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ABSTRACT 

 

This thesis discusses device physics, modeling and design issues of nanoscale 

transistors at the quantum level. The principle topics addressed in this report are 1) an 

implementation of appropriate physics and methodology in device modeling, 2) 

development of a new TCAD (technology computer aided design) tool for quantum level 

device simulation, 3) examination and assessment of new features of carrier transport in 

nano-scale transistors, and 4) exploration of device design issues near the ultimate scaling 

limit with the help of the developed tools. We concentrate on the technical issues by 

investigating a double-gate structure, which has been widely accepted as the ideal device 

structure for ultimate CMOS scaling. We focus on quantum effects and non-equilibrium, 

near-ballistic transport in extremely scaled transistors (in contrast to quasi-equilibrium, 

scattering-dominant transport in long channel devices), where a non-equilibrium Green’s 

function formalism (NEGF) has been used to deal with the quantum transport problem. 
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1. INTRODUCTION 
 

1.1. Overview of the Problem 

CMOS technology has been proven as one of the most important achievements in 

modern engineering history. In less than 30 years, it has become the primary engine 

driving the world economy. The secret to the success is very simple: keep delivering 

more functionality with fewer resources. Device scaling makes this possible. For decades, 

progress in device scaling has followed an exponential curve: device density on a 

microprocessor doubles every three years. This has come to be known as Moore’s law 

[1]. The minimum dimension size of a single device for present day technology is about 

100 nm in gate-length. Continued success in device scaling is necessary for further 

development of the semiconductor industry in the years to come. A group of leading 

companies publishes their projections for the next decade in the most recent International 

Technology Roadmap for Semiconductors (ITRS-99) [2]. The roadmap projects a device 

gate-length down to ~30 nm around 2014 [2]. This forecast promises us another ten years 

of brightness. Scaling beyond 30 nm, however, can be much more difficult and different. 

Remember, we are quite close to the fundamental limits of semiconductor physics. How 

much further down can we go? It is hard to answer. Nevertheless, without doubt, we are 

facing numerous challenges, both practically and theoretically. Device simulation 

requires new theory and approaches to help us understand device physics and to design 

devices at the sub-30nm scale. Efforts have been put forth in recent years [3-7], but much 

more is needed. For these purposes, we started a research project in 1997, the results of 

which make up this thesis.  

 

The principle objectives of this thesis are: 1) to implement appropriate physics and 

methodology for device modeling, 2) to develop a new TCAD (technology computer 

aided design) tool for quantum level device simulation, 3) to examine and assess new 
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features of carrier transport in nano-scale transistors, 4) to explore device design issues 

near the ultimate scaling limit with the help of the developed tools. We address the 

technical issues by investigating a double-gate structure, which more and more research 

evidence indicates to be the ideal device structure for ultimate CMOS scaling [4]. We 

focus on quantum effects and non-equilibrium, near-ballistic transport in extremely 

scaled transistors (in contrast to quasi-equilibrium, scattering-dominant transport in long 

channel devices), where a non-equilibrium Green’s functions formalism (NEGF) has 

been used to deal with the quantum transport problem [8-10].  

 

In the remaining parts of this chapter, we will give a quick review of why the double-

gate structure is preferred for future device scaling. For comprehensive discussions on 

device scaling, readers can go to many references, for example [3, 11-12]. We will also 

present a brief introduction to the NEGF approach before jumping to the extensive 

discussions in later chapters. For detailed description of this theoretical framework, one 

may want to read the excellent text books by Datta and Abrikosov et al. [10, 13].  

 

1.2 Scaling Devices to Their Limits 

There are two primary device structures that have being widely studied and used in 

CMOS technology. One is the bulk structure, where a transistor is directly fabricated on 

the semiconductor substrate. The other one is called SOI (silicon-on-insulator), where a 

transistor is built on a thin silicon layer, which is separated from the substrate by a layer 

of insulator. The bulk structure is relatively simple from a device process point of view, 

and it is still the standard structure in almost all CMOS based products until this day. 

 

For device scaling, we basically try to balance two things: device functionality and 

device reliability. Both of them have to be maintained at a smaller dimensional size. To 

accomplish this, we need to suppress any dimension related effects or short channel 

effects (SCEs) as much as possible. SCEs include threshold voltage ( THV ) variations 

versus channel length, typically THV  rolloff at shorter channel lengths. This effect is 

usually accompanied by degraded subthreshold swing ( S ), which causes difficulty in 
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turning off a device. SCEs also include the drain-induced barrier lowering (DIBL) effect. 

DIBL results in a drain voltage dependent THV , which complicates CMOS design at a 

circuit level. As a transistor scales, reliability concerns become more pronounced. 

Unwanted leakage currents can make the device fail to function properly. Primarily, there 

are two kinds of leakages, gate tunneling current and junction tunneling current. Both of 

them result from extremely scaled dimensions and high electric fields. 

 

According to device scaling physics, increasing channel doping concentration ( BN ) 

can effectively suppress SCEs. Frank et al. recently published their work quantifying the 

dependence of the scale length on BN  [14]. To a first order approximation, their theory 

gives the following equation, 

 

IISidm TW )/( εε+=Λ ,     (1.1) 

 

where Λ  is the scale length, dmW  is the maximum channel depletion depth, IT  is the 

insulator thickness, and ISi εε /  is the ratio of dielectric constants of silicon and the 

insulator. dmW  can be directly related to BN  (see for example [15]). Depending on the 

complexity of the channel doping profile, this theory predicts that the minimum design 

length GL  lies between Λ  to Λ2 . It is quite clear in eqn. (1.1) that high BN  results in 

reduced dmW , therefore a shorter scale length Λ . Of cause, thinner IT  or higher Iε  also 

helps device scaling.  

 

 Device scaling has come a long way. In the early days, GL  is relatively long, a low 

uniform BN  can be used providing satisfactory immunity of SCEs. A low BN  gives a 

small body effect coefficient, which improves the subthreshold swing [15]. As the 

channel length decreases, a retrograde or ground plane doping profile can be introduced 

[16-17]. This doping profile has a low doping region near the Si/Oxide interface, but a 

high doping region underneath. The top region provides better body effect, while the 
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bottom region suppresses SCEs. To achieve even shorter channel lengths, a ground plane 

profile is not enough, a more complicated doping profile has to be added, namely the 

super halo [18]. In this case, high gradient halo dopings are formed next to the 

source/drain junction region. These heavily doped regions can effectively protect the 

source end of the channel region from the influence due to the electric fields from the 

drain diffusion region. As the channel length varies around the nominal GL , a shorter 

length causes the halo regions to merge, ending up with higher BN , which resists THV  

rolloff. By using the ground plane and halo doping profiles, simulations show that the 

bulk structure can be scaled down to ~25 nm regime [18]. Beyond that, device scaling of 

the bulk structure is limited by severe degradation of junction leakage which is caused by 

the high built-in fields, and can not be avoided in the wake of the super halo engineering. 

  

 Partially depleted SOI MOSFETs scale in a very similar manner as the bulk devices 

do. The buried oxide layer in a SOI device can provide superior electric isolation between 

the active device region and the substrate region. This property is considered a big 

improvement over bulk devices. Body isolation, however, also results in charge buildup 

(majority carriers) within the body region, which gives rise to the unwanted floating body 

effect (FBE) [19]. A fully depleted SOI MOSFET can help relieve the FBE, but a fully 

depleted single gate SOI MOSFET is not considered a desired structure for scaling. A 

single gate SOI device typically has a thick buried oxide layer, which can not terminate 

any electric lines from the drain end, leaving the source vulnerable to the influence of the 

drain [17, 20]. 

 

 All recent studies indicate that the ultra-thin body double gate (DG) SOI MOSFET is 

the ideal device structure for ultimate scaling [4, 21-22]. In an ultra-thin body DG 

MOSFET, the second gate electrode can significantly suppress the SCEs. Referring to 

eqn. 1.1, and noting that dmW  can be approximated by 2/SiT  ( SiT  is the silicon body 

thickness), when SiT  is scaled to nanometer thicknesses (close to IT ), clearly the scale 

length will downsize into the nanometer regime. It should be also noticed that high body 
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doping is not needed here, so the band-to-band tunneling junction leakage is no longer a 

big concern. 

  

 Moreover, the use of ultra-thin bodies will result in reduced metallurgical junction 

perimeter, therefore low junction capacitance. The bodies are typically lightly doped, 

giving other advantages: 1) there is barely room for the FBE to come into play, 2) the 

THV  variation due to dopant fluctuations can be eliminated, 3) close-to-ideal subthreshold 

swing (60 mV/dec) can be achieved, 4) severe mobility degradation due to ion scattering 

might be avoided.  

  

 From a technical point of view, DG MOSFETs are difficult to build. Gate self-

alignment is hard to achieve. A misaligned gate will cause high overlap capacitances on 

one side of the gate, and large underlap junction resistances on the other side of the gate. 

Recent works show that clever process designs can help get rid of gate misalignment [23- 

24]. Extension region resistances pose another concern in DG MOSFET design. Due to 

the use of ultra-thin bodies, these resistances can be very high, limiting device 

performance. The proposed solution is to use fanned out source/drain regions as close as 

possible to the channel region [25]. The use of ultra-thin bodies also leaves limited room 

for adjusting THV  with body doping. Gate stack engineering has to be done to obtain an 

appropriate THV , either by employing new contact materials with desirable 

workfunctions, or maintaining an offset voltage between the two gate electrodes to mimic 

a different workfunction [24, 26]. Quantum effects (subbband splitting) can become 

significant as the confinement of carriers becomes stronger within ultra-thin bodies, 

translating to sensitivity of THV  to the body thickness. This fundamental physics effect 

poses an additional difficulty to control THV  in ultra-thin bodes. (It is worthwhile to point 

out that this subband splitting effect will increase the band gap between lowest electron 

subband and highest hole subband, which may considerably suppress the band-to-band 

tunneling leakage in ultra-thin silicon bodies.) 
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 Despite the existence of numerous difficulties, the excellent scaling capability 

demonstrated by the ultra-thin body DG structure can never be underestimated.  For this 

reason, therefore, this thesis will be concentrated on a study of ultra-thin body DG 

MOSFETs. 

  

1.3 Non-equilibrium Green’s Function (NEGF) Formalism 
As MOSFETs scale to the nanometer regime, canonical carrier transport theories are 

no longer capable of describing carrier transport accurately. The canonical theories are 

basically derived from the Boltzmann transport equation (BTE), with more or fewer 

approximations being made [27]. These models focus on scattering-dominant transport, 

which typically occurs in long channel devices. Nanoscale transistors, however, operate 

in a quasiballistic-transport regime [28]. Simulations using conventional models may 

either under-predict or over-predict the device performance [29-30].  

 

The BTE (classical version) is a complex integro-differential equation. On one side of 

the equation, the temporal evolution of a carrier distribution function ),,( tf pr  is 

specified in momentum and real space assuming a Newtonian movement of the particles; 

on the other side of the equation, modifications to ),,( tf pr  due to carrier collision or 

scattering (
Collt

f
∂

∂ ) are computed within a quantum framework. 

 

Obtaining solutions to the BTE with no approximations can be very difficult. Several 

Ph.D. theses have been devoted to this topic. Among them, Huster used a response matrix 

approach [5]. Banoo came up a method of directly solving the six-variable equation in the 

steady state [6]. Both works contributed significantly to this area. We also note that, 

however, there are important issues missed in the BTE solutions. As we mentioned 

earlier, the BTE assumes a classical approach in describing carrier dynamics, so quantum 

features prevailing in nanoscale devices can never be captured in the solutions. Moreover, 

in pursuing the solutions, a non-degenerate distribution function is typically used to 
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simplify the scattering operator 
Collt

f
∂

∂ [6]. This approximation violates Pauli’s exclusion 

principle, which is apparently indispensable in describing the scattering of a highly 

degenerate carrier gas within an extremely scaled transistor.  

 

To simulate nanoscale devices, the non-equilibrium Green’s function formalism 

(NEGF) provides one of the best frameworks available. (Other approaches include the 

Pauli master equation method [31-33], and Wigner function method, which is essentially 

the same as the NEGF [34-37].)  The NEGF is a technique to solve the non-equilibrium 

dynamic equation of the quantum fields. The carriers (e.g. electrons and phonons) within 

semiconductor devices constitute the quantum fields. The Green’s functions are defined 

in terms of field operators, either >< + )()( 12 rr ψψ  or >< + )()( 21 rr ψψ . These functions 

relate the field operator of particles )( 1rψ at one point in space-time, ),( 11 tr=1r , to the 

conjugate field operator )( 2r+ψ  at a different point, ),( 22 tr=2r . The bracket signifies 

the need to average over the available states of the system for the nonequilibrium 

distributions [38]. These functions are used to measure correlations between electrons at 

two locations denoted by 1r  and 2r , and therefore contain information of the described 

systems. Self-energy functions are also correlation functions, but particularly related to 

particle interaction events (for more, see any quantum field theory book, for instance, 

[39]).  

 

The kinetics of the particle systems are governed by the well-known Dyson’s 

equation, which relates the interacting Green’s functions to the non-interacting Green’s 

functions (which can be obtained easily) and self-energy functions [38, 40]. The Fourier 

transform of the correlation functions with respect to Ett →− 12  will significantly 

simplify the form of the Dyson’s equation. It will also make the correlation functions 

more physically meaningful. Readers may want to refer to the chapter by Mahan for an 

enlightening discussion on the significance of the Fourier transform [38]. In the steady 
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state, all quantities can be expressed in terms of )( 12 tt − . So the Fourier transformed 

correlation functions become dependent only on 1r , 2r  and E .  

 

In pursuing numerical solutions, a matrix representation of the correlation functions is 

used. Discretization in real space makes 1r  and 2r  row or column indices of the matrices. 

Key kinetic equations describing non-equilibrium transport within a semiconductor 

device are presented as follows, 

 
1)]()([)( −−−= EEHEIEG o ,     (1.2) 

 

)()()()( EGEEGEG inn += , )()()()( EGEEGEG outp += .  (1.3) 

 

In these equations, G  is typically called the retarded Green’s function, its Hermitian 

conjugate, +G , is called the advanced Green’s function. oH  denotes the single-electron 

effective mass Hamiltonian, in which band structure is incorporated into the effective 

mass. The Hartree potential for electron-electron interactions is also included in 

oH through a scalar potential obtained from the solutions of the coupled Poisson 

equation. nG  and pG  are correlation functions specifying electron and hole density 

spectra, respectively. , in  and out  are self-energy functions related to interactions. 

To see how to derive eqns. (1.2) and (1.3) from the Dyson’s equation, one may want to 

read [40].  

 

The electron density spectrum and the terminal current density spectrum can be 

evaluated, after self-consistent solutions are obtained for the correlation functions. 

 

n
mGmEn

π2
1),( = ,  and ][)( nout

m
pin

mm GGTrace
h
qEI −= ,  (1.4) 
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where ),( mEn  is the electron density spectrum for a discretized unit cell, m, n
mG  

indicates the mth diagonal entry of nG , )(EI m  is the current spectrum at terminal m, in
m  

is the mth diagonal entry of in , q is the elementary charge constant, and h is the Plank 

constant. 

 

For some simple cases, recipes for computing the self-energy functions are available. 

Several interesting examples are briefly listed below. An extensive study of non-

equilibrium transport in SOI MOSFETs using the NEGF approach will be presented in 

Chapter 3 through Chapter 6 of this thesis. 

 

1) Ballistic transport in MOSFETs 

In this scenario, carriers within the active device region are injected either from the 

source reservoir or the drain reservoir. Both reservoirs are assumed in the equilibrium 

state, characterized by different Fermi energy levels. The electron-electron interaction is 

incorporated into the Hartree potential in the single electron Hamiltonian oH . The 

interactions between the contact reservoirs and the transport carrier system are measured 

by , in  and out . No other interactions are included (this is why the transport is 

ballistic). In this case, can be exactly solved. in  and out  can be expressed in terms 

of  and the corresponding Fermi energies. For a complete description, see Chapter 3 in 

this thesis. 

 

2) Büttiker probe models for dissipative transport 

In these dissipative transport models, carrier scattering within the device is treated as 

an interaction between carriers and Büttiker probes [41]. The Büttiker probes are treated 

as reservoirs similar to the source and drain.  for the probes can be mapped onto a 

macroscopic mobility, a given parameter. Fermi energies for the probes, however, have to 

be computed self-consistently, to ensure that each Büttiker probe only changes the energy 

of the carriers and not the total number of carriers in the system. Chapter 4 in this thesis 

is centered on the Büttiker probe models. 
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3) Phonon-electron interaction model 

In this model, phonons are treated in a harmonic oscillator approximation. The 

phonon system is assumed in equilibrium, even though the electron system is out of 

equilibrium. , in  and out  are calculated in the Born approximation, and only the 

self-energies involving one phonon processes (absorption or emission) are included 

(higher order processes contribute less to the interaction).  Chapter 4 discusses this model 

in more detail. 

 

1.4 Overview of the Thesis 
Chapter 2 is devoted to a 1D simulation study of double-gate MOSFETs. We first 

describe a simulation tool Schred-2.0, which is a self-consistent Schrödinger-Poisson 

solver. Using Schred-2.0, we then examine performance related properties of double-gate 

MOSFETs, such as inversion layer charge, threshold voltage and carrier thermal injection 

velocity; we also compare device design issues for an asymmetrical (n+/p+ polysilicon 

gate) and a similarly structured symmetrical (n+/p+ polysilicon gate) DG MOSFET. 

 

 In Chapter 3, we describe the numerical techniques used in developing a 2D simulator 

for nanoscale double-gate MOSFETs. We implement a quantum ballistic transport model, 

we also implement a ballistic Boltzmann transport model. We then examine the Poisson 

equation boundary conditions at the source/drain contacts in ballistic MOSFETs. Finally, 

we assess the approximations of the mode-space representation in doing 2D quantum 

simulation. 

 
 Chapter 4 is centered on scattering phenomena in ultra-scaled double-gate MOSFETs. 

We implement, examine, and compare three different scattering models. We use the 

Green’s function formalism in all implementations. The two Büttiker probe based models 

simulate scattering due to all possible mechanisms (e.g. surface roughness, phonon, and 

impurity etc.) as a perturbation represented by the probe’s self-energy. These 

perturbations can be related to conventional low field mobility (µ ). The third approach 
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focuses on phonon-electron scattering. Although the phonon-electron interaction model 

may not generally be used to simulate scattering in MOSFETs, it provides a more 

rigorous solution to help us better understand specific scattering process.  

