues at each k  point will for the bands of the nanowire, whereas the 

eigenfunctions are the expansion coefficients of expansion of the basis set which will 

give the total wavefunction. In TB a basis set is not defined. One has only access to the 

coefficients of expansion. Any complete basis can be used in the expansion for the actual 

wavefunction, and in most cases Slater type functions are utilized. The charge 

distribution on the atomic locations can however be obtained by using only the expansion 

coefficients as follows: 

 

The charge density is therefore calculated as: 
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          (C.3) 

 

Converting the sum over the spacek into an integral, equation (C.3) becomes 
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  (C.4) 

 

Using the normalization properties of the wavefuntion: 
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In the TB model, one has no explicit knowledge on the actual wavefunctions, but rather 

on the normalized coefficients of expansion of a basis which can be assumed to be any 

complete basis set. In the sp3d5s* model, the confined wavefunction ),( zy  is the 

expansion of the orbitals that represent the Hamiltonian�’s basis set as: 

 

    2 2 2 2/3 /3
( , ) ... .

x ys p x p y z r z r
y z c s c p c p c d      (C.6) 

 

Assuming normalized and orthogonal orbitals (although their explicit shape is not 

relevant in the model),  

 

   
2 2 / 3

2222 2 2( , ) ... .
x y z r

s p p d i
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y z c c c c c                (C.7) 

 

The basis set is not defined, in this model. The charge density therefore, is calculated as 

point charges on the atomic locations which have contributions from all orbitals. 

Inserting (C.7) into (C.4): 

 

            
2

, 0
1( ) ,

2 i f x
i

n z c f E E dk                               (C.8) 

 

where the integral is over all subbands m  and all valuesk  of the first brillouin zone 

(BZ) ( xxx aak /:/ ) and the coefficients depend on both of these quantities as well 

as the individual orbitals.   

  The above described information about the coefficients ic ,  and the subband 

energies )(kEE , where the )(kE  is the energies of the subbands at the specific 

.valuek  Calculating the charge distribution in a 10 or 20 orbital model such as the 

sp3d5s*-SO model, generates a large number of data. Each eigenvalue of the 

bandstructure gives contributions to N sides (where N is the size of the total 

Hamiltonian). In a typical simulation of a small (3nm x 3nm) wire, using 10 orbitals per 

atom, the Hamiltonian size can reach up to N~5000. By using 100 k-points for the 
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bandstructure calculation, and 30 bands in the simulation, the number of charge carrying 

elements is: 5000 x 30 x 100 = 15x106. In this the resolution in the individual orbital is 

not needed, so by summing it up, the number of elements reduce to 1.5x106, still a large 

number. Therefore, storing all these will require large memory space and is unnecessary. 

However, in order to calculate the self consistent bandstructure with the electrostatic 

potential solution, the spatial resolution of charge on each atom is needed, and in order to 

apply the top-of-the-barrier ballistic model, the charge distribution in k-space and bands 

is needed. Therefore, one stores the charge in two different ways. In the first case, the 

charge is saved by summing over the k-space and keeping the spatial variation, and in the 

second case by summing over the spatial variables and keeping the k-space variation. The 

first will be used in the Poisson loop, the second in the top-of-the-barrier model. In this 

way the sizes of the charge elements can be easily stored.      

 

C.2 The 2D Poisson solver and the non-linear convergence scheme 
 

  In 2D simulations the electrostatic potential in the cross section domain of the 

wire is obtained using a 2D poisson solver. Solvers based on both, Finite Difference 

(FDM) and Finite Element (FEM) methods are implemented, with unnoticeable 

differences in the solutions between the two. Although FDM solvers are much easier to 

code, the FEM method can easily treat circular structures as well as structures with non-

regular cross-sections.  

  In this section, the connection of the poisson solution for the electrostatic 

potential to the TB atomistic mesh, and the implementation of the non-linear scheme that 

is used for convergence are described. A brief description of the 2D poisson equation 

formulation in FDM is first described.    

 

The 2D Poisson in FDM: 

  The 2D poisson is given by: 

     0
0 0

. ( ) ,r
qU n r n                             (C.9) 
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where r  is the dielectric constant of the material at position r, n(r) and n0 are the mobile 

and fixed charge densities respectively. The 2D domain is discritized as shown in Fig. 