 

In Chapter 5 we explore the device physics of nanoscale MOSFETs by 2D numerical 

simulation of a model transistor. We examine the physics of charge control, source 

velocity saturation due to thermal injection, and scattering in ultra-small devices. We 

show in this study that the essential physics of nanoscale MOSFETs can be understood in 

terms of a conceptually simple model. 

 

In Chapter 6, we examine device design issues for an n-channel double gate 

MOSFET with a metallurgical gate length of 10 nm. The device structure is engineered to 

meet the ITRS-99 specifications for the year 2014 transistor generation. First, we outline 

the procedure to select a combination of silicon film thickness and gate dielectric in order 

to meet short channel requirements. We then discuss gate stack design in order to meet 

the threshold voltage and gate leakage requirements. We use the Büttiker probe model to 

capture mobility degradation due to surface roughness and high doping concentrations in 

the extremely scaled MOSFET, and we present results that highlight the effects of gate 

overlap/underlap, S/D extension and quantum contact resistances on the performance of 

nanoscale transistors. Finally, we use an empirical gate tunneling model to examine the 

leakage current distribution along the gate and predict the gate leakage current.  

  

 In Chapter 7, we summarize the conclusions of this research, and list a few potential 

directions for future work. 
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2. 1D SIMULATION OF QUANTUM EFFECTS IN DG MOSFETS 

 

2.1  Introduction 
All recent studies of alternative CMOS device structures have reached one common 

conclusion: the double-gate (DG) device design is ideally suited for ultimate CMOS 

scaling. A double-gate device structure is composed of a thin Si body (thinner than one 

half of the gate length) sandwiched between gate stacks (gate contact and gate dielectric). 

Three different double-gate structures are most commonly used. They are: 1) planar 

double-gate device, 2) vertical surround-gate device, and 3) FinFet (with a fin-shaped 

body) [4, 23, 42-44]. Double-gate structures have exhibited numerous advantages over 

conventional bulk device structures. The presence of two gates significantly reduces short 

channel effects, improves punch-through properties, permits complete dielectric isolation 

and reduces junction capacitance [4, 45]. In addition, thin body double-gate MOSFETs 

also provide nearly ideal subthreshold slope. The reduced junction capacitance and 

presence of two channels drastically boosts the speed and drive current of double-gate 

device structures. The following study focuses on a planar double-gate design and 

summarizing work that has been published by the author [21, 46-47].   

 

This chapter is devoted to a 1D simulation study of double-gate MOSFETs. We first 

describe a simulation tool Schred-2.0, which is a self-consistent Schrödinger-Poisson 

solver. Using Schred-2.0, we then examine performance related properties of double-gate 

MOSFETs, such as, inversion layer charge, threshold voltage and carrier thermal 

injection velocity. Finally, we present simulation results for an asymmetrical (n+/p+ 

polysilicon gate) and a similarly structured symmetrical (n+/p+ polysilicon gate) DG 

MOSFET aimed at on-current assessment. An asymmetric structure was considered for 

the following reasons: 1) conventional polysilicon gates can be used to provide the right 

threshold voltage (this is not true for an analogous symmetric design) and 2) it continues 
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to deliver extraordinarily high on-current with one-predominant channel compared to its 

dual channel symmetric gate counterpart. 

 

2.2 Description of Schred-2.0 
Schred is a self-consistent 1D Schrödinger-Poisson solver originally developed by D. 

Vasileska of Arizona State University [48-49]. Version 2.0, developed by this author, 

extends Schred-1.0 to, 1) simulate both bulk MOS (one oxide/silicon interface) and SOI 

(two oxide/silicon interfaces) device structures, 2) simulate n and p body MOS 

capacitors, 3) perform quantum simulations of accumulation layers in bulk MOS and 4) 

calculate ballistic I-V characteristics of bulk and SOI MOSFETs based on 1D MOSFET 

theory.  

 

2.2.1 Overview 
The Schrödinger equation is solved assuming an effective mass approximation. The 

solution scheme used in Schred-2.0 is illustrated using an SOI structure as an example. 

Figure 2.1 schematically shows the profiles of the conduction and valence bands in the 

SOI capacitor. Bound-state energies in the quantum solution are also illustrated in Fig. 

2.1. Given the body doping concentration (ND, NA) and an initial guess for the electron 

and hole densities (n, p), the 1D Poisson equation, 

 

    )()]([ AD NNnpqzV −+−−=∇⋅⋅∇ ε        (2.1) 

  

is solved for )(zV , which is the vacuum potential. Once the vacuum level has been 

calculated, electron and hole densities can either be computed classically or quantum 

mechanically. The classical approach to evaluating electron and hole densities is based on 

3D statistics. A description of this approach can be found in several textbooks (e.g.: [50]). 

The quantum solution is more involved and merits a detailed explanation. 
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Fig. 2.1. A schematic illustrating band profiles in a double-gate MOS capacitor. 
 

The first step of the quantum solution solves a 1D effective mass equation in the 

confinement direction (Z in Fig. 2.1). The 1D effective mass equation is,  
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where iE  is the bound state energy for subband i and )(ziψ  the corresponding envelope 

function for subband i. Once the bound state energies and wave functions have been 

calculated, the carrier density for each bound state is evaluated using 2D statistics as 

described in the later sections. This 2D carrier density is then distributed using the 

corresponding envelope function for each bound state to obtain the 3D density. The gate 

oxide layers are assumed to represent an infinite potential barrier causing the 

wavefunctions go to zero at the silicon/oxide interfaces (boundary condition to solve the 

effective mass equation). The calculated carrier density is then fed back to the Poisson 

equation, which is solved for the new potential profile, until self-consistency is achieved. 

Schred-2.0, not only simulates 1D electrostatics in an MOS structure, but also computes 

ballistic I-V characteristics of a MOSFET based the 1D electrostatics [28]. A detailed 

description of the charge and current calculations is presented in the following sections. 

 

 2.2.2 Simulation of 1D electrostatics 
For the quantum solution, it is assumed that the Si/SiO2 interface is parallel to the 

(100) plane. The conduction band in bulk silicon can be represented by the six equivalent 

ellipsoids as shown in Fig. 2.2. When an electric field is applied in the [100] direction 

these six equivalent minima split into two sets of subbands [51]. The first set of subbands 

(unprimed) is two fold degenerate and represents those ellipsoids that respond with a 

heavy effective mass ( lm ) in the gate confinement direction while the second set of 

subbands (primed) is four fold degenerate and represents those ellipsoids that respond 

with a light effective mass ( tm ) in the direction of the applied field. Because of the 

heavier longitudinal mass, the unprimed subbands have relatively lower bound-state 

energies, as compared to the primed subbands and are therefore primarily occupied by 

electrons. The 2D electron density for the unprimed and primed bands is,  
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where Din2  is a constant with the dimensions of 2D carrier density for subband i (the 

explicit expressions of Din2  and other subband related constants appearing later in this 

chapter can be found in Appendix A), and µ  the  body Fermi energy.  

 

The structure of the valence bands in silicon is complicated and cannot in general be 

treated analytically. However, to first order one can express the E-k relationship for the 

heavy and light hole bands around the valence band maxima within an analytic 

framework based on effective masses quoted in the references [52-53]. The split-off band 

is usually ignored as the split-off energy in silicon is large resulting in a negligible hole 

density for these bands. Due to the curvature of the valence bands, it should be noted that 

holes have negative effective masses, resulting in bound-state energies lower than the 

valence band maxima when one solves the hole effective mass equation in the 

confinement direction (Fig. 2.1). Heavy holes have smaller confinement energies as 

compared to light holes. Therefore the heavy hole subbands are closer to the valence 

band maxima as compared to the light hole subbands (Fig. 2.1). Holes represent 

unoccupied states in the valence band. Therefore in calculating the hole density, a 

distribution function of  

 

      TkEp Be
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 is used. The hole density for subband i is  
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Fig. 2.2. Six equivalent conduction band ellipsoids in bulk silicon. Ellipsoids 1 and 2 
respond with a longitudinal effective mass in the gate confinement direction, and give 

rise to the unprimed subbands, while ellipsoids 3 to 6 respond with a transverse effective 
mass in the gate confinement direction, resulting in the primed set of subbands. 

 

It should be noted that eqns. 2.3a-c assume Fermi-Dirac statistics. One can also 

invoke Maxwell-Boltzmann statistics in Schred-2.0. Exchange and correlation corrections 

to the electrostatic potential as a result of quantum effects, can be accounted for in the 

local density approximation by invoking the desired options [54]. These corrections 

decrease the bound-state energies resulting in about 5% increased carrier densities [48]. 

 

When performing a quantum simulation of an SOI structure, both electrons and holes 

have to be treated quantum mechanically. There are two reasons: 1) SOI bodies are 

usually undoped or lightly doped. Therefore under low bias both electrons and holes are 

equally important and 2) Quantum confinement due to the two gate dielectrics, affects 

both electrons and holes. However, when performing quantum simulations of a bulk 

MOS capacitor, only one type of carrier is quantum mechanically confined for a given 
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bias condition. The confinement is due to electrical fields. The other type of carrier can 

be treated classically (using 3D statistics). As an example, if a p body MOS capacitor is 

considered, then in the depletion and inversion regions, electrons have to be treated 

quantum mechanically, while holes could be treated classically. In the accumulation 

region, holes have to be treated quantum mechanically, while electrons could be treated 

classically. A quantum mechanical treatment of the majority carrier in the accumulation 

regime needs the inclusion of a large number of subbands thus greatly increasing the 

computational burden. This is because in the accumulation regions, energy bands bend 

very little, resulting in weak quantum confinement. Therefore the subband energies are 

closely spaced and a large number of subbands need to be included in order to accurately 

account for the overall majority carrier concentration. Quantum simulations can capture 

capacitance degradation effects in accumulation regions. These effects are becoming 

more important as oxide layer thickness is continuously scaled.  

 

Schred-2.0 can treat both n and p type polysilicon or metal gate contacts. Polysilicon 

gates are modeled as heavily doped single-crystal silicon. Irrespective of the model used 

to treat the silicon body (classical or quantum mechanical), electrons and holes in the gate 

regions are always treated classically assuming 3D statistics. The gate dielectric constant 

is a user specified quantity as is the gate work function for metal gates. Schred-2.0 also 

allows different dielectrics/workfunctions for the top and bottom gates in an SOI 

structure. This enables the study of different gate designs on the performance of MOS 

capacitors. 

 

2.2.3 I-V characteristics simulation based on 1D electrostatics 

Current is a constant through a MOSFET and can be evaluated at any point along the 

channel. Lundstrom pointed out that the current can be easily computed at the source to 

channel barrier top [28, 55]. For well-tempered MOSFETs, the total areal charge density 

at this point is based on equilibrium 1D MOS electrostatics and can be expressed as, 

 

       )( THGSEffinv VVCQ −= .        (2.4) 
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Fig. 2.3. A schematic figure showing the ballistic transport physics in a nMOSFET under 
low drain bias condition. 

 

In the equilibrium state, the charge distribution in k-space is symmetric resulting in 

zero net current. However, in the off-equilibrium situation, the charge distribution is no 

longer symmetric in k-space. This is because in the ballistic limit, the +k states are 

populated according to the source Fermi level while the –k states are populated according 

to the drain Fermi level as pointed out by Natori and Datta [56-57]. The separation 

between the source and drain Fermi levels is qVDS.  Therefore in modeling an off-

equilibrium situation, the total charge at the source-to-channel barrier peak has to be 

correctly apportioned in k-space based on two Fermi levels. It should be noted that while 

the total charge is still the equilibrium charge, the distribution is no longer an equilibrium 

distribution. This difference in population between the +k and –k states results in a net 

non-zero current which is evaluated using the following expression [28], 
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where OiI  is a constant with the dimensions of current per unit length for subband i, and 

2/1ℑ  is the Fermi-Dirac integral of order one-half [58-60]. It should be noted that the 

Fermi energy appearing in eqn. 2.5 is calculated using a bisection method. 

 

As the drain bias is increased, the –k state occupancy is progressively reduced and is 

totally eliminated at very high drain voltages. Therefore all of the charge at the source-to-

channel barrier is a result of source reservoir contributions leading to current saturation at 

high drain bias.  The ballistic transport physics is summarized in Fig. 2.3. 

 

Knowing the ballistic current, we can also compute the conductance of the MOSFET 

in the linear region of operation (low VDS) as, 

 

    ]/)[(/ 2/1 TkEGWG BiOiDi −ℑ= − µ ,        (2.6) 

 

where OiG  is a constant with the dimensions of conductance-length. Equation 2.6 shows 

that even under the assumption of ballistic transport within the MOSFET, the 

conductance is finite. This conductance is the quantum contact conductance, and is 

limited by the number of propagating modes available at the source [10]. 

 

At very high VDS, injection from the drain reservoir is completely suppressed. Under 

such conditions it is possible to calculate a uni-directed thermal injection velocity for 

source injected carriers. This velocity, which is obtained by dividing the ballistic current 

with the areal charge density, can be expressed as, 
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where i
Tυ  is a constant independent of µ  and iE , denoting the non-degenerate limit of 

i
injυ  for electrons on subband i. The uni-directed velocity of source-injected carriers is 
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limited by the source reservoir Fermi energy and can be much higher than the bulk 

saturation velocity. 

 

In evaluating any internal quantity, contributions from all subbands have to be 

included. Note that all of the constants used in eqns. 2.3 to 2.7 can be expressed in terms 

of fundamental constants, and the expressions are described in detail in Appendix A. And 

also note that eqns. 2.5-2.7 are given for nMOSFETs, but switching the positions of µ  

and iE  will give the results for pMOSFTEs. Typical outputs from Schred-2.0 simulations 

are the spatial variation of the conduction-band edge, 3D charge density in the body; 2D 

surface charge density, and capacitances. The capacitances include inversion layer 

capacitance Cinv and total gate capacitance Ctot. In the case of capacitors with poly-silicon 

gates, Schred-2.0 can also be used to calculate the poly-gate capacitance, Cpoly. When 

performing quantum mechanical simulations, Schred-2.0 can provide the subband 

energies, the subband carrier densities, and wavefunction profiles within the body. In the 

case of ballistic current calculations one can obtain current as a function of the gate and 

drain biases, the quantum contact resistance and thermal injection velocity of carriers. 

 

Schred-2.0 is written in Fortran 77. The program is very efficient. On a 167MHz 

Ultra-1 machine, it typically takes about 10 seconds per bias point for a quantum 

simulation, and about 5 seconds per bias point for a classical calculation. For quantum 

simulations in the bulk accumulation regime, it takes a relatively long time (about 2 to 3 

minutes) for one bias point because a very large number of subbands need to be treated in 

order to obtain the correct charge density. A thick body SOI quantum simulation (thicker 

than 0.1 micron) also involves long computational times for the aforementioned reason. 

Examples of the application of Schred-2.0 will be presented in the next section, and much 

more can be found in the following references [21, 47-48]. The user manual for Schred-

2.0 is also a good supplement to this document. The user manual is available online. 

Prospective users may want go to “http://punch.ecn.purdue.edu/Guest“ and register for 

membership. Following the instructions to the Schred directory, one can download the 

manual.  
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2.3 1D Simulation Study of DG SOI MOSFETs 

As applications of Schred-2.0, we first examine electrostatics of ultra-thin body 

double-gate MOS structures. The electrostatic properties in a ultra-thin body to great 

extent underlie the MOSFET transport characteristics. High mobile charge density and 

high thermal injection velocity can be achieved in ultra-thin bodies. The effect of electron 

penetration into the oxide regions is also studied. Inclusion of charge penetration into the 

oxide regions results in increased effective gate capacitances and reduced threshold 

voltages. We then present an extensive simulation analysis of a ultra-thin body 

asymmetrical DG MOSFET. The simulations highlight internal electric quantities. Based 

on a comparison between symmetric and asymmetric DG MOSFETs, we show that the 

asymmetrical n+/p+ polysilicon gate design can be used to achieve low power applications 

with extraordinary high on-current. 

 

2.3.1 Fundamental performance factors: 
Ultra-thin body SOIs has been demonstrated to result in MOSFETs that are 

potentially scalable to channel lengths of 10 nm or less [22, 61-62]. It is well known that 

subthreshold characteristics of MOSFETs are determined by MOS electrostatics. The 

ultra-thin body is desirable to suppress 2D electrostatics for an improved off-current. In 

this study, we find that in principle, on-current is also strongly affected by electrostatics. 

We examine the ballistic limit of ultra-thin body SOIs and show that the on-current of 

double-gate SOI MOSFETs with ultra-thin bodies can potentially be much higher than 

twice that of equivalent bulk devices.  

 

Results and discussion: 

The simulated ultra-thin device structure is shown in Fig. 2.4a. The simulation 

domain is limited to a 1D slice indicated in Fig. 2.4. All simulations are performed using 

the quantum mechanical model in Schred-2.0. The devices have symmetrical gate 

contacts and insulator layers on both sides of the silicon body. The insulator thickness 

( OXT ) is 1.5 nm. The silicon body thicknesses ( SiT ) ranges from 1.0 nm to 30 nm, and 
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corresponds to device generations with gate lengths below 50 nm [4, 25]. Intrinsic silicon 

bodies are used for two reasons: 1) to avoid threshold voltage fluctuations due to 

variations in dopant distribution and 2) to ensure full body depletion resulting in 

improved subthreshold swing (S).  A model n-channel bulk MOSFET is also simulated to 

provide a basis for comparison (showing in Fig. 2.4b). 18102×=AN  cm-3 and OXT  = 1.5 

nm are used following the ITRS specifications for the year 2005 technology generation 

[2]. For the SOI MOSFETs, hypothetical mid-gap metals ( 66.4=φ eV) are assumed for 

gate contacts. For the bulk device, aluminum ( 10.4=φ eV) is used.  
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(b) 

Fig. 2.4. Schematic pictures of model structures: (a) double-gate SOI MOSFET,  (b) bulk 
MOSFET. The dashed lines indicate the Schred-2.0 simulation slices. 
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 The on-current performance of a MOSFET can be expressed in terms of inversion 

layer carrier density and average injection velocity. Increasing either inversion layer 

density or injection velocity results in increased on-current. A bulk MOSFET has only 

one channel, while a typical thick body double-gate MOSFET shows two independent 

channels resulting in “double channel conduction” [63]. As the body of a double-gate 

MOSFET is scaled, it has been reported that body inversion occurs, implying that the two 

independent channels merge together. It is of interest to see if the merged channel can 

still provide the desired double channel conductivity. In Fig. 2.5a, we show the 2D 

electron density distribution in a relatively thick silicon body ( 25=SiT nm). The gate bias 

overdrive is 0.8 V. Most inversion carriers are confined to regions close to the gate/body 

interfaces. The electron profile is very similar to that would occur in two back to back 

bulk MOSFETs. The inversion layer electron density can be expressed as  

 

)(2 THGSEffS VVCn −= ,        (2.8) 

 

where EffC  is the effective oxide capacitance for one gate. EffC  is somewhat degraded 

from the physical oxide capacitance OXOX T/ε  due to quantum inversion layer thickness. 

As the silicon film is thinned ( 5.1=SiT nm), as shown in Fig. 4.5b, the two inversion 

regions merge to a single inversion layer in the DG structure. This is purely a quantum 

effect (due to the symmetry of the first subband wavefunction). Note that the electron 

density peak value in Fig. 2.5b is twice that in Fig. 2.5a. Also note that for extremely thin 

silicon bodies, the degradation of the oxide capacitance could be lower than in case of a 

thick body DG SOI capacitor resulting in an integrated 2D charge within a single 

inversion layer much higher than that of two inversion layers.  

 

 Figure 2.6 shows the threshold voltage dependence on the body thickness for DG 

SOIs. The threshold voltage is obtained by extending the linear region of the charge vs. 

gate voltage curve to intersect the voltage axis. As can be seen in the figure, THV  rises 
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considerably as the body thickness is below 3nm. This large THV  increase underscores the 

impact of quantum effects on ultra-thin body devices.  
 

 

 

 

 

 

 

 

 

 

    (a) TSi  =25 nm          (b) TSi  =1.5 nm 

 
Fig. 2.5. Electron distribution profiles in DG SOI structures. Simulations are done at 

8.0=− THGS VV  V. The dashed lines represent Si/oxide interfaces. 
 

 

 

 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6. Dependence of threshold voltage on body thickness for DG SOI structures. The 
threshold voltage is determined by linear extrapolation of gate voltage dependence of the 

electron charge density. 
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 In Fig. 2.7a, the dependence of carrier injection velocity on body thickness of SOI 

structures is shown. The gate overdrive is 0.8 V. One interesting result is that the thermal 

injection velocity of carriers in ultra-thin body DG SOI structures can be boosted to 
7100.3 × cm/s, which is almost twice the value achieved by carriers in bulk devices. This 

occurs because 1) strong quantum confinement in ultra-thin structures enlarges the band 

gap significantly, resulting in single subband occupancy (this is shown in Fig. 2.7b), 2) 

the 2D electron gas residing in the single subband becomes highly degenerate, giving rise 

to increased thermal injection velocity. It should be pointed out that all of the results are 

based on the assumption of a parabolic E-k relation. Non-parabolicity may reduce these 

predictions to some extent. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 2.7. (a) Dependence of electron injection velocity on body thickness of DG SOI 
structures, (b) the first subband occupation factor versus body thickness of DG SOI 

structures. The dashed lines indicate the corresponding quantities in the bulk MOSFET. 
All quantities are evaluated at 8.0=− THGS VV  V. 

 

 In Fig. 2.8, we compare the drive current of three model devices in the ballistic limit. 

Currents are evaluated using the simple 1D transport model as described in Section 2.2. 

For SOIs, the body thicknesses are 1.5 nm and 25 nm respectively. Gate overdrive 

voltage is 0.8 V. The model device with the ultra-thin body yields an on-current that is 

about four times that obtained from a bulk device. (It is normally expected that the DG 

SOI structure may double the bulk current performance as a result of back channel 
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conduction). We explain this quadrupled current as arising due to doubled inversion layer 

charge due to the double-gate structure and highly degenerate thermal injection velocity 

due to the ultra-thin body (see Fig. 2.7a). The thick body double-gate model device 

shows lower current as compared to the ultra-thin body because the thermal injection 

velocity is low due to multiple subband occupancy. 

 
 

Fig. 2.8. Common source current versus drain voltage for DG SOI and bulk model 
MOSFETs. 8.0=− THGS VV  V in all three cases. 

 

Conclusion: 

 In the context of 1D self-consistent Schrödinger-Poisson simulations supplemented 

by analytical characterizations of carrier transport, we showed that for DG MOSFETs 

with body thickness below 3 nm, significant increase in threshold voltage is expected. 

We also showed that, if acceptable threshold voltage can be achieved by gate 

engineering, ultra-thin body DG MOSFETs demonstrate the capability of delivering 

remarkably high on-current in the ballistic limit. In addition, we found that a one subband 

approximation in Schrödinger-Poisson solutions is sufficient for simulating SOIs with 

body thickness below 3 nm. 

Bulk 

SOIs TSi = 25 nm 

TSi = 1.5 nm 
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2.3.2 Electron penetration into the oxide regions: 
 Continuous scaling MOSFETs down to the nanometer regime, requires the use of 

ultra-thin silicon bodies and gate insulators. Quantum effects not only occur in the thin 

bodies but also in the insulator layers. Up to this point, all of the simulation results 

assumed that the insulators represented infinitely high potential barriers. In reality, 

dielectrics have finite band offsets with respect to semiconductors, resulting in quantum 

tunneling through the insulator regions. Tunneling leakage has been addressed in the 

literature primarily through the WKB approximation [64-66]. The transmission 

probability through the gate insulator is evaluated based on the barrier potential profile. 

Tunneling current is computed by integrating the transmission probability weighted by a 

Fermi-Dirac factor. This approach, however, is incapable of predicting the effect of 

charge penetration into the insulator regions. As insulator layers are thinned to around 1.0 

nm in physical thickness, charge penetration into dielectrics become more and more 

important. This penetration effect, enhanced by strong quantum confinement due to ultra-

thin bodies in a SOI device or high electric fields in a bulk device, can affect 

electrostatics in the MOSFET, which in turn, alters its electric characterization. This 

effect is worth examining through simulations. 

 

Method: 

 In a p-body SOI MOS structure, the electron penetration effect can be examined by 

extending the quantum solution domain into the dielectric layers. The Schrödinger 

equation based on the effective mass approximation still holds. Although the electron 

density is proportional to 2||ψ , in both semiconductor and insulator regions different 

effective masses have to assumed different in the two regions. To obtain a Hermitian 

Hamiltonian, the Schrödinger equation is modified as [67], 
 

   )()()()](
)(

1[
2 *

2

zEzzqVz
zm iiii ψψψ =−∇⋅∇− ,     (2.9) 
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Note that eqn. 2.9 ensures continuity of both electron density ( 2||ψ∝ ) and current  

( ψ∇∝ *
1

m
) at the insulator/semiconductor interface. This can be understood by 

comparing eqn. 2.9 with the Poisson equation )()]()([ zzVz ρε −=∇⋅∇ . Note that )(zψ  

is analogous to )(zV , and ψ∇*
1

m
 is analogous to V∇ε . Since )(zV  and V∇ε  are 

continuous across all boundaries in a solution to the Poisson equation, it is clear that 

)(zψ and ψ∇*
1

m
 will also be continuous in a solution of eqn. 2.9.  

 

 The solution boundaries of eqn. 2.9 are moved from the insulator/semiconductor 

interfaces to the insulator/contact interfaces. The insulator layers although extremely thin, 

are still assumed to provide minimum electric reliability, meaning that the wave functions 

decay to negligible values somewhere inside the dielectric layers. Therefore the zero 

boundary condition for the wave function ( )(zψ =0) can be taken at the insulator/contact 

boundaries. 

 

Results and discussion: 

 1D simulations have been performed for a symmetrical DG MOS structure (SiO2-Si-

SiO2). Two cases were examined: 1) with fixed oxides 0.1=OXT  nm, SiT ranging from 

1.5 to 5.0 nm, 2) with a fixed silicon body 0.2=SiT nm, OXT  ranging from 1.0 to 5.0 nm. 

Constant electron effective mass emm 4.0* =  is used in the SiO2 regions [65-66].  

 

 Figure 2.9a shows the electron distributions in a 2 nm silicon body. Oxide layers are 

1.0 nm thick on each side. Three simulations are compared at the same gate bias: 1) 

classical, 2) quantum without oxide tunneling, 3) quantum with oxide tunneling. At this 

dimension the classical model predicts a considerably different charge profile, over 

estimating electron densities at the SiO2/Si interfaces. The quantum tunneling effect, 

resulting in electrons penetrating into the oxide regions, results in a broadened charge 

distribution. Figure 2.9b further illustrates the differences between the three models 
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through the Q-V characteristics. The classical simulation indicates an incorrect high 

effective capacitance ( EffC ). Both quantum models indicate positive shifts in threshold 

voltage, but display a difference in EffC .  

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 2.9. Comparisons of simulated 3D electron density profiles (a) and 2D density 
characteristics (b) in three models. 

 

 Figure 2.10 is designed to provide an explanation for the difference in the effective 

oxide capacitance. Quantum mechanically simulated C-V curves are shown for different 

SiT  with 0.1=OXT nm in Fig. 2.10a. Note that the thin body (1.5 nm) shows the largest 

split between cases with and without tunneling. The thick body (5.0 nm) shows almost no 

split. This is because quantum confinement becomes stronger as SiT  becomes thinner. 

Higher confinement energies enable electrons to penetrate deeper into the oxide regions, 

effectively widening the quantum well (between the insulators). Therefore thinner silicon 

bodies indicate more evident increases in capacitance and decreases in threshold voltage 

as compared with a relatively thicker body. Figure 2.10b presents simulated C-V curves 

for different OXT with 0.2=SiT nm. A discrepancy between the quantum models with and 

without tunneling effects can still be observed. Since SiT is fixed, all cases have the same 

level of confinement energy. Therefore the penetration depth into the oxide regions is 

comparable for different OXT . Devices with thick oxides show relatively unchanged EffC . 

SiO2 

Si Classical 

QM w/o t 

QM w/ t 
QM w/ t 

QM w/o t 



 - 32 -  

However, in case of thin oxides, electron penetration depths can become large portions of 

OXT , resulting in considerably increased EffC .  

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 2.10. C-V characteristics showing the dependences of electron tunneling effect on TSi 
(a) and TOX (b). The solid lines indicate results assuming electron tunneling, the dashed 

lines indicate results assuming no tunneling. 
 

Conclusion: 

 Electron penetration into the gate oxide regions was studied by self-consistently 

solving the Schrödinger and Poisson equations in a domain containing both 

semiconductor and insulator regions. Charge penetration was found to remarkably 

increase the effective gate capacitance and decrease the threshold voltage in devices with 

OXT , SiT < 3.0 nm. This effect results in a degraded off-state current, which should be 

considered in addition to the well-known gate tunneling leakage.  

 

2.3.3 Asymmetrical DG MOSFETs 
Over the past few years, n+-p+ double-gate SOI MOSFETs have been studied for their 

potential ability of providing well-controlled threshold voltages. With n+ polysilicon for 

one gate, and p+ polysilicon for the other, the gate interaction effect in these 

asymmetrically-gated devices dynamically tunes the threshold voltage, and provides 

acceptable sVTH '  for both n and p channel transistors [68-69]. Exotic midgap work 

function materials have to be employed in symmetric-gate MOSFETs in order to achieve 

a similar threshold voltage. Most recently, Fossum et al. further pointed out, the use of 

 TOX = 1.0 nm 
TSi = 
5.0 nm 
3.0 nm 
2.0 nm 
1.5 nm 

 TSi = 2.0 nm 
TOX = 
1.0 nm 
1.5 nm 
3.0 nm 
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the asymmetrical gate architecture may also help suppress Gate Induced Drain Leakage 

(GIDL) in DG MOSFETs. The reduced GIDL effect was attributed to the weakened 

electrical field at one of the gates due to the gate asymmetry [70]. An asymmetrical DG 

MOSFET, however, demonstrates only one predominant conducting channel, so it may 

be suspected that the on-current performance will be degraded as compared to its 

symmetrical counterpart. Therefore detailed simulation analyses are demanded for a 

clarification.  

 

In this work, a simple, clear ballistic simulation study is accomplished to compare 

and examine the drive current performance of symmetrical and asymmetrical SOI 

MOSFETs. Simulations performed using Schred-2.0 show that an asymmetric ultra-thin 

body MOSFET can in fact deliver extraordinary high drive current although it exhibits 

only one predominant channel. The results are directly derived from solutions to 

fundamental equations (Schrödinger and Poisson), neglecting channel mobility and 

parasitic issues. The exceptionally high on-state current in asymmetrical MOSFETs is 

due to two reasons: 1) superior gate capacitance in thin bodies, 2) superior carrier 

injection velocities. The former is because of strong gate-gate coupling through ultra-thin 

silicon bodies, while the latter is because of strong quantum confinement induced band 

spilt-off. A detailed explanation is presented in the next section. Also note that a classical 

study conducted by Fossum’s group gave rise to a same conclusion [71]. This work is 

used to validate semiclassical results using a fundamental approach and provide 

additional insight into the high drive current and overall superiority of asymmetrical 

MOSFETs.   

 

Analyses and results: 

 We simulated an L  = 50 nm asymmetric and symmetric DG nMOSFETs (refer to Fig. 

2.2a for the model device structure). Note that Schred-2.0 is a 1D simulator and that the 

channel length quoted here can only be viewed as the relevant lateral dimension size with 

regards to the vertical simulation domain. The Si-film body is lightly doped 

( 15100.1 ×=AN  cm-3) and quite thin ( SiT  = 10 nm), and the gate oxides are relatively 
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thick ( OXBOXFOX TTT ==  = 3 nm) for OFFI  control. For the asymmetric device, the gates 

are n+ and p+ polysilicon. However, for the symmetric device, an ‘exotic’ gate material is 

assumed in order to yield the same OFFI  as in the asymmetric device at DDV  = 1.0 V.  

       

 The structure is analyzed by the Schred-2.0 self consistently in the z direction. The 

Schrödinger equation is solved for the inversion layer electron density. In the thin silicon 

bodies used in our study (10 nm and [1 0 0] oriented), we found that including the first 

six subbbands (4 from the unprimed subbands, 2 from the primed subbands) in our 

simulations results in sufficiently high accuracy. The ballistic current (in the x direction), 

which is used as a measure to benchmark the asymmetric and symmetric DG designs, is 

obtained indirectly from the 1D Schrödinger-Poisson solutions as described in Sec. 2.2. 

The on-state current depends on the average carrier injection velocity and available 

inversion layer electron density. The average carrier injection velocity is the uni-

directional thermal velocity ( */2 mTkB π ) in the non-degenerate limit. The thermal 

velocity, which is enhanced by Fermi-Dirac degeneracy at large GSV , can be much higher 

than the saturation velocity in bulk silicon ( 7100.1 × cm/s) [46].  The factor 

*/2 mTkB π in the expression for the degenerate injection velocity indicates that the 

effective mass of carriers ( *m ) in the transport direction is an important factor affecting 

drive current. Conventional carrier mobility is no longer meaningful. The electrons from 

the unprimed subbands have a light effective mass ( tm ) in the channel direction and 

display higher injection velocities compared to the electrons from the primed subbands 

(see Sec. 2.2.3). The total inversion layer electron density assessed at the source injection 

point, is defined by GSV , and assumed to be independent of DSV . 2D SCEs within these 

double-gate structures are considered negligible due to the use of thin bodies (10 nm), 

thin insulators (3 nm) and relatively long channels (50 nm). In this work, the 

benchmarking is conducted based on the ultimate performance of devices, thus ignoring 

all parasitics. This technique provides a fair comparison of the symmetric and 

asymmetric device designs based on fundamental physics models. 
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 Predicted integrated electron density ( qQN invS /−=  at the source) versus GSV  is 

plotted for both devices in Fig. 2.11; the predicted n(z) distributions across the Si film are 

shown in Fig. 2.12. Note that the asymmetrical DG MOSFET has only one predominant 

channel, while its symmetrical counterpart has two channels adjoining the front and back 

gates. Since the silicon body is only 10 nm thick, it is fully depleted. Ideal subthreshold 

swing (60 mV/dec at room temperature) is achieved for both devices as shown in Fig. 

2.11a. On the semilog scale, with the integrated electron densities calibrated to be the 

same at GSV  = 0.0 V, subthreshold characteristics of the two devices are 

indistinguishable. From Fig. 2.11b, where the integrated carrier densities are plotted on 

the linear scale, it can be seen that SN  in the asymmetrical device is comparable to that 

in the symmetric device at low and moderate GSV , but slightly lower at high GSV .  These 

features are directly related to gate-gate electric coupling in ultra-thin body SOI’s as 

discussed later. 

 

 

 

 

 

 

 

 

      (a)              (b) 

Fig. 2.11. Schred-2.0 predicted integrated electron density on semilog (a) and linear 
scales (b). The blue lines with squares represent results of the symmetrical device, the red 

lines with circles represent results of the asymmetrical device. 
 

 In Figs. 2.12a and b, electron density distributions within silicon bodies are plotted 

for two gate biases, 0.5 V and 1.0 V. Quantum solutions with infinitely high oxide barrier 

boundary conditions give rise to zero carrier density at the silicon/oxide interfaces. While 
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body inversion occurs at GSV  = 0.5 V in the symmetric device, only the front gate gets 

inverted in the asymmetric transistor at the same gate bias. Symmetry of the gate 

configuration results in two inversion peaks in the symmetric device as opposed to a 

single peak in its asymmetrical counterpart at GSV  = 1.0 V, when body inversion occurs 

in both devices. Note that the peak carrier density value in the asymmetric device is about 

twice that in the symmetric device. This extra amount of charge compensates the charge 

loss due to a single channel, resulting in about the same level of inversion electron 

density at high gate biases as compared to the symmetric device. 

 

  

 

 

 

 

 

 

(a) (b) 

Fig. 2.12. (a) Schred-2.0 predicted n(z) versus VG across the Si film at the virtual source 
of the asymmetrical DG  nMOSFET. (b) Schred-2.0 predicted n(z) versus VGS across the 

Si film at the virtual source of the symmetrical DG  nMOSFET. 
 