C.1 using a regular square mesh (in the FDM case). There are two regions treated, the 

nanowire channel and the oxide. The interfaces of these regions are built on the nodes of 

the mesh themselves. The dots in the figure represent the position of the mesh points and 

the position of the atoms. The region between the nodes is the elements of the domain, 

for which a dielectric constant is assigned to 9.3
2SiO , 12Si  in the case of Si/SiO2 

devices. 

 

  

 

Fig. C. 2. Creating the Laplacian: (a) The 2D cross sections of the Poisson domain for a 
rectangular geometry. The positions of the mesh nodes and the atoms are indicated in 

dots. (b) The assignment of the potentials and the dielectrics in the elements of the 
domain. 

 

 

A second order differential equation is then written for each internal node on which a 

solution is to be computed as: 
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             (C.10) 

 

Upon forming a differential equation for each node, the Laplacian can be constructed for 

the solution of the system. In 2D, this is a penta-diagonal matrix since each diagonal 

element of the Laplacian has 4 neighbors. The pre-factors of every potential component 

in the equation can be seen as an average dielectric in the direction of the first derivative 

of the potential. The second derivative is obtained by dividing by the average of the local 

discritization of the domain in the direction of the first derivative. (In this scheme, the 

mesh can be non-linear). The Laplacian, finally, enters the Poisson equation as: 

 

     
2

0
0

( ) ,B
qL U n r n U               (C.11) 

 

where BU  is the boundary conditions on the gate of the device. (The Laplacian involves 

only an equation for each unknown potential. The known part of the equation, (fixed 

boundary conditions), appears at the right hand side. Boundary conditions are placed on 

the outer nodes of the domain, and represent the gate bias. 

  The solution of this will give the potential distribution in the domain. The 

potential on the atomic positions will be used in the construction of the Hamiltonian in 

order to account for any variation in the electronic structure of the material due to 

potential variation in the cross section.   
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Convergence scheme: 

  The Poisson equation can easily be solved using Matlab �“solve-\�” command, 

which solves using the LU decomposition method. A direct solution is therefore 

achievable. However, due to the fact that the charge is exponentially dependent on the 

potential through Fermi-Dirac statistics, the resultant potential will have a small 

probability of driving the charge calculation into convergence. Especially in high bias 

cases the solution will diverge. A non-linear scheme based on the Newton-Ralphson 

method is therefore implemented for the convergence of the self consistent simulation 

between the Poisson and the transport parts. This method is based on a variable 

transformation, in which the charge in the device is expressed as a function of the 

potential, through some dummy function. It essentially builds into the Poisson the 

information that the charge calculated in transport, is exponential with respect to the 

potential. The dummy function however, needs to have some physical meaning for better 

behavior. In this case, Fermi-Dirac integrals are the most suitable since they include 

information about the exponential behavior of the density to the potential.  

The charge can be expressed as: 

 

               ( ) ( ),fn r Nc                (C.12)  

 

where ( )f is the Fermi-Dirac integral of order .  and Nc is the density of the 

conduction band states. The Fermi Dirac integral is a function of the potential, and can be 

expressed as follows:  

       ( )
0

1( )
( 1) 1 FF

d
e

              (C.13) 

 

The dummy variable f can be expressed therefore as: 

 

             1
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               (C.14) 
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The quasi Fermi level can then be defined as:  

 

                                         1
0

( )( ) ( ) ( / ) ,G
n rFn r U r E kT q
Nc

                (C.15) 

 

where 0 ( )U r is some value of the electrostatic potential (usually the initial guess), all in 

units of electron volts (eV). Under this variable transformation, the charge is transformed 

to a quasi Fermi level value that will be serving as the input to the Poisson equation. 

(Notice that Fn is a quantity that logarithmically depends of the charge, and therefore it 

can be numerically more stable). The dummy variable f  can be expressed as a function 

of Fn and the potential 0 ( )U r  as: 

 

     0
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Fn U r Er
kT q

                         (C.16) 

 

The total electronic charge that enters the Poisson equation can then be calculated by an 

inverse transformation as: 

 

       ( ) ( ) ( ) ( ) ( ) ( ),Fixed Fixed Fn Fpr N r n r p r N Nc Nv      (C.17)  

 

where ( )FixedN r  is the fixed charge in the device (doping), ( )n r is the electron mobile 

charge, ( )p r  is the hole mobile charge that enters in the charge equation through the hole 

parameter Fp and the Nv (density of states of the valence band), derived in the same way 

as for the electron case. 