 A comparison of linear scale DSI - GSV  curves is presented in Fig. 2.13a. The 

difference between the two curves is almost undetectable. At moderate GSV , the 

asymmetric MOSFET yields a slightly higher current as compared to the symmetric 

device, while at high GSV  this trend is reversed. Electron injection velocity versus gate 

bias is compared in Fig. 2.13b. Note that strong transverse electric fields exist in the 

asymmetrical device. The strong electric fields separate subband energy levels of the 2D 

electron gas, resulting in increased occupancy of the lower energy subbands. Electrons in 

these subbands respond with a heavy effective mass in the gate confinement direction, 

but with a light effective mass in the transport direction, resulting in higher electron 

  V GS  = 1.0 V   
  
V GS  = 0.5 V   
  

 
VGS = 1.0 V 
 
VGS = 0.5 V 
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injection velocities, as illustrated in Fig. 2.13b. (It should be pointed out that strong 

transverse electric fields reduce mobility in real devices, but the reduction in mobility 

may not be important in the quasi-ballistic transport regime ( <~L  50 nm).  

 

  

 

 

 

 

 

 

(a) (b) 

Fig. 2.13. (a) Schred-2.0 predicted ballistic current in the asymmetrical and symmetrical 
DG nMOSFET, VDS = 1.0 V. (b) Schred-2.0 predicted average electron injection velocity 

in the asymmetrical and symmetrical DG nMOSFET. The blue lines with squares 
represent results of the symmetrical device, the red lines with circles represent results of 

the asymmetrical device. 
 

 The electron velocities start at the corresponding non-degenerate values at low GSV  

where the difference between the two curves indicates a larger average transport direction 

effective mass in the symmetric device (refer to */2 mTkB π ). As the gate bias 

increases, subband energies are shifted to lower values, but the velocities increase as a 

result of Fermi statistical degeneracy. The velocity profile for the asymmetric device 

tends to saturate at large GSV  as a result of increased occupancy of the primed subbands. 

The most interesting result is the fact, that the two device currents are comparable 

although their internal quantities ( SN , and injυ ) look different. To understand the fact, 

however, one needs to refer to both Figs. 2.11b and 2.13b, since electron densities and 

injection velocities constitute the device drive current through the expression 

injSDS qNI υ−= . Note that the extraordinary high electron density ( SN ) presented in the 

single channel of the asymmetrical device plays a major role in obtaining the exceptional 

high on-current and merits further discussion. 
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Discussion: 

 Gate-to-gate electric coupling through ultra-thin bodies in SOI devices affects charge 

distributions in the bodies and can translate into improved 2D mobile charge densities. In 

a thick body partially depleted SOI MOSFET, a neutral silicon block separates the front 

gate and back gate regions. Therefore the two gates modulate surface charges 

independently. This situation is more like two back-to-back bulk MOSFETs. Most DG 

gate SOI MOSFETs are not symmetrically gated (for instance, top gate insulator layers 

are typically thinner than the bottom gate insulator layers), in which case, one gate may 

form an inversion layer while the other is still in depletion regime. Thus two threshold 

voltages are needed to electrically characterize such devices.  

  

 In a fully depleted ultra-thin body SOI MOSFET, gates are strongly coupled to each 

other. Note that in subthreshold operating regimes, there is no screening charge that can 

protect the body potential from the influence of the gate potentials. So the body potential 

keeps up almost exactly the pace of the gate potential. It is very similar to what occurs in 

the base region in a bipolar transistor. This implies 0// ≅= GSOXbGSOXf dVdEdVdE  

( OXfE  and OXbE  are electric fields within the front and back gate oxides) and close-to-

ideal 60=S  mV/dec. As the gate voltage increases, a ultra-thin body asymmetrically 

gated SOI device forms only one predominant channel. The channel charges, however, 

image on both two gates. These channel charges will cause a potential pinning point 

within the body. In an asymmetrical MOSFET, this point is closer to one gate/silicon 

interface than the other. The pinning voltage defines the turn-on operating regimes of the 

device. Figure 2.14a shows the conduction band edge profiles in the ultra-thin body 

asymmetrically gated SOI as the gate bias is stepped up. The coarsely spaced curves 

indicate the subthreshold regime, while the closely spaced curves indicate the inversion 

regime. Note that the potential pinning voltage only depends on the total amount of 

charge in the body, regardless of gate symmetry (because the channel charge images on 

both gates). Provided the same amount of mobile charge is obtained at GSV  = 0.0 V and 
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the same subthreshold swing (~ 60 mV/dec), an asymmetric DG device will invert at the 

same voltage as its symmetric counterpart (see Fig. 2.11b).  

  

 Once the device is turned on, the amount of charge within the body is characterized 

by the effective gate capacitance ( EffC ). EffC  is the addition of the front capacitance and 

back capacitances. In an asymmetrical DG MOSFET, the charge centroid is always 

further away from one of the two gates, giving rise to a decreased EffC . This is observed 

in Fig. 2.12 when comparing an asymmetric DG MOSFET to its symmetric counterpart 

(charges are distributed close to both gates). But the difference is minor in these ultra-thin 

body devices where charge distribution is limited within the very narrow silicon body 

regions by insulator layers. Continuously increasing the gate bias beyond the threshold 

voltage results in a spreading of the mobile charge from the front gate towards the back 

gate in an asymmetric DG MOSFET. This is shown in Fig. 2.14b, charge density changes 

very slowly near the front gate but considerably next to the back gate when THGS VV > . 

The charge spreading effect enhances the back gate capacitance, eventually will eliminate 

the difference in EffC  between the asymmetrical and symmetrical devices. The 

comparable EffC  and THV  between the asymmetric and symmetric structures, due to 

strong gate-to-gate coupling, underlines their similar electrostatic properties.    

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 2.14. (a) Conduction band edge profiles as linearly increasing gate bias in the 
asymmetrical DG nMOSFET. (b) The log-scaled electron density profiles as linearly 

increasing gate bias in the asymmetrical DG nMOSFET. 
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Conclusion: 

 We conclude that ultra-thin body, asymmetric DG CMOS with n+ and p+ polysilicon 

gates based on conventional technology can provide desired threshold voltages, and more 

importantly, yield the same or improved performance ( ONI  and mg ) at low DDV  as 

compared to symmetric DG CMOS when OffI  is controlled. The extraordinary ONI  in the 

asymmetric DG MOSFET, is due mainly to two reasons: 

1) gate-gate charge coupling resulting in low THV  and high EffC , 

2) strong asymmetric electric fields resulting in subband splitting and high injυ . 

 

2.4  Summary  
 In this chapter, we first described a 1D Schrödinger-Poisson solver – Schred-2.0. The 

1D tool was then used to simulate SOI structures. Important device design parameters 

such as EffC , THV  and injυ  were examined. Useful insights illustrating the operation of 

thin body SOIs were presented. We concluded that ultra-thin body SOI devices can 

deliver exceptionally high performance compared to thick body SOI and bulk MOSFETs. 

Electron penetration into the insulator regions was also examined. Electrostatic changes 

due to the penetration charge noticeably affects performance of devices in nanometer 

dimensions. Finally, an asymmetric DG MOSFET with n+ and p+ polysilicon gates was 

simulated and compared to its symmetric counterpart. The thin body asymmetric DG 

device was shown to be able to provide extraordinarily high drive current and desired low 

threshold voltage. 
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3. SIMULATION OF QUANTUM EFFECTS IN DG MOSFETS 
WITH 2D ELECTROSTATICS 

 
3.1 Introduction 

As CMOS technology progresses, device dimensions have been scaled into the 

nanometer regime [4, 18, 25]. Therefore in the future, transistors may operate near their 

ballistic limit rendering it important to understand ballistic device physics. In most cases, 

a two dimensional simulator is required to accomplish performance analyses of 

MOSFETs because of expected 2D short channel effects. The focus of the foregoing 

chapter was on a critical region near the source where 1D MOS electrostatics was 

assumed to apply. This treatment is justified when the drain bias is fairly low. In the high 

drain bias range, important 2D electrostatic effects like DIBL or non-equilibrium 

transport can not be described directly in the 1D model. In this chapter, we solve the 2D 

Poisson equation coupled to 1D ballistic transport equations. The 1D ballistic transport is 

modeled at two different levels: classical level (The Boltzmann transport equation) and 

quantum level (The Schrödinger equation). The Schrödinger equation is solved using the 

well-known non-equilibrium Green’s function technique [8-9, 40, 72]. The self-consistent 

solutions enable us directly assess 2D effects and non-equilibrium ballistic transport in 

MOSFETs. 2D simulations are generally very computationally expensive. In this work 

we choose ultra-scaled SOI MOSFETs as our model devices and make use of the mode-

space representation in expanding the Hamiltonian. The use of extremely thin bodies (TSi 

< 5 nm) significantly reduces the simulation domain, and use of a mode-space 

representation greatly reduces the size of the Hamiltonian.  Consequently, the 

computational expense becomes acceptable even on a PC level. The simulation loop 

consists of two blocks: the Poisson equation which is solved for the potential profile and 

the transport equation which is solved for charge and current distribution in the device. 

The finite difference discretization scheme is used in all of the numerical implementation. 
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 Our major objective in this chapter is to describe the numerical techniques used in 

developing a 2D simulator for nanoscale double-gate MOSFETs. As an application, 

ballistic transport is examined at a quantum level. Extensive device design simulation 

studies using the approach developed here can be found in Chapters 5, 6 and [62, 73-74]. 

The chapter is organized as follows: 1) Section 3.2 describes the 2D Poisson equation 

solver, 2) Section 3.3 solves the Schrödinger equation in mode-space using the Green’s 

function approach (quantum ballistic transport model), 3) Section 3.4 presents some key 

simulation results, 4) Section 3.5 examines the potential boundary conditions at the 

source/drain contacts in ballistic MOSFETs, and 5) Section 3.6 assesses the 

approximations made in the mode-space representation.  

 

3.2 Solving the Poisson Equation 

In Fig. 3.1, we show the model device structure used in our study. The simulation 

domain and grid mesh are also illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. A ultra-thin body double-gate MOSFET structure. The 2D simulation domain is 
the rectangle enclosed by the solid red line. Uniformly spaced grids are used in both x 

and z directions, spatial constants are a and b respectively. 
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 The numeric solution to the Poisson equation is obtained by making use of Gauss’s 

law.  

  

Ω

Ω−+−=⋅ dNNnpqSdzxE AD ][]),([ε ,    (3.1) 

 

where E  is the electric field, p is the hole concentration (which can be neglected in fully 

depleted ultra-thin body nMOSFETs under consideration in this study), n  is the electron 

concentration, DN  and AN  are donor and acceptor concentrations, q  is the elementary 

charge, ε  is the position dependent dielectric constant. The solution domain consists of 

ZX NN ×  lattice nodes, where XN  and ZN  the number of nodes in the x and z 

directions. A 2D numerical solution to the Poisson equation is composed of ZX NN ×  

potential values at each lattice node. To attain the ZX NN ×  unknowns, the same number 

of equations is needed. The equations are obtained either by applying eqn. 3.1 at internal 

nodes (for all internal nodes), or utilizing the boundary conditions (for all boundary 

nodes). Let’s first look at the equations at internal nodes. We choose node [m,n] (row m 

and column n) to illustrate the procedure. Using a central difference approximation for 

the spatial derivatives, we express E  in terms of V (vacuum potential). The linearized 

finite difference form of eqn. 3.1 is 
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where a and b are mesh spacings in the x and z directions (see Fig. 3.1).  The spacing, b, 

is typically chosen smaller than the spacing, a, to obtain a finer grid in the ultra-thin body 

or oxide layers for accurate simulations. If node [m,n] is within the oxide regions or the 

silicon region, oxεε = , or Siεε = . In the case that the node is positioned at the Si/Oxide 

interfaces, discontinuity of ε  should be accounted for.  In such cases eqn. 3.2a becomes 
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       (3.2b) 

 

where Topε  and Botε  are dielectric constants for the materials above the interface and 

below the interface.  

 

 Next, we look at the equations for all boundary nodes. At the gate contacts, Dirichlet 

boundary conditions are specified, meaning GVV = . The gate vacuum potential GV  is 

determined from the gate bias voltage and workfunction of the contact materials. The 

numerical equation to be satisfied can be easily written as, 

 

    Gnm VV =, .      (3.2c) 

 

At the source/drain contacts, Neumann boundary conditions are imposed, meaning 

0=∇⋅ Vn . These boundary conditions permit contact potentials to float to whatever 

values are necessary for ensuring charge neutrality at the contact regions. The more 

common fixed boundary conditions become improper in ballistic transport simulations 

where non-equilibrium statistics prevail at the source/drain contacts (see Section 3.5 for 

details). For other boundaries without electrode contacts, the same zero electric field 

conditions are assumed. These boundary conditions are accomplished numerically by 

setting 

 

 0,1, =− ± nmnm VV  for the left and right edges, 

 01,, =− ±nmnm VV  for the top and bottom edges, 

 02 1,,1, =+− ±+ nmnmnm VVV  for the two corner nodes along the top edge, and 
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 02 1,,1, =+− ±− nmnmnm VVV  for the two corner nodes along the bottom edge. 

           (3.2d) 

 

Up to this point, we have obtained the ZX NN ×  equations needed for solving mnV . 

Given DN , AN  and n (electron density), eqn. 3.2 represents a set of linear equations that 

can be solved directly for the vacuum potential. However, when solving a coupled set of 

equations (the Poisson equation and transport equation), there is a better solution 

algorithm for solving the Poisson equation [75-77]. This algorithm can provide more 

efficient convergence in the iteration loop of the Poisson and transport equations. This 

algorithm involves performing a variable change to n , namely expressing n in terms of 

the potential and a quasi-Fermi energy, nF . The quasi-Fermi potential energy is computed 

based on the old potential, 

 

)()()( ,1
2/1,,

C

nm
Bnmoldnmn N

n
TkVqF −ℑ⋅+−= ,    (3.3a) 

 

where 1
2/1

−ℑ  stands for the inverse Fermi-Dirac integral of order 1/2 and CN  the effective 

density of states in the conduction band (a normalization factor). (For the analytical 

approximation for 1
2/1

−ℑ , see [85].) The electron density term in eqn. 3.2 now becomes 

 

]
)(

[ ,,
2/1, Tk

qVF
Nn

B

nmnmn
Cnm

+
ℑ= ,     (3.3b) 

 

With this variable change, eqn. 3.2 now represents a set of nonlinear equations for the 

potential. The reason for introducing the variable change can be understood as follows: 

the non-linearity in eqn. 3.2 in fact provides a mechanism damping the updates to V  in 

successive solution iterations of the coupled equation system. Referring to eqns. 3.2a-b 

and 3.3b, the increase in nmV ,  on the right side of eqns. 3.2a-b implies an increase in nmn ,  
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(through eqn. 3.3b), which, however, will reduce nmV ,  on the other side of eqns. 3.2a-b. 

This damping effect helps avoid large changes between oldV  and newV , therefore making 

the coupled equations converge stably, and efficiently in terms of computational time. 

The technique has been used to couple a variety of transport models to the Poisson 

equation, from drift-diffusion [86], to quantum ballistic [76], to Monte Carlo particle 

models [77]. 

 

 Since the Poisson equation is now a nonlinear equation, it is solved by an inner 

Newton-Raphson loop [78-79]. We denote eqns. 3.2a-d by 0)( =VFα , where the index 

denoted byα  run from 1 to ZX NN × . The Jacobian matrix is obtained as  

  

β

α
βα V

VFVF
∂

∂
≡

)()(, .      (3.4a) 

 

Given an initial guess or old solution oldV , the projected solution is VVV oldnew Δ+= . 

Using a Taylor expansion of the first order, we have 

 

0][)()()( , =Δ⋅+≈ ββααα VVFVFVF oldoldnew .   (3.4b) 

 

It is very clear that the updates can be obtained as 

 

  )(\)(][ , oldold VFVFV αβαβ −=Δ ,     (3.4c) 

 

where the right side of eqn. 3.4c indicates the matrix division of )(, oldVF βα  into 

)( oldVFα , which is the same as multiplying the inverse matrix of the Jacobian, 1
, ][ −
βαF , 

to )( oldVFα  except that it is computed in a different but more efficient way (Gaussian 

elimination [79]). The process is repeated until the residual of )(VFα  is less than the 

specified convergence norm. The Newton-Raphson approach provides quadratic 
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convergence, so the number of iterations is small. But the size of the Jacobian is 
2)( ZX NN × , so the memory and time of conducting Gaussian eliminations may be 

excessive.  

 

To illustrate the solution process of the Poisson equation, in Fig. 3.2, we present the 

sparsity pattern of the Jacobian matrix. The pattern shows that the Jacobian is a very 

sparse matrix. The five diagonal lines indicate that each node is only coupled to its four 

neighbors in finite difference approximation. This can also be seen in eqns. 3.2a-d. The 

sparsity of the Jacobian gives rise to large savings in memory and computational time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2. The sparsity pattern of the Jacobian in solving the nonlinear Poisson equation. 

 

Figure 3.3a shows the convergence profile of the Newton-Raphson loop. The 

maximum residue )(VFα  is plotted versus iteration number. The first several points 
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indicate the stage when the trial potentials are further away from the solution. After that, 

quadratic convergence is seen. Within small number of iterations, the residue can drop 

below 10-6 V.   

 

Figure 3.3b shows the convergence profile of the outer iteration loop of the transport 

and Poisson equations. The ballistic Boltzmann transport equation model has been chosen 

in the simulation (to be described in next section), but the conclusion is general to any 

model that has been implemented. The maximum difference between the old potential 

and the new potential is used as the measure of convergence. Due to the use of the 

aforementioned variable change approach in solving the Poisson equation, the 

convergence is smooth and monotonic displaying a factor of two decrease in the 

maximum potential difference for each outer iteration. 

 

 

 

 

 

 

 

 

(a) (b) 
 
Fig. 3.3. (a) The maximum potential residue versus the number of Newton-Raphson loop 
in solving the Poisson equation. (b) The potential correction versus the number of outer 

iteration loop in solving the coupled Transport-Poisson equation sets. 
 

3.3 Quantum Ballistic Transport 
 The Green’s function is solved to obtain the electron density within the device and 

current at the terminals in the ballistic limit. Under ballistic conditions, the Green’s 

function method is mathematically equivalent to solving the Schrödinger equation with 

open boundary conditions. We use the Green’s function method because it can be 

extended to include interactions (i.e. scattering) as discussed in Chapter 4. To solve for 
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the Green’s function, a mode space representation is used in the gate confinement 

direction. This approach greatly reduces the size of the problem and provides good 

accuracy as compared to full 2D spatial discretization [80-81]. To see how the mode 

space representation works, we need to refer to Fig. 3.1. The procedure is explained as 

follows:  

 

I. We first solve the 1D effective mass Schrödinger equation along each z directed slice 

in the 2D discretization mesh (as we did in the 1D simulations presented in Chapter 2) 

 

 ),()(),(),(),(
2 2

2

*

2

zxxEzxzxqVzx
dz
d

m iiii
z

ψψψ =−− ,   (3.5) 

 

where *
zm  is the electron effective mass in the z direction. ),( zxiψ  and )(xEi  are the 

wavefunction and eigenenergy for subband i at slice x (the eigenvector and eigenvalue of 

the mode space representation in the gate confinement direction). The envelope 

wavefunctions of electrons are assumed to be zero at the oxide/Si interfaces if electron 

penetration into the oxide regions is not accounted for (otherwise, the zero boundary is 

extended to the contact/oxide interfaces). The width of the slice is chosen less than 3Å. 

Within each slice, all quantities are assumed to be constant in the x direction.  

 

II. The 3D Hamiltonian for the device is expanded in terms of ),()'( zxxx iψδ −  and 

Wyik j /)exp( . The function, Wyik j /)exp( , is the plane wavefunction along the 

device width (W denotes the device width). The quantum number, jk , corresponds to the 

eigenenergy *

22

2 y

j

m
k

, where *
ym  is the electron effective mass in the y direction. )'( xx −δ  

is the real space delta function with an eigenvalue 'x . It is easy to see that 

),()'( zxxx iψδ −  and Wyik j /)exp(  form a complete and orthogonal expansion 

functions set.  The Hamiltonian is obtained as 
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           (3.6b) 

 

is the Hamiltonian for subband i , with a planewave eigenenergy 
jkE . The subband 

index, i , runs over all subbands, but in real calculations, including the lowest few 

subbands provides desired accuracy. 
jkE  ranges between 0 and ∞+  accounting for all 

possible transverse plane waves. Numbers 1 to XN  in parenthesis replace the position of 

x  because of the discretiztion.  The coupling term within each subband is indicated by  

 

    2*

2

2 am
t

x

= ,      (3.7) 

 

where is *
xm  the electron effective mass in the x direction, and a is the finite difference 

lattice constant. Subband to subband coupling is ignored in this treatment, because it has 

been shown in full 2D simulations that the band-to-band coupling is negligible in SOI 

MOSFETs with uniform bodies along the channels [81]. From a computational point of 

view, the size of the problem is measured by the size of the Hamiltonian. In a real space 
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representation the size of Hamiltonian is defined by the total nodal number in the 2D 

mesh, namely 2)( ZX NN × ; while in the mode space representation every subband can be 

treated individually, and the size of Hamiltonian is measured by the nodal number along 

the channel direction, namely 2)( XN . Therefore, it is very clear the latter approach can 

provide enormous savings in computational burden. 

 

III. For the subband i , with a planewave eigenenergy 
jkE , we write the retarded Green’s 

function relevant to the 1D transport as [72] 

 

 11 ])]([[]]),([[)( −− −−=−−= xEHIEExEHEIEG ilki j
,   (3.8) 

 

where, we define the longitudinal (x) energy 
jkl EEE −≡ . The third term in the bracket 

is called the self-energy matrix, which is given as 

 

   =

D

S

0...00
00......0
0.........0
0...000
0000

.     (3.9a) 

 

The two corner entries in )(E  represent the effects on the finite device Hamiltonian due 

to the interactions of the device with the contacts [10]. The self-energy concept allows us 

to eliminate the huge reservoir and work solely within the device subspace whose 

dimensions are much smaller. )(E  can be expressed in terms of known quantities [72]. 

At the source contact,  

 
aik

S
lteE −=)( , where )cos1(2)1( aktEEE lik j

−++= ,   (3.9b) 
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)1(iE  is the subband energy at the contact boundary.  )(ED  can be obtained in a similar 

fashion. It is very important to note that the self-energies are functions of longitudinal 

energy 
jkl EEE −≡  as shown in eqn. 3.9b. This allows us to focus on the longitudinal 

energy in all our calculations. Under ballistic conditions, the transverse mode 

contributions (planewaves in the y direction) can be treated independently of the 

longitudinal contribution. The treatment of transverse modes will be explained later in 

this section. 

 

 Once the Green’s function is obtained, internal electron density and terminal current 

of the device under study can be computed [40, 82].  We define a new quantity in terms 

of self-energies 

 

   )( +−≡Γ i .      (3.9c) 

 

Physically this function determines the electron exchange rates between the source/drain 

reservoirs and the active device region [10]. But in general it can be viewed as the 

measure of interaction strength due to any perturbation source. Although the device itself 

may be in a non-equilibrium state, electrons are injected from the equilibrium 

source/drain reservoirs. The spectral density functions due to the source/drain contacts 

can be obtained as 

   

  +Γ= GGA SS  and  +Γ= GGA DD ,     (3.10) 

 

where )( +−≡Γ SSS i , and )( +−≡Γ DDD i (For clarity, here we use SΓ  or DΓ  to 

denote matrices the same size as G, with nonzero diagonal entries )( +− SSi  or 

)( +− DDi ). Note that the spectral functions are XN  by XN matrices and the diagonal 

entries represent the local density-of-states at each node. The source related spectral 

function is filled up according to the Fermi energy in the source contact, while the drain 
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related spectral function is filled up according to the Fermi energy in the drain contact. 

The 2D electron density matrix is obtained as 
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where f  is the Fermi-Dirac function, and 
jk

y

E
m

2
2 *

π
 represents the transverse mode 

state density (including the spin degeneracy). Since the spectral functions depend on the 

longitudinal energy only, they can be moved out of the integration sign. Therefore eqn. 

3.11a reduces to, 
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,   (3.11b)  

 

where the Fermi-Dirac integral of 2/1−ℑ  accounts for all transverse mode contributions 

(see [59-60] for analytical approximation for 2/1−ℑ , and also note that all quantities 

appearing as arguments of Fermi-Dirac integrals are normalized to TkB ). To obtain the 

total 2D electron density, we need to integrate eqn. 3.11b over lE . We also need to sum 

contributions from every conduction band valley and subband. Finally, we can get a 3D 

electron density by multiplying the corresponding distribution function 2|),(| zxiψ  to the 

2D density matrix at each longitudinal lattice node. The 3D electron density is fed back to 

the Poisson equation solver for the self-consistent solution. 

 

 Once self-consistency is achieved, the terminal current can be expressed as a function 

of the transmission coefficient [10]. The transmission coefficient from the source contact 

to the drain contact is defined in terms of the Green’s function as 
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    ][ +ΓΓ= GGTraceT DSSD .    (3.12) 

 

It is straightforward to write the transmitted current as 
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           (3.13a) 

 

where the 2 in the numerator is for spin degeneracy. Note that SDT  is independent of 

transverse energy 
jkE (refer to eqns. 3.8, 3.9 and 3.10) and can therefore be moved out of 

the integration sign. Equation. 3.13a then reduces to, 

 

)()]()([
2

)( 2/12/13

*

2 lSDlDlS
By

l ETEE
TkmqEI −ℑ−−ℑ= −− µµ

π
,  (3.13b) 

 

The total current is obtained by integrating over lE  and summing over all valleys and 

subbands.  

 

 For comparison purposes, we also implement a semi-classical approach in solving the 

ballistic transport in ultra-scaled MOSFETs. This approach is a solution to the Boltzmann 

transport equation (BTE) solved along the channel direction. But the physics in the 

direction normal to the channel are treated quantum mechanically in the same way as 

described earlier in this chapter. The BTE solutions can capture the thermionic emission 

current, but can never capture any quantum related effects, such as electron tunneling 

through the source-channel barrier and quantum interference within ballistic devices. The 

scheme to solve the BTE in the ballistic limit is presented in the Appendix B. The 

comparison of the quantum versus classical approaches is presented in this section based 

on simulation results. 
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3.4  Simulation Results 
 The schematic diagram of the simulated device is the same as shown in Fig. 3.1. The 

n-type source and drain regions are doped at 2010  cm-3. The channel is intrinsic, and the 

channel junction is abrupt. No gate-to-S/D overlap is assumed. The oxide thickness is 1.0 

nm for both top and bottom gates and the silicon film thickness is 2.0 nm. Gate 

workfunction is 4.4 eV. 

 

 Figures 3.4a and 3.4b show the electron density and potential energy profiles in the x-

z cross-section of the model MOSFET as simulated with the Green’s function ballistic 

model (VGS = VDS = 0.6 V). It is observed that, the electron density reduces to zero at the 

oxide/silicon interfaces due to well-known quantum effects. It is also observed that, there 

is a barrier region near the source end of the channel. This barrier determines the amount 

of electrons entering the channel. Its height is modulated by the gate bias.  

 

 

 

 

 

 

 

 

 

(a)   (b) 

Fig. 3.4. Conduction band edge profile (a) and electron distribution (b) within the x-z 
cross-section of the model MOSFET at VGS = VDS = 0.6 V. 

 

 Figure 3.5a shows the simulated IDS versus VGS characteristics of the model MOSFET 

at room (300 K) and low temperatures (77 K). Both the BTE and Green’s function 

simulation results are presented for comparison. The quantum tunneling current is 

additional to the thermal emission current, leads to higher off-current for room 

temperature operations. As the temperature goes down, the thermal emission current is 

EC [eV] 

Z [nm] 
X [nm] 

Ne [cm-3] 

Z [nm] X [nm] 
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T = 77 K 

T = 300 K 

remarkably suppressed by the large channel barrier, the quantum tunneling becomes the 

only contributor. The tunneling component eventually limits the device scaling. In Fig. 

3.5b, the quantum and classical carrier density profiles are also compared. The observed 

tunneling effects are more evident with regard to the carrier distributions. 

  

 

 

 

 

 

 

 

(a)                               (b) 

Fig.3.5. (a) Simulated IDS versus VGS characteristics of the model MOSFET at two 
different temperatures, 300 K and 77 K. VDS  = 0.6 V. (b) 2D electron density 

distributions along the channel at VGS = VDS  = 0.6 V. The solid lines are results from the 
Green’s function model, the dashed lines are results from the BTE. 

 

  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.6. Electron density oscillation due to the quantum interference effect. Solid lines 

are results from the Green’s function model. Dashed line is the result from the BTE 
model at 300 K. VGS = VDS  = 0.0 V. 

T = 300 K 

T = 77 K T = 77 K 

T = 300 K 
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 Quantum interference distinguishes the Green’s function and BTE models. Due to the 

interference between the incident and reflected electron waves, carrier density 

oscillations can be seen near the channel barrier edges. This effect is illustrated in Fig. 

3.6. At high temperatures, the interference effect is somewhat washed out by the 

statistics; at low temperatures, the oscillation patterns become sharper, indicating strong 

interference. The BTE simulations do not show any such effect. 

 

3.5  The Floating Boundary Condition 

In the ballistic simulations, we impose a floating boundary condition in solving the 

Poisson equation. This boundary condition is realized by assuming 

 

    0=∇⋅ Vn .      (3.14) 

 

at the source /drain ends of the simulation domain. This boundary condition is different 

from that being commonly employed in scattering dominated simulations, where a fixed 

potential boundary is imposed based on equilibrium statistics to obtain charge neutrality. 

It is of interest to look at how this boundary condition works. 

 

 Carriers are injected either from the source or drain, and reflected by the channel 

barrier.  In a real contact, scattering maintains a near-equilibrium distribution. However, 

in the absence of scattering (ballistic case), at high VDS, the drain-injected carriers are 

suppressed, leaving the source end partially exhausted. Therefore it is clear that non-

equilibrium distribution of electrons emerges as the transport becomes ballistic. For this 

reason, when solving the Poisson equation, it is inconvenient to fix the potential at the 

boundaries. A better approach is to impose a zero-field boundary condition at the ends 

and let the potential float to whatever value it chooses, in order to obtain macroscopic 

charge neutrality.  

  

 Simulated potential profiles and corresponding charge distributions are presented in 

Figs. 3.7a and 3.7b to illustrate the boundary treatment. As a comparison, results 
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simulated with the fixed-potential boundary are also shown. In the latter case, heavily 

doped regions (ND  = 20100.2 × cm-3) are intentionally appended to the source and drain of 

the MOSFET in order to create built-in barriers near the boundaries. These barriers cause 

strong reflections at the contact regions, giving rise to a near-equilibrium distribution (we 

note that the heavily doped regions are critical to ensure that the simulations to 

converge). Except for the boundary regions, the two simulations give identical results. 

Near the boundaries, the second simulation (with the fixed-potential boundary being 

imposed) displays a distorted charge and potential profile due to the specially altered 

source/drain doping. The results indicate that the floating boundary condition becomes 

more appropriate than the other in performing ballistic simulations. 

 

 

 

 

 

 

 

             

(a)                               (b) 

Fig. 3.7. (a) Conduction band edge profiles along the channel middle line. (b) 2D electron 
density profile along the channel. VGS = VDS  = 0.6 V. The solids are results assuming the 
floating boundary condition in solving the Poisson equation, the dashed lines are results 

assuming the fixed potential boundary condition. 
 

 Note that the boundary under discussion is the simulation boundary within which we 

assume nonequilibrium ballistic transport, and not the actual contact boundary of the 

device. Therefore one may find that the potential drop from source-to-drain may not be 

qVDS. This effect becomes evident when the floating boundary condition is used (shown 

in Fig. 3.7a). The extra potential drop at the two contacts is the well-known quantum 

contact potential [83-84]. This contact potential drop decreases as the channel barrier 
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increases, when source and drain regions are closer to equilibrium due to the barrier 

reflections.  

 

 When the barrier in between disappears, the potential will drop entirely at the 

contacts. This is shown in Fig. 3.8a, where a uniformly doped 2D silicon sheet 

(mimicking the inversion layer of a MOSFET, ND  = 13100.1 × cm-3) is simulated under 

ballistic conditions. In the absence of a built-in barrier, the simulation shows no potential 

drop throughout the device. The electron density is constant everywhere, with positive-

going electrons in equilibrium with the source Fermi level, and the negative-going 

electrons in equilibrium with the drain Fermi level. The conduction band edge is 

positioned at some value so that the charge neutrality is achieved within the device. As 

the drain bias increase, the drain injected electrons are gradually suppressed. Current 

saturation occurs (shown in Fig. 3.8b) when the source-injected electron density is equal 

to the dopant concentration. 

 

3.4 Discussion 

 
 

 
 
 
 

(a) (b) 

Fig. 3.8. (a) Conduction band edge profiles at different drain biases. The short solid lines 
indicate the source and drain Fermi potentials at VDS = 0.6 V. The profiles are flat, and 

stop to change when drain injected electrons are fully suppressed. (b) Simulated IDS 
versus VDS characteristics of the uniformly doped 2D silicon sheet. 

 

 It has been pointed out that in order to reduce parasitic resistances, a fanned-out 

contact structure must be used [25]. It has also been argued that a ballistic simulation 

domain must be terminated by such a scattering dominated contact [61]. The concern, 

Increase VDS with  
a step of 0.1 V. 
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then, is that in a scattering dominated contacts, carriers could be backscattering into the 

source, thereby reducing the on-current. However, MOSFETs are typically wide. 

Therefore electrons entering the drain are likely to scatter into transverse modes and 

unlikely to have the longitudinal momentum needed to return to the source. Additionally, 

the fanned-out contacts used in real devices would further reduce the probability of 

backscattering into the source. Our ballistic contacts are therefore treated as perfectly 

absorbing, accepting the non-equilibrium distribution of electrons emerging from the 

device, and reinjecting a fully thermalized distribution back into the device. The role of 

backscattering and its relation to contact structure are however topics worthy of 

additional investigation. 

 

3.6  Discussion on Mode-space Representation 
 The mode-space approach is employed in solving the Schrödinger equation. It is 

shown that this approach greatly reduces the size of the problem as compared to a full 2D 

spatial discretization. It is also important to look at the conditions under which this 

approach provides good simulation accuracy. In this section, we analytically expand the 

Schrödinger equation using a mode space representation, and assess the approximation 

being made in simplifying the Hamiltonian. 

 

 We start with the 2D Schrödinger equation in the x-z domain (the y dimension is 

decoupled from the x-z domain, and can therefore be treated separately) 
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Left multiplying the mode space eigenvectors (refer to eqn. 3.5) to eqn. 3.15 and doing 

integrations in real space gives rise to 
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           (3.16) 
 
where the * denotes conjugate transforms. Since )],()'([ zxxx iψδ −  is a real function, so 

its conjugate is equal to itself. By the definition of the delta function, the third term in 

eqn. 3.16 becomes  

 

)'(~),'(),'(* xEdzzxzxE ii ϕϕψ =⋅ .     (3.17a) 

 

Note that )'(~ xiϕ  is the expansion coefficient of ),'( zxϕ with regard to the mode space 

eigenvector ),'( zxiψ  as defined by  
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where ijδ  is the usual Kronecker delta. Again making uses of the properties of the delta 

function and eqns. 3.5, 3.17b, we can rewrite the second term in eqn. 3.16 as 
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Finally let’s look at the first term in eqn. 3.16. It can be expressed as 
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Note that the second term in eqn. 3.17d reduces to )'(~
'2 2

2
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ϕ−  after integration. If 

we assume 
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Equation (3.16) becomes  
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Equation 3.19 is the mode space transformation of eqn. 3.15 under assumption of eqn. 

3.18. Equation 3.19 is indeed a 1D partial differential equation, so the original 2D 

problem is greatly reduced. Using the finite difference scheme we can easily obtain eqn. 

3.6a.  

 

 The assumption is valid when the vertical (in the gate confinement direction) 

potential profile variations along the channel direction are negligible. For instance, if 

),( zxV  takes the same shape but different values at different x , the eigenfunctions 
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),( zxiψ  are the same along the channel, although the eigenvalues )(xEi are different. As 

a result, eqn. 3.18 holds exactly in this scenario. Note that eqn. 3.19 indicates subbands 

are independent, labeled by index i , so the big Hamiltonian can be divided into 

uncoupled sub-blocks, in which only the three diagonals are nonzero.   

 

For SOI MOSFETs with uniform thin bodies, there is little possibility for the 

potential to vary vertically. Therefore eqn. 3.18 is a fairly good approximation. This has 

been verified by the full 2D spatial discretization approach [81]. However, in the case of 

bulk transistors, channel depletion widths can vary considerably from the source to drain, 

resulting in significant changes in the vertical confinement potential profiles. So the 

mode space approach becomes inappropriate for bulk device simulations. SOI MOSFETs 

with nonuniform bodies along the channel can also invalidate the use of the mode space 

approach for the same reason. 