  In this way, the Poisson equation is transformed into a non-linear equation, since 

the charge is a function of the potential through 0Fn . 0 ( )U r , however, is an initial guess 

potential. Equations (C.16), (C.17), and the Poisson equation (C.11) are then solved self 

consistently ( 0 ( )U r  is replaced by the unknown potential ( )U r and 0Fn by Fn , while 
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the quasi Fermi level Fn remains constant) until convergence in the potential ( )U r  is 

achieved as shown in the diagram below: 

 

 

Fig. C. 3. The non-linear Poisson loop (inner loop). Using the charge density from the 
Schrödinger solution the Quasi Fermi Level (Fn) is determined. Based on that variable 

transformation, the charge density is defined as a function of the potential. The potential 
is determined iteratively between the Quasi Fermi Level and the Poisson equation. 

 

 

In this case, the information of the exponential dependence of the charge on the potential 

is built in the solver. The inner loop does not solve for overall neutrality of the entire 

system. This can only be achieved through the outer loop iterations. The potential 

distribution solution that the non-linear scheme (inner loop) converges to, is in general 

different than the direct solution that the linear poisson equation will give. In this scheme, 

two different equations need to be solved, one for the potential and one for the charge. 

Both need to converge as it will be shown below. Upon convergence of both, then the 

direct solution of the linear poisson equation and the non-linear will agree. The potential 

that the non-linear Poisson converges to, although initially does not satisfy the transport 
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TB equation, it prevents it from diverging, until final convergence is achieved in the outer 

loop. 

  The choice of the dummy function (Fermi-Dirac in this case) can help in faster 

convergence. The closer to the physical dependence between the charge and the potential 

is described in the dummy function, the faster the overall simulation (outer loop) 

converges. Since the charge is exponentially dependent on the potential, Fermi-Dirac 

statistics functions are suitable dummy functions with no significant difference between 

Fermi Dirac functions of different orders.  

  The convergent criterion used in the inner loop is dU=1e-9. Strict criterion is 

essential in order to avoid any large unphysical oscillations in the charge because of its�’ 

exponential behavior on the potential. 

  The convergence behavior of the potential (black) and the charge (red) in the 

outer loop of the simulator is shown in Fig. C.3. The error and relative error in the 

potential decreases by an order of magnitude every two iterations. The same happens to 

the charge, where the relative error (dN/N) also shows a similar trend. The error in the 

charge however, stands almost two orders of magnitude higher than the error in the 

potential. As shown in the figure, the ratio of the relative errors between the charge and 

the potential is one to two orders of magnitude (red dotted). Since the charge is 

~ B
U

k TN e , then ~ ~ 40 
B

N U U
N k T

. If the charge is needed to converge to accuracy of 

0.1% (red-sold-circle), since this is what determines the current in the device, the 

potential needs to converge to an error of dU=10-5 (black-solid-circle).   As a result the 

convergence criterion on the potential should be low enough in order to achieve good 

charge convergence.  

  The outer loop is much more time consuming than the inner loop in general 

because it involves calculation of the bandstructure of the wire, which results to an 

eigenvalue problem of size (N_atoms*n_orbitals x N_atoms*n_orbitals), which can be 

extremely time consuming. Therefore, the reduction of the outer loop iterations is of 

significant importance. Although Fermi-Dirac integrals can be used as the dummy 

functions in the inner loop, an analytical expression using the actual equilibrium  
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Fig. C. 4. The convergence behavior of the outer loop. Black-Solid: The error in the 
potential. Black-Dotted: The relative error in the potential. Red-Solid: The error in the 

charge. Red-Dotted: The ratio of the relative errors of the charge and the potential. 

 

 

bandstructure information for the specific device, rather than just parabolic 

approximations for the bands that result to the Fermi-Dirac integrals can be potentially 

proven more useful.   
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