 

3.7 Summary 
The accomplishments of this chapter are twofold: 1) we described the numerical 

techniques used in simulating 2D double-gate MOSFETs, 2) we explored the important 

device physics of MOSFETs operating in the ballistic limit. The numerical 

implementation of the self-consistent solution loop consists of two components, namely, 

the Poisson equation solver, and the transport equation solver. We first presented the 

Newton-Ralphson approach of solving the Poisson equation. This nonlinear solution 

approach can provide desired convergence efficiency. We then introduced the Green’s 

function based solution scheme to the Schrödinger equation (The solution scheme to the 

BTE was also presented in Appendix B). We showed that by invoking a variable change 

to the Poisson equation, stable coupling between the transport equation and Poisson 

equation can be obtained, resulting in monotonic convergence down to small errors of 10-

4 V. Using highly simplified device structures, we simulated double-gate MOSFETs with 

the full quantum Green’s function model and semiclassical BTE model. The results 

indicated that, strong quantum tunneling through the channel barrier occurred in sub-10 

nm MOSFETs. This tunneling effect can eventually limit device scaling. Quantum 
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interference was also observed in our simulations. These interference effects became 

more evident as simulation temperatures were decreased.  
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4. TREATMENT OF SCATTERING IN NEGF MOSFET 
SIMULATIONS 

 
4.1  Introduction 
 In the previous chapter, we discussed electron transport in the ballistic limit. Real 

devices operate below this limit. Therefore this chapter is dedicated to describing 

scattering mechanisms in MOSFETs. Dissipative transport can be due to many reasons. 

Microscopically, electrons are confined within a very thin channel in a MOSFET. The 

channel is either sandwiched by gate insulators (in thin body SOI structures), or by gate 

insulators and silicon substrates (in bulk structures). In principle, the insulator surfaces 

can never be perfectly smooth, and semiconductor lattices are never defect free. Also, 

both channel carrier densities and impurity concentrations are typically very large and 

devices typically work at relatively high temperatures (much greater than 300 K). All 

these factors contribute to carrier scattering. The important scattering mechanisms 

affecting carrier transport in transistors are: 

 

1) surface roughness scattering, 

2) electron-electron scattering, 

3) impurity-electron scattering, 

4) phonon-electron scattering. 

 

Mobility ( µ ) is a measure of scattering in conventional device simulation tools with 

low mobilities indicating a high level of scattering. In quantum mechanical simulators, 

scattering is characterized by the electron state lifetime (τ ) as a scattering event implies 

the end of an existing electron state and the start of a new one. In general, mobility can be 

related to electron lifetime through an expression 
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><

><
= *m

q τ
µ ,           

 (4.1) 

 

where, q  is the elementary charge and *m   the effective mass in the transport direction of 

the scattered electron, and <> stands for ensemble average. The averages are needed 

because the lifetime may be energy dependent, and multiple subbands with different 

effective masses may be occupied. 

 

 Irrespective of the techniques used to simulate scattering, the essential physics of 

scattering have to be captured. Lundstrom’s 1997 paper illustrates the essential physics of 

scattering. The key points in his paper can be summarized by considering the on-state of 

a MOSFET with electrons thermally injected from the source, undergoing scattering in 

the channel and being collected by the drain. Scattering can occur anywhere inside the 

device, but only those scattering events occurring in the low field region near the source 

significantly affect the on-state current [29, 55]. Scattering in this low field region is 

important for two reasons: 1) electrons leaving the big reservoir retain high longitudinal 

energies (transport relevant energies); 2) backscattered electrons need only a small 

amount of longitudinal energy to overcome the potential drops and reach the source. 

Electrons in the high field region near the drain can be very energetic, but electrons 

scattering near the drain end are forced by the high electric fields to leave the channel, 

having little chance making it back to the source. Therefore scattering in this region does 

not degrade the on-state current directly.  

 

 This chapter is focused on scattering phenomena in ultra-scaled double-gate 

MOSFETs. Three different scattering models have been implemented, examined, and 

compared. The study of different scattering models focuses on the essential physics of 

scattering occurring in nanoscale MOSFETs (see Lundstrom [55]). The two Büttiker 

probe based models simulate scattering due to all possible mechanisms (e.g. surface 

roughness, phonon, and impurity etc.) as a perturbation represented by the probe’s self-
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energy [40-41, 72]. These perturbations can be related to conventional low field mobility 

(µ ). The third approach focuses on phonon-electron scattering [82, 87-89]. Although the 

phonon-electron interaction model may not generally be used to simulate scattering in 

MOSFETs, it provides a more rigorous solution to help us better understand specific 

scattering process. The Green’s function formalism has been used in the implementation 

of all of the aforementioned scattering models. This formalism is very general and 

provides the framework necessary to treat the complicated transport processes in 

nanoscale devices.  

 

 The chapter is organized as follows: Section 4.2 presents the theoretical framework, 

Section 4.3 compares different approaches using simulation results (note that applications 

of the scattering models in device simulations are presented in Chapters 5, 6 and [26, 74, 

90]), the last section provides an extended discussion on the phonon-electron scattering 

model.  

 

4.2  Theory 
 In Chapter 3, we described the procedure to solve the 2D Schrödinger equation self-

consistently with the 2D Poisson equation in order to model ballistic transport in 

nanoscale transistors. The overall procedure is very much the same when we solve these 

equations in the dissipative transport regime. We briefly review the steps common to both 

ballistic and dissipative transport model solutions:  

 

1) A 2D solution to the Schrödinger equation is obtained by solving two 1D 

problems, one in the direction normal to the channel, which yields the vertical 

electron concentration and subband profiles, and the other, along the channel 

direction based on the subband profiles yielding the electron concentration in the 

transmission direction.  

2) The 2D electron density for each subband is distributed over the silicon body 

(normal to the channel) according to the corresponding subband wavefunctions.  
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3) The 2D Poisson equation is solved using this electron density to obtain a new 

potential profile. This potential profile is used to resolve the 2D Schrödinger 

equation and the calculation cycle is repeated till self-consistency is achieved. 

  

4.2.1 Büttiker probe based scattering models 
 We begin our discussion of dissipative transport by describing the two Büttiker probe 

based scattering models [41]. In the ballistic limit, there are only two reservoirs 

connected to a device, namely, the source and drain contacts. These contacts couple the 

nanoscale system to the infinite surroundings and are treated as a perturbation to the 

intrinsic Hamiltonian of the system. Contacts inject carriers into and extract carriers from 

the active device region while conserving the current through the device (net current at 

the source contact equals the net current at the drain contact). In the presence of 

scattering, Büttiker probes can be used to model scattering centers in the MOSFET.  

These Büttiker probes perturb the Hamiltonian of the system in a manner similar to the 

source and drain contacts and can also be viewed as reservoirs coupled to the system. 

Each probe (representing an isolated scatterer within the system) interacts with the 

system through a self-energy. The self-energy of a Büttiker probe is conceptually 

equivalent to that of the source/drain (see Chapter 3 for the source/drain self-energies). 

This self-energy of the Büttiker probes introduces incoherencies in the system thus 

modeling the effect of scattering. To correctly model real scattering phenomena, it is 

necessary to ensure that Büttiker probes perturb just the carrier energy/momentum and 

not the total number of carriers in the system. This implies that one can view a Büttiker 

probe as extracting carriers from the device system, perturbing the energy/momentum of 

those carriers and reinjecting an equal number back into the system with a different 

energy/momentum distribution. The interaction between a probe and the system results in 

a broadening of the local density of states and is characterized by a parameter η  (which 

can be related to a self-energy). This parameter can be related to the dephasing time of a 

quantum state through the following relation [72], 
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η
τ

2
=             (4.2) 

 

The dephasing time (τ ) can be interpreted as the time during which a carrier’s (electron 

in our case) initial state is fully destroyed by a scattering event. Therefore, τ  can be 

mapped onto an equivalent macroscopic mobility through eqn. 4.1. 

 

 The Fermi energy characterizes how a reservoir exchanges carriers with the device 

system. Since Büttiker probes extract and inject carriers into the system, they have an 

associated Fermi energy that should be adjusted to achieve carrier conservation within the 

device. Carrier conservation at each scattering center (zero probe current) guarantees 

current continuity through the transistor. 

 

To implement the Büttiker probe based scattering models, we start with the 1D 

Hamiltonian in the transmission direction (longitudinal direction) for a particular 

subband, i. This Hamiltonian can be expressed as (refer to Chapter 3), 
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where 2*2 2/ amt li= , a is the lattice spacing, *
lim  the effective mass in the transport 

direction of electrons in the subband i, N the total number of lattice nodes in the 

transmission direction and iE  the potential energy for the subband under consideration. 

To account for the source/drain contacts and all of the Büttiker probes, a self-energy 

matrix is needed. This matrix is given by, 
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where, source  and drain  are the source and drain contact self energies (calculated as 

explained in Chapter 3) and )1(S , )(nS etc., are the self-energies of the Büttiker 

probes. )1(S  represents the self energy of the first probe, while )(nS  that of the nth 

probe. The self-energy for a Büttiker probe is related to the broadening parameter η , by 

the relation, ηiS −=  [72]. Büttiker probes represent isolated scattering events, 

therefore the self-energy matrix is diagonal and has nonzero entries only at those points 

along the device where a probe has been introduced.  The Green’s function for the device 

in the transmission direction is, 

 
1][ −−−= ll HIEG ,          (4.5) 

  

where lE  is the longitudinal energy. The state spectral functions due to source/drain 

contacts and all of the Büttiker probes are obtained using, 

 
+Γ= GGA nn ,           (4.6) 

 

where, )( +−≡Γ nnn i , with n running over the source/drain contacts and all of the 

Büttiker probes. (For clarity, here we use nΓ  to denote a matrix the same size as G, with a 

nonzero diagonal entry )( +− nni .) nA  is a matrix, and its diagonal terms constitute 

local density-of-states, 
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+Γ=≡
ρσ

ρρσσ δδ
,

][)(),( mnnnmmmnln GGAmED  .       (4.7) 

 

On simplification, eqn. 4.7 reduces to, 

 

nmnln GmED Γ=
2),(           (4.8)  

 

where, nD  is a column matrix representing the local spectral function due to perturbation 

n. Conceptually, the spectral function is proportional to perturbation strength nΓ  and 

propagates through the entire domain according to 2
mnG . Since mnG  (with a running 

index m) is the nth column of G , one does not need to calculate the entire G  (which is 

computationally expensive) in order to obtain the spectral function. Only those columns 

corresponding to source/drain contacts or Büttiker probe positions need to be calculated. 

Therefore, if scattering is assumed occurring in a small portion of the entire device 

regions (Büttiker probes are placed only at the corresponding portion), this approach can 

considerably save computational resources. In the case of Büttiker probe at each node, 

this approach is equivalent to calculating the entire Green’s function. 

 

Transmission between any two reservoirs can be calculated in a manner similar to the 

calculation of the source to drain transmission described in Chapter 3. The transmission 

between reservoirs m and n can be expressed as, 

 

][)( +ΓΓ= GGTraceET nmlmn          (4.9) 

 

Since mΓ  and nΓ  are diagonal matrixes with one entree, mnT  can be simplified, 

 
++ ΓΓ=ΓΓ=

γρσ
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 - 72 - 72

On simplification, eqn. 4.10 reduces to, 

 

nmnmlmn GET ΓΓ=
2)(            (4.11) 

 

Since mnG  is just one element of matrix G , one does not need to calculate the entire G  

in order to obtain the transmission. Also note that in calculating the spectral functions, 

those columns corresponding to source/drain contacts or Büttiker probe positions have to 

be calculated, mnG  can be obtained from the corresponding column. 

 

Knowing the spectral function, the 2D electron density at node m including the effect 

of all scattering centers as well as the source and drain reservoirs is, 

   

⋅−ℑ= −
n

lnln
Bti

l mEDETkm
a

mEn ),()(
2

1),( 2/13

*

µ
π

      (4.12) 

 

where, the summation over n represents contributions from all reservoirs, nD  the local 

density-of-states due to source n, and nµ the Fermi potential of reservoir n. The Fermi-

Dirac integral of 2/1−ℑ  accounts for all transverse modes contributions (its arguments 

being normalized to TkB ), and the factor in front of the summation sign is a 2D density 

constant representing the particular subband i, with an electron effective mass *
tim  in the 

transverse direction. (for details see Chapter 3).  

 

 The total current at reservoir m is given by,  
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n

lnlm
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where, summation over n accounts for contributions from all sources to reservoir m and 

mnT  the transmission from source m to n. The factor in front of the summation sign is a 

current density constant representing the subband i.  

  

 Equation 4.13 can be rearranged to obtain a compact expression of the form, 

 

 

,)(
2

)(]~[
2

)]()(~[
2

)(

2/13

*

2

2/13

*

2

2/12/13

*

2

−ℑ⋅=

−ℑ⋅−=

−ℑ⋅−−ℑ⋅=

−

−

−−

n
lnmn

Bti

n
lnmnmnm

Bti

ln
n

mnlmm
Bti

lm

E
Tkmq

ETTTkmq

ETETTkmqEI

µ
π

µδ
π

µµ
π

 

(4.14) 

 

where, 

  

      =
n

lmnlm ETET )()(~ ,            (4.14a) 

 

     )()(~)( lmnmnlmmnl ETETE −≡ δ .          (4.14b) 

 

The requirement that the net current at each scatterer m, equals zero i.e.  

 

      llm dEEI )(
+∞

∞−

= 0,             (4.15) 

 

imposes a set of constraints on the nµ ’s (Fermi-potential of scatterers). This set of 

constraining equations can be solved for the nµ ’s using different schemes. The schemes 
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will be described in a later section. Note that this far, we presented the equations for the 

case of single subband occupancy. To account for contributions from all of the subbands, 

a summation over all subbands has to be performed.  

 

 The important equations are summarized as follows. At longitudinal energy lE , the 

local density-of-states including all subbands is 
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i
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where ),( mED lni  is the spectral function for subband, i, as given by eqn. 4.8. The net 

transmission due to all subbands is 
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,       (4.17) 

 

where )( lmni ET  is the transmission between reservoir m and n for subband, i, as given by 

eqn. 4.14b. The total 2D electron density is 

 

     ⋅−ℑ= −
n

lnlnl mEEmEn ),()(),( 2/1 Dµ ,       (4.18a) 

 

and the net current at reservoir m is,  

 

     mn
n

lnlm EEI T⋅−ℑ= − )()( 2/1 µ .          (4.18b) 
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 Equation 4.15 has to be satisfied by each scatterer (Büttiker probe) but not necessarily 

at each energy in order to conserve current. Therefore, the Fermi energy of each Büttiker 

probe has to be adjusted to ensure that the total probe current is identically zero.  

 

 Two different types of Büttiker probe models are explored. The first Büttiker probe 

model assumes that each scatterer is described by a single, position-dependent Fermi-

potential. Therefore electrons from all subbands (including transverse modes) are fully 

thermalized at each probe according to the corresponding probe Fermi-potential and 

temperature. The total current at Büttiker probe m over the entire longitudinal energy 

spectrum is dEEI mm )(
+∞

∞−

≡I . This total current is a function of the Fermi potential of all 

Büttiker probes and the source and drain contacts. Newton’s method is employed in order 

to search for the Fermi potentials of all Büttiker probes ( nµ ’s) such that the total current 

at each Büttiker probe is zero. The Jacobian used in Newton’s method can be evaluated 

numerically as 
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and, corrections to the nµ ’s during the solution searching iterations are (also refer to eqn.  

3.4c in Chapter 3), 

  

       ][ 1
m

m
mnn Ad I−−=µ .          (4.20) 

 

Because the Fermi potentials of the source and drain are known, indexes m and n in eqns. 

4.19 and 4.20 run over Büttiker probes only.  

  

 In this first Büttiker probe model, electrons are scattered among all transverse modes 

and subbands based on a unique Fermi-potential of the scatterer at each real-space 
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position. Both the energy and momentum of scattered electrons are fully thermalized, 

thus approximating the essential physics of scattering. In a real MOSFET, scattering 

strongly relaxes the transverse energy. In this approximate model, the total energy is 

relaxed. 

  

 The second Büttiker probe method satisfies eqn. 4.15 by constraining the probe 

current to be zero at each longitudinal energy, 0)( =lm EI . This is accomplished by 

allowing each scatterer Fermi-potential to be both position and longitudinal energy 

dependent. (Of course, this means that the electron distribution is not a Fermi-Dirac 

distribution. For mathematical convenience only, we describe the distribution by an 

energy-dependent Fermi-level.) Electrons with specific longitudinal energies from all 

subbands (including transverse modes) are “thermalized” at each probe according to the 

corresponding probe Fermi potential. In this model, we need to solve for the Fermi 

potentials of all Büttiker probes at each longitudinal energy. Newton’s method can be still 

used, but will be very inefficient due to the large number of longitudinal energy steps. A 

much more efficient procedure to solve the current conservation problem is to directly 

search for )(2/1 ln E−ℑ− µ . Based on eqn. 4.18b, it is quite obvious that a linear equation 

can be solved for )(2/1 ln E−ℑ− µ , 

 

)()(2/1 lmmn
n

ln EIE =−ℑ− Tµ ,  0)( =lm EI , for any Büttiker probes.  (4.21) 

 

Note that this approach of solving a linear equation cannot be used in the first model due 

to its nonlinearity as a result of integration over longitudinal energy.  

 

 In this second scattering model, electrons are scattered among the various transverse 

modes and subbands based on a unique Fermi-potential of the scatterer at each real-space 

position and for each longitudinal energy. It appears that the overall longitudinal energy 

(transport related energy) of scattered electrons is conserved. However their longitudinal 

momentum could be randomized. It seems that this model captures the phase-breaking 
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process in the transport direction in a MOSFET, but the longitudinal energy relaxation as 

a result of scattering along the channel is not properly captured. This implies that the 

model could over-estimate the channel reflection actually occurring in a MOSFET. The 

solution searching procedure for both models is illustrated using a flow chart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Fig. 4.1. Flow chart illustrating the solution procedure for the Büttiker probe treatment of 

scattering. 
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To this point, we have presented the basic ideas of using the Büttiker probes concept 

to model dissipative transport. Referring to the general Green’s function formalism 

outlined in Chapter 1, we can see that the phenomenological approach calculates in-

scattering and out-scattering functions as 

 

    )( nn
in
n f µΓ=  and  )](1[ nn

out
n f µ−Γ= ,       (4.22) 

 

where )( nf µ  is the Fermi-Dirac occupancy factor for the probe n. The scattering 

functions and Green’s function are solved self-consistently, to achieve current 

conservation. The simple model does help us understand the dissipative transport, but the 

treatment lacks physical rigor. For more rigorous calculations, the scattering should be 

included based on the exact type of interactions and the level of approximation. The 

scattering function should be solved from the density functions. As an example, we 

describe the electron-phonon scattering in the self-consistent Born approximation in the 

next section. 

 

4.2.2 A simple phonon-electron interaction model 
We now introduce a scattering model based on the phonon-electron interaction [10, 

82, 87-89]. In order to succinctly explain how phonon scattering is treated within the 

Green’s function formalism, we assume single subband occupancy and 1D transport in 

the longitudinal direction. The method outlined in this section can then be generalized to 

the multiple subband case including the effect of transverse modes (2D transport). In a 

manner similar to the Büttiker based models, the phonon-electron interaction introduces a 

perturbation to the device Hamiltonian through a corresponding self-energy. The Green’s 

function can be expressed as, 

 
1][)( −−−= lll HIEEG ,         (4.23) 
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where, lE  is the longitudinal energy, lH  the longitudinal Hamiltonian, and  the self-

energy matrix accounting for the source and drain contacts and all of the phonon-electron 

interaction centers. In this work, the phonon-electron interaction is assumed to be a local 

interaction. Therefore  is a diagonal matrix as in the cases of the two Büttiker probe 

models. Invoking the self-consistent first-order Born approximation, the scattering 

functions for in and out scattering due to phonon-electron interactions can be related to 

the electron density at energy lE , 0ω+lE  and 0ω−lE  as [10, 82, 89], 
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)]()()1[()( 000 ωω +⋅+−⋅+= l
p

l
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l
out EGNEGNDE .     (4.24b) 

 

where, 0D  is a constant representing the interaction strength felt by electrons due to one 

phonon, N is the number of optical phonons of energy 0ω  in equilibrium with the lattice 

at a specific temperature, nG  and pG  are the density functions for electrons and holes 

respectively. The phonon number at any temperature is given by the Bose-Einstein 

statistics, 

 

        
1

1
/0 −

= TkBe
N

ω .           (4.24c) 

 

)( l
in E  is related to the electron in-scattering rate as inl

in E τ/)( ≡ , while )( l
out E  is 

related to the electron out-scattering rate as outl
out E τ/)( ≡ .  

 

Equation 4.24a can be explained through the pictorial representation of scattering 

shown in Fig. 4.2a. Electrons can be scattered into empty states at energy lE  from filled 

states at energy 0ω+lE  by the emission of an optical phonon with energy 0ω . The in-

scattering rate for this mechanism is proportional to the interaction strength, the electron 
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density at energy 0ω+lE , and the number of phonons plus one (N+1) [87]. Electrons 

with energy 0ω−lE  can also be scattered into empty states at energy lE  due to phonon 

absorption. The in-scattering rate for this mechanism is again proportional to interaction 

strength, the electron density at energy 0ω−lE , and the number of phonons (N). The 

total in-scattering rate )( l
in E  is the sum of the two contributions. )( l

out E , which is 

the net out-scattering rate at energy lE , can be understood in a similar manner through 

Fig. 4.2b. 
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Fig. 4.2. (a) Pictorial diagram illustrating electrons scattered into an empty state at energy 
lE . (b) Pictorial diagram illustrating electrons scattered out of a filled state at energy lE . 
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 Γ determines the net carrier exchange rate between the system and surroundings and 

is a sum of the in and out scattering functions [10, 82] 

  

       )( outin +=Γ ,           (4.25a) 

 

Also note that (see Chapter 3), 

 

)( +−≡Γ i .           (4.25b) 

 

On simplification, one obtains, 

 

      )(
2

outini
+−= .           (4.26) 

 

This is the , that is used to compute the Green’s function in eqn. 4.23. Note that we 

have ignored the real part of  in eqn. 4.26. Strictly speaking,  is not purely 

imaginary; its real part consists of two components. One of them arises because of the 

fact that the interaction must be causal in time. The other corresponds to the Fock 

exchange potential (the Hartree potential is included in the Poisson equation) [10, 89]. 

These terms are very minor as compared to the Hartree potential and the potential due to 

impurity. These terms are not directly related to dissipative transport. Therefore they are 

left out in our calculations.   

 

The electron density function, )( l
n EG  is related to the in-scattering function by [40], 

 
+= GGEG in

l
n )( ,           (4.27a) 

 

and the hole density function, )( l
p EG  (states unoccupied by electrons) is related to the 

out-scattering function by 
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+= GGEG out

l
p )( .           (4.27b) 

 

The scattering functions arise from two different sources, namely, the interactions 

with the leads and the phase-breaking interactions within the device. As shown in eqn. 

4.22, one can view the in-scattering function due to any interactions as a product of Γ  

and a Fermi-Dirac occupancy factor f . For the interactions with the leads, the factor 

represents the statistics of the real contact reservoir, while for the internal scattering 

interactions, the factor is just a parameter characterizing the virtual reservoir. Making use 

of the Fermi-Dirac occupancy factor, we can rewrite eqn. 4.27a as, 

 
+Γ=

m
mml

n GGfEG ][)( ,          (4.27c) 

 

with subscript m indicating the interaction with source m. Expressed in this form, the 

expression for electron density becomes the same as that calculated for the Büttiker probe 

models. Referring to eqns. 4.25a and 4.27b, we see that the hole density is,  

 
+Γ−=

m
mml

p GGfEG ])1[()(          (4.27d) 

 

as expected. 

   

 Using the above identities and definitions, the phonon-electron interaction model is 

implemented by iteratively solving eqns. 4.23, 4.24 and 4.27. The solution scheme ends 

when a converged value of in  and out  is attained. Boundary conditions have to be 

specified for in  or out  at the source and drain contacts. Since the two contacts are 

treated as reservoirs, equilibrium statistics are imposed at the contacts, resulting in the 

following boundary conditions, 
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      )( Ef sourcesource
in
source −Γ= µ ,         (4.28a) 

 

and  

 

      )( Ef draindrain
in
drain −Γ= µ ,         (4.28b) 

 

The Poisson equation is coupled to this transport model in order to obtain self-consistent 

solutions. Current at the source or drain contacts is evaluated using [40, 82], 

 

    l
nout

source
pin

sourcesource dEGGTrace
h
qI

∞

−=
0

][ .      (4.29a) 

 

Note that the spin degeneracy is not included in eqn. 4.29a. Using eqns. 4.27c and 4.27d, 

one can rewrite the expression for current to have a similar form as that in eqn. 4.13.  

 

In this model, the current at each scattering center automatically becomes zero 

(current conserved throughout the device). This can be seen by looking at the current 

flowing into a conceptual reservoir (a scattering center), for example, the reservoir at 

node m, 

 

    l
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m
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mm dEGGTrace
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For simplicity, we can assume that the phonon energy is zero. Referring to eqns. 4.23 and 

4.27, we obtain  
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where n
mG  and p

mG  are electron and hole density at node m. It is very clear that the local 

phonon-electron interaction implies the trace in eqn. 4.29c being zero at any energy 

values. So there is no particle and energy exchanges at any virtual scattering centers 

(analogous to the second Büttiker model). In general cases where phonon energies are 

nonzero, the trace at each specific energy value may not be zero, but the integration over 

the entire energy range is still zero. This allows electrons or holes to exchange energies 

with the semiconductor lattice by emitting or absorbing phonons, but total particle 

number is conserved (analogous to the first Büttiker model). The solution scheme for 

phonon-electron interaction model is summarized through a flowchart shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3. Flowchart illustrating the solution scheme for simulating phonon-electron 

interaction. 

 Guess initial potential VOld,
in ’s and out ’s 

Solve the 1D Shrödinger equation in the confinement 
direction for subband profiles and wave functions 

Evaluate n
G ’s , p

G ’s, in ’s and out ’s 

Check if in ’s and 
out ’s change? 

Solve the Poisson 
equation for VNew 

Check convergence: 
Compare VNew with VOld 

Converged? 

Evaluate 
current and stop 

No 
Yes 

Yes 

No 
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This far, our focus has been restricted to a one subband treatment and a 1D transport 

scheme. A MOSFET is typically very wide. Therefore contributions from a large number 

of transverse modes have to be included. However, accurately accounting for the 

transverse modes is computationally very difficult. Therefore we resort to using a very 

simple treatment of the transverse modes in order to capture the essential physics of 

phonon scattering while reducing the computational burden. A more strict treatment will 

be outlined in the discussion section of this chapter. 

 

The transverse mode contributions can be integrated into Fermi-Dirac factors as in the 

cases of the two Büttiker probe models. For the longitudinal energy, we can define a net 

occupancy factor at the source and drain contacts as, 

 

)(
)()(

2/1

2/1
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lsource
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EEf
−ℑ
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where, )(
2

2
2/1

*

lsource
Bt ETkm

−ℑ− µ
π

 represents the total number of transverse modes that 

contribute to a state with longitudinal energy lE  due to the source contact ( sourceµ ) and 

)(
2

2
2/1

*

ldrain
Bt ETkm

−ℑ− µ
π

 represents the total number of transverse modes that 

contribute to a state with longitudinal energy lE  due to the drain contact ( drainµ ). 

)(
2

2
2/1

*

LowestMax
Bt ETkm

−ℑ− µ
π

 represents the maximum number of transverse modes 

that could contribute to transport in the longitudinal direction. Maxµ  is the maximum of 

sourceµ  and drainµ , and limits the number of transverse modes that contribute to transport 
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in the longitudinal direction. LowestE  denotes the lowest longitudinal energy level, below 

which transmission is practically suppressed. The 1D transport model when coupled with 

the boundary conditions defined in this section, can be used to calculate all quantities of 

interest. The final results from the 1D model based on the longitudinal energies is 

multiplied by the 2D factor )(
2

2
2/1

*

LowestMax
Bt ETkm

−ℑ− µ
π

, to approximately handle 

transport through transverse modes (2D transport). 

 
4.3 Results 
 Up to this point, we have discussed Büttiker probe and phonon scattering models. We 

have gone through the formalism of each model and detailed their numerical 

implementation. In this section, we present simulation results from each of the 

aforementioned models. The simulations are designed to compare the models, and assess 

them against the scattering theory of MOSFETs. We first present results generated using 

the Büttiker probe models and examine the difference between energy-relaxing and 

phasing-breaking scatterings, as modeled by the first and second Büttiker probe models 

respectively. We then illustrate the effect of the two scattering processes on electron 

transport in a MOSFET. Following that, we address the issue of uncontrollable tunneling 

leakage occurring within the Büttiker probe framework. Finally, we present simulation 

results based on a simplified treatment of phonon-electron scattering. The objectives of 

this section are, 1) to present a general picture of how different scattering models work, 

and 2) to illustrate how these models capture the essential features of dissipative transport 

in a MOSFET. A simplified double gate structure is assumed in all of the simulations. 

 

4.3.1 Description of model device 
 Most of the simulations are done using a model double-gate SOI MOSFET with a 

body thickness of 3 nm. In the 3 nm body, multiple subbands are occupied by electrons, 

so subband-to-subband scattering must be included. For studying subthreshold regime 

leakage, a 1.5 nm body is used. This is because strong vertical direction quantum 

confinement in this extremely thin body gives rise to single subband occupation and 
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tunneling current can be assessed without interference from different subbands. In both 

devices, the channel and source/drain extension lengths are 10 nm with the source and 

drain regions being doped at 20100.1 × cm-3. P bodies are doped at 16100.1 ×  cm-3. Both 

top and bottom gate insulators (SiO2) are 1.5 nm thick. Gate contacts are midgap 

workfunction metals ( 66.4=φ  eV). A uniformly spaced 2D mesh is used in the 

simulations. The lattice constant for the spatial grid is 2.5 .  

 

                        

                 

 

              

 
 

 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 
 

Fig. 4.4. (a) An energy band profile illustrating the placement of Büttiker probes. (b) The 
profiles of multiple subbands used in the simulations. The channel region is between the 

vertical dashed lines. 
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4.3.2 Phase-breaking and energy-relaxing scattering 
 We first compare the two Büttiker probe models. Figure 4.4a shows that how the 

probes are placed within the device channel region (note that the study focuses on 

scattering in channels, so source and drain regions are treated ballistically). We place 

probes starting from the drain end of the channel, and gradually increase the probe 

number towards the source end. The probe number within the channel varies between 0 

(fully “ballistic”) and 41 (fully “dissipative”). The energy broadening parameter (η ) 

characterizing the probe perturbation is set to 30 meV, corresponding to a low field 

mobility (µ ) of 100 cm2/V-s. The correlation between η  and µ  has been confirmed by 

simulating a 1D n+ semiconductor bulk. A conductance is calculated from the I-V curve 

in the low V region and mobility is then obtained from the conductance, assuming a drift-

diffusion transport. The mobility is in good agreement with that predicted by eqn. (4.2).  

Figure 4.4b shows the multiple subband profiles from the source to drain. The profiles are 

generated by doing a self-consistent ballistic simulation with the 3 nm body device. Bias 

conditions are 6.0== GSDS VV  V. The solid lines represent unprimed subbands for 

electrons with heavy effective mass in the gate confinement direction. The dashed lines 

represent primed subbands for electrons with light effective mass in the gate confinement 

direction (see also Chapter 2 for more descriptions on the primed and unprimed 

subbands). Note that the first three subbands shown in Fig. 4.4b have low energies, 

therefore are primarily occupied by electrons. Also note that these subbands are closely 

spaced in energy, resulting in scattering between subbands. 

 

Figure 4.5 shows the self-consistently calculated current spectra versus electron 

longitudinal energy at biases of 6.0== GSDS VV  V. Figures. 4.5a and 4.5b present the 

results generated with the first Büttiker probe model. In this model scattered electrons are 

fully shuffled around in both energy and momentum space (energy-relaxing).  Figures. 

4.5c and 4.5d are results by the second Büttiker probe model, where, scattered electrons 
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are fully shuffled around in momentum space, but their longitudinal energy is conserved 

(phase-breaking). The second case is more like the transport within a 1D quantum wire.  

 

In the ballistic limit, electrons enter the device from the source and leave through the 

drain. The number and energy of electrons are both conserved throughout the device. 

This is shown in Fig. 4.5a, where the current spectra due to the source and drain are 

symmetric. The source-injected current is positive for electrons entering the device, the 

drain-collected current is negative for electrons leaving the device. The two peaks 

observed indicate the contributions from different subbands. In Fig. 4.5b, electron 

energies are relaxed during the transport. It can be seen that the source-injected current is 

reduced in magnitude, and the drain-collected current no long mirrors the source current 

in shape. It can also be seen that electrons leave the device with lower longitudinal 

energies because they lose their energy as a result of scattering. Figure 4.5c shows the 

ballistic current spectra for the second Büttiker probe model. This is identical to that 

shown in Fig. 4.5a, since different dissipative transport models should behave the same in 

the non-dissipative limit. Figure 4.5d displays current spectra in the presence of phase-

breaking scatterings. Electrons may change moving direction when scattered, but will 

retain their longitudinal energy. Therefore the source and drain current spectra versus 

longitudinal energy are identical in shape and opposite in sign. The current magnitude 

decreases as compared to the ballistic case because scattered electrons lose their directed 

momenta as a result of scattering. 

 

Figure 4.6 shows the effect of the scatterer placement on device performance. We use 

the subband profiles shown in Fig. 4.4b for the simulations. Firstly, Büttiker probes 

(representing scattering regions) are placed at the drain end of the channel. We can see 

that the two models give the same current when no scattering is assumed in the device 

(zero probes). As the scatterer number increases, the first model shows no change in 

current at the beginning, and a linear decrease after that. This can be understood by 

looking at Fig. 4.4b. When scatters are placed near the end of the channel, electrons 

scatter near the drain and lose much of the longitudinal energies, making it difficult for 
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them to get back to the source. Therefore the first Büttiker probe model predicts that 

scattering near the drain end does not reduce the source injected current by an appreciable 

amount. When scatterers are placed very close to the source injection point, scattering in 

this region can easily cause electrons to reflect back into the source before they dissipate 

too much longitudinal energy. As a result, increasing the number of scatterers towards the 

source injection end will dramatically decrease the current being collected at the drain.  

 
Fig. 4.5 The red lines stand for the source-injected current, the blue lines stand for the 

drain-collected current. The source Fermi level is zero on the energy scale. 
 

(a) Ballistic current spectra (using the first Büttiker probe model). 
(b) Current spectra assuming scatterers placed throughout the entire channel region 

(using the first Büttiker probe model). 
(c) Ballistic current spectra (using the second Büttiker probe model). 
(d) Current spectra assuming scatterers placed throughout the entire channel region 

(using the second Büttiker probe model). 
  

The second Büttiker probe model shows distinctly different results. The transmitted 

current goes down almost linearly along with the number of scatterers placed in the 

channel, regardless of their position. In this model, scattered electrons can change 

transport direction, without dissipating their longitudinal energy. Therefore scattering 

anywhere in the channel can cause electrons to be reflected back into the source.  We also 

(a) (b) 

(c) (d) 
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note that, if only one subband is included in the simulation, the dependence is close to 

perfectly linear, while, with multiple subbands are included, subband-to-subband 

scattering makes the dependence tend towards the one predicted by the first model. This 

can be explained by referring to subband profiles shown in Fig. 4.4b. Near the drain, 

some electrons may transfer from lower energy subbands to higher energy subbands 

without losing their longitudinal energy. This causes a large amount of kinetic related 

longitudinal energy to be transferred to potential energy thereby reducing the probability 

of such electrons back scattering to the source. When the two Büttiker probe models are 

assessed against Lundstrom’s scattering theory of MOSFETs, the first model shows very 

good agreement. This model indicates that a small region near the source end is critical to 

electron transport in a MOSFET and that the length of this critical region can be much 

shorter than the actual channel length [46, 55]. This phenomenological approach although 

simple physically, does seem capable of simulating dissipative transport in MOSFETs 

operating in the on-state. The second model, when compared to the first, seems improper 

in its conserving the longitudinal energy, therefore is not a good model for simulations of 

dissipative transport in MOSFETs. 

 
Fig. 4.6. On-current dependence on the number of scatterers as placed continuously from 

the drain end of the channel to the source end of the channel. 
 

Model 1 

Model 2 
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4.3.3 Unphysically high leakage current 
In Section 4.3.2, we examined the two Büttiker probe models by looking at their 

predicted on-state current. In this section, our focus is on simulating off-state leakage. 

The Büttiker probe models are found to predict unphysically high tunneling leakage in 

the off-state. Fig. 4.7 shows simulation results using the first Büttiker probe model (red 

dashed line with symbols) and compares them to the pure ballistic results (blue solid 

line). The ballistic transport model is physically rigorous and can be used as a basis for 

comparison. Scattering influences the drift current (on-state), but not the diffusion current 

(off-state). The large tunneling leakage is related to the manner in which we implement 

the Büttiker probe model. When the probe perturbation strength (η ) is assumed constant 

(energy independent), a large transmission even in the classically forbidden regions 

(below the channel barrier peak) is observed.  

 
Fig. 4.7. The blue solid line indicates the ballistic simulation result. The red dashed line 

indicates the result using the first Büttiker probe model assuming truncated self-energy in 
the classical forbidden regions. The red dashed line with symbols indicates the result 

using the first Büttiker probe model assuming constant self-energy. 
 

Note that scattering will introduce spurious energy states in the forbidden regions, 

therefore may increase the tunneling current. Use of constant perturbation strength in the 

VDS = 0.6 V 



 - 93 - 93

Büttiker probe model, however, causes too much state broadening, which gives rise to 

unreasonably high source-barrier tunneling (this unwanted tunneling current is a 

negligible part of the on-state current) as shown in Fig. 4.8. Fig. 4.8a plots the off-state 

conduction band profile and Fig. 4.8b shows the current spectra obtained using the 

Büttiker probe model. It is clear that the off-state current is overwhelmingly dominated 

by the tunneling component (spectra below the channel barrier peak). The ballistic 

current spectra (shown in Fig. 4.8c) will become invisible if the same current scale is 

used in plotting the same.  

 
Fig. 4.8. The dashed line indicates the channel barrier height, the red lines indicate the 

source-injected current, the blue lines indicate the drain-collected current. The first 
Büttiker probe model is used in the simulations. Also note that the source Fermi level is 

zero on the energy scale. 
 
(a) Off-state subband profile of a MOSFET, 6.0=DSV  V, 6.0=GSV  V. 
(b) Current spectra showing the abnormally large tunneling current (assuming constant 

self-energy). 
(c) Ballistic current spectra. 
(d) Current spectra showing the reduced tunneling current (assuming truncated self-

energy in the classical forbidden regions). 
 

(a) (b) 

(c) (d) 
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 The issue can be resolved through the use of an energy dependent η . From the 

standpoint of scattering physics, the perturbation strength should diminish as the particle 

density involved in the interactions diminishes. This is automatically achieved within the 

phonon-electron scattering model where the interactions are treated strictly through the 

physics (results to be shown in the next section). Within the Büttiker probe models, the 

same physics also need to be retained. This can be accomplished by forcing the 

interactions to be off when the amount of electrons that could participate in the 

interactions is suppressed by the subband energy (e.g. in the regions far below the 

subband energy edge). We assume that  

 

TkEE BSUBe
E /)(

0

1
)(

−+
=

η
η ,         (4.31) 

 

where SUBE  is the local subband edge (This treatment has no exact physics behind, the 

only goal is to cut off η --the interaction coefficient below the conducting subband). 

Equation 4.31 makes η  go smoothly from a constant 0η  (when beyond the band edge) to 

zero (when deeply below the band edge) [91-92]. By doing this, the unphysical tunneling 

current can be removed. Results using this model for the probe energy are shown in Fig. 

4.7 (the red dashed line). The off-state current spectra are also presented in Fig. 4.8d. The 

modified η  eliminates the unwanted states in the barrier region, making the current 

comparable to that obtained from ballistic simulations. Although the abnormal off-state 

current can be rectified in this way, the treatment is too arbitrary. The Büttiker models 

may not be capable of predicting accurate off-state performance of MOSFETs. But as 

off-state characteristics are mostly determined by electrostatics and not by the transport. 

Green’s function ballistic models should provide a fairly accurate picture of the 

subthreshold features of a transistor.  

 

4.3.4 Phonon-electron interaction 
 Finally, we simulate phonon-electron interaction within the simplified 1D framework 

(see Section 4.2.2). In these simulations, the phonon-electron interaction is treated using 
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the self-consistent first Born approximation, which means that only one-phonon 

scattering is included, but it is included exactly (to all orders in the language of 

perturbation theory). Note that in this model, the interaction strength (or scattering 

function) is calculated self-consistently from the density matrix. This can be understood 

by referring to eqns. 4.24 and 4.27. The scattering rates are proportional to the densities 

of the particle being scattered (see eqn. 4.24), and the interactions broaden the density 

matrix at a specific energy level (see eqn. 4.27). The interaction strength ( 0D ) felt by 

electrons due to one phonon is set to 2
0 )(10 ω×  (see Datta or paper by Ando and Flores 

for more on 0D  [10, 38, 67, 88]). The self-consistent calculation loop guarantees that the 

interaction strength goes to zero as the state density goes to zero. In Fig. 4.9, we show the 

simulated IGS vs. VGS at high VDS. In contrast to the results from the Büttiker models, the 

phonon-electron scattering model predicts normal subthrehold characteristics. The 

straight dashed line in the figure indicates the ideal subthreshold swing of 60 mV/dec at 

room temperature. 

 
Fig. 4.9. The phonon-electron interaction model predicted IDS versus VGS on semilog scale 

(blue solid line, VDS = 0.6 V). The red dashed line shows the ideal subthreshold swing. 
 

60 mV/dec 

~70 mV/dec 



 - 96 - 96

In Fig. 4.10, we present the results showing the effect of phonon-electron scattering 

on on-state transport in a MOSFET. Multiple subbands are included in the simulations 

(Fig. 4.10a). The dependence of ION versus the number of phonon-electron scattering 

centers placed within the device is plotted in Fig. 4.10b. Optical phonon scattering in 

MOSFETs is very weak at room temperature as the phonon energy of ~ 30 mV. This can 

be seen clearly from eqn. 4.24. The scattering rates depend on the phonon numbers (N or 

N+1, depending on either the absorption process or emission process), which are very 

small in the above case. Therefore, ION may not be strongly degraded even though in the 

case that phonon-electron scattering is assumed occurring throughout the entire channel 

region. Figure 4.10c shows the current spectra when no phonon-electron scattering 

assumed in the simulation. As expected, the results go back to the spectra predicted by 

the ballistic model. Figure 4.10d shows the current spectra when phonon-electron 

scattering is included occurring throughout the entire channel. In this case, the energy 

spectrum of the current shifts downwards as we go from the source contact to the drain 

contact. Electrons emit phonons during the scattering (for simplicity, only the phonon-

emission process is assumed in the simulation), therefore their energies are relaxed as 

indicated.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.10. The red lines stand for the source-injected current, the blue lines stand for the 

drain-collected current. The phonon-electron interaction model is used in the simulations. 
The source Fermi level is zero on the energy scale. 

(a) (b) 

(c) (d) 
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(a) Subband profile used in the simulations.  
(b) Dependence of on-current on the number of scattering centers as placed continuously 

from the drain end of the channel to the source end of the channel. 
(c) Current spectra when no phonon-electron scattering assumed in the channel. 
(d) Current spectra when scattering assumed throughout the channel. 
 

This simplified model does provide us useful insights into phonon-electron 

interactions in a MOSFET: 1) the treatment is strict in theory (in the 1D sense), so this 

model will not predict abnormal off-state characteristics, 2) optical phonon-electron 

scattering is weak at room temperature, so the model can not generally be used to 

simulate dissipative transport in on-state of MOSFETs. 

 

4.4  Discussion on Phonon-electron Scattering 
Phonon-electron scattering has been studied essentially within a 1D framework, 

focusing on the longitudinal component of electron transport. The transverse modes are 

treated based on their average contributions to overall scattering, which are included in 

Fermi-Dirac integrals. A rigorous treatment is very important in characterizing 2D 

transport in MOSFETs. In the section below, we present an approach explicitly 

accounting for transverse mode contributions to channel transport. The discussion is 

primarily centered on the theoretical formulation. Numerical implementation of this 

approach requires an extremely large computational capability, and has not been 

attempted in this work. 

 

In order to account for effect of transverse mode scattering on electron transport, the 

scattering rates have to be expressed in terms of both transverse and longitudinal energies 

of electrons. A typical SOI MOSFET has a thin but very wide body, and electrons can be 

modeled as a 2D gas. Because of the large width, the system shows translational 

invariance along the width direction. These analyses lead us to assume that, 1) the 

scattering rates ( outin ττ , ) or scattering functions ( outin , ) should be expressed in terms 

of total-energy of scattered electrons, e.g. tl EE +  (instead of the longitudinal energy, lE  

as has been done in the simple treatment, here tE  represents the transverse mode energy); 
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2) the scattering rates should be functions of the longitudinal position x  but not 

transverse position y due to the translational invariance (Note that the second assumption 

implies plane waves are the transverse eigenfunctions of the Hamiltonian even in 

presence of the scattering). This treatment in spirit is similar to that used by Lake and 

Datta in their work of simulating resonant-tunneling diodes [82].  

 

To compute the total energy dependent )(Ein  and )(Eout , we have to start with 

the total Hamiltonian of the device. The Hamiltonian is expanded using plane wave 

functions Wyik j /)exp(  in the transverse direction, using position delta functions 

)'( xx −δ  in the longitudinal direction, and using mode space eigenfunctions ),( zxiψ  in 

the gate confinement direction (see also Chapter 1). The expansion gives rise to 
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where )(xEi  is the energy profile for subband i, and ]),([
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longitudinal Hamiltonian for the subband i with a transverse energy 
jkt EE = , given as 

 

.

)(2...00
.........0

0.........0
0......)2(2
00...)1(2

]),([

+−−

−

+−−

−+−

=

j

j

j

j

ki

ki

ki

ki

ENEtt
t

EEtt
tEEt

ExEH    

                      (4.33) 

 

Once the Hamiltonian is obtained, the scattering functions for in and out scattering due to 

phonon-electron interactions can be calculated following the procedure discussed in 

Section 4.2.2. To keep the discussion complete, the key equations are again listed here. 

The scattering functions due to phonon emission and absorption are given as 
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)]()()1[()( 000 ωω −⋅++⋅+= EGNEGNDE nnin ,     (4.34a)  

 

)]()()1[()( 000 ωω +⋅+−⋅+= EGNEGNDE ppout .    (4.34b) 

  

in
in E τ/)( =  is the net electron in-scattering rate at total energy E . For phonon 

emission, the rate is proportional to the 2D electron density at energy 0ω+E , for 

phonon absorption, it is proportional to the 2D electron density at energy 0ω−E . A 

similar analysis holds for the electron out-scattering rate out
out E τ/)( = . (Referring to 

Section 4.2.2 for detailed explanations of other terms). Note that the scattering function 

computed here are functions of total energy ( tl EE + ) of scattering electrons.   

 

Obtaining the 2D electron density function, nG , takes a little more effort. The 

calculations need to include contributions of all transverse modes, which are not 

explicitly accounted for in the previous 1D treatment. Similarly, pG  also needs to be 

evaluated for the out scattering rates (note that pG represents the states that are not 

occupied by electrons). The procedure can be illustrated by focusing on a single energy, 

E . Analogous to eqn. 4.27a, the 2D electron density spectrum is expressed as 
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and  

jjj

j

kk
out

k
k

yp dEEEGEEEG
E
m

EG )],()(),(
2

2[)(
*

0

+
∞

=
π

,    (4.35b) 

 

where ),(
jkEEG is the Green’s function as calculated from eqn. 4.33, namely 
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It should be noticed that 
jkl EEE −≡ has been used in obtaining eqn. 4.36, and )]([ xEH i  

is the same as eqn. 4.3. The integration is done to include contributions from transverse 

modes, and 
jk

y

E
m

2
2 *

π
 represents the state density related to transverse modes. )(Ein  

and )(Eout  need to be self-consistently computed along with )(EG n  and )(EG p . In 

numerical simulation practice, integration limits in eqns. 4.35a and 4.35b can be reduced 

to a finite value, namely (max)
jkE which ensures the longitudinal direction state density, 

),()(),(
jj k

in
k EEGEEEG ⋅⋅  negligible when

jkE is greater than (max)
jkE .  

 

In order to complete the self-consistent iteration, )(E  in eqn. 4.36 has to be 

expressed in terms of known quantities, and boundary constrains also need to be 

specified. The self-energy )(E arises from two different sources. One is due to the 

contacts,  
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where CE  is the subband energy at the corresponding contact end, and the other is due to 

internal phonon-electron interactions,  
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in
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The boundary constraints require that equilibrium statistics prevail at the contacts, 

namely, the source and drain. Referring to eqn. 4.23, we can express the in-scattering 

function at the contact as   
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where, )( Ef C −µ  is the Fermi-Dirac statistics factor given as 
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µ

µ
−+

=− ,         (4.38b) 

 

and )Im(2 CC −=Γ . Note that equilibrium statistics is reflected in )(Ef , and the 

energy involved in )( Ef C −µ  is the total energy as opposed to the longitudinal energy. 

To determine the out-scattering function at the contact, we begin with the electron density 

function, +Γ= GfGG n , we also note that the hole density function is np GAG −= , 

where +Γ= GGA  is the total density spectrum function. So out
C  at the contact can be 

expressed as  

  

),()1()(
jkC

out
C EEfE Γ−= .        (4.38c) 

 

Up to this point, the self-consistent loop is formed. The iteration process starts with an 

initial guess of )(Ein
S and )(Eout

S , then makes use of eqn. 4.37 to obtain )(E . 

Provided )(E , equations 4.35 and 4.36 are used to get )(EG n and )(EG n . Finally 

)(Ein
S  and )(Eout

S are recalculated through eqn. 4.34, until the updates to the self-

energies decrease below the specified convergence criteria. The terminal current is 

evaluated as 
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once convergence is achieved. If more than one subband is included in the simulation, a 

summation over all involved subbands should be accomplished to get the total electron 

density and current. 

 

In principle, this process is just an extended and rigorous version of the 1D model. 

But to implement the 2D model involves several difficulties that need to be addressed. 

First, the computational requirements increase hundreds of times. We are now dealing 

with the total-energy of electrons. Although the energy range of interest is practically 

limited by the subband energy at the lower end, and Fermi energy at the higher end, for 

each total-energy E , evaluation of Hamiltonian needs to be repeated for hundreds of 

transverse energies (
jkE ). The integrations have to be numerically accomplished by 

doing summations over all 
jkE ’s involved. In contrast, in the 1D model, the Hamiltonian 

is calculated once for each lE , and integrations over the transverse modes can be 

obtained analytically. Therefore, to efficiently simulate 2D scatterings, powerful 

computational resources are needed. 

 

 Second, singularities exist in the integrations of eqns. 4.35a and 4.35b. The 

singularity is due to the 1D state density corresponding to plane-wave states in the device 

width direction. The singularity poses big threats to the self-consistent calculations 

because the singular energy point cannot be traced during the iterations. Special treatment 

is needed for accurate and timely convergences.  

 

It is worthwhile to point out that the phonon-electron scattering model can be 

generalized to account for the phase-breaking elastic scattering process. In such a 

process, electrons are shuffled around in momentum space, but intact in energy space. So 

this process can be simulated with phonon-electron interactions assuming zero phonon 

energy. The interaction strength coefficient 0D becomes a tunable quantity for desired 

scattering intensities. The generalized model is analogous to the first Büttiker probe 
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model. But this model is more rigorous in theory. It should be able to avoid the 

uncontrollable tunneling leakage in the subthrehold regime of an operating MOSFET, 

and it should also be able to capture transverse mode scattering properly. 

 

4.5  Summary 
In Chapter 4, we described dissipative transport in MOSFETs within the Green’s 

function framework. We numerically implemented two Büttiker probe models and 

assessed the models against the MOSFET scattering theory. We also presented a 

simplified 1D phonon-electron scattering model. Furthermore, we theoretically derived 

and discussed the rigorous 2D treatment of phonon-electron interactions. We noted that 

large computational resources are required for precise 2D simulations of scattering. We 

also noted that the first Büttiker probe model captures the physics of dissipative transport 

in MOSFETs, and this model is computationally manageable at a PC level. Therefore the 

first Büttiker model may be a useful simulation technique to model dissipative transport 

in small MOSFETs. 
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5. ESSENTIAL PHYSICS OF CARRIER TRANSPORT IN 
NANOSCALE MOSFETS 

 

5.1 Introduction 
 Scaling MOSFET’s to their limits is a key challenge now faced by the semiconductor 

industry.  Physically detailed simulations which capture the off-equilibrium transport (e.g. 

velocity overshoot) [93-95] and the quantum mechanical effects that occur in these 

devices [80] can complement experimental work in addressing these challenges.  Also 

needed, however, is a simple conceptual view of the nanoscale transistor — to help 

interpret detailed simulations and experiments and to guide experimental work. Such a 

model has recently been outlined [55, 96]. Our objective in this chapter is to assess and 

discuss this basic view through the use of numerical simulations. As a vehicle for these 

studies, we use a model 10 nm double-gate MOSFET, but we expect the conclusions to 

apply to nanoscale MOSFET’s more generally.  We use a semiclassical approach, because 

recent work shows that MOSFET’s operate essentially classically down to channel lengths 

of about 10 nm [61-62]. We also restrict our attention to the steady-state current vs. 

voltage characteristics, which are relevant to the high-speed operation of digital circuits 

[15]. 

 

 Figure 5.1 summarizes the essential physical picture that will be discussed in this 

chapter.  We adopt a transmission view of the device [10, 57] in which carriers are 

injected into the channel from a thermal equilibrium reservoir (the source), across a 

potential energy barrier whose height is modulated by the gate voltage, into the channel, 

which is defined to begin at the top of the barrier.  The beginning of the channel is 

populated by carriers injected from the thermal equilibrium source (and, under low drain 

bias, from the thermal equilibrium drain as well).  The density of carriers at the top of the 

barrier is controlled by MOS electrostatics so that the charge in the semiconductor 
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balances that in the gate.  Under equilibrium conditions (VDS = 0 V) in an electrostatically 

well-tempered device, equilibrium, 1D MOS electrostatics apply at this point, so the 

inversion layer density can be computed as for a 1D MOS capacitor. Above threshold,  

 

  )()0()0( THGSEFFSinv VVCqnQ −≈= ,     (5.1) 

  

where CEFF is the effective oxide capacitance (as influenced by quantum mechanical 

confinement, polysilicon depletion, etc. [15]).  We will show that a type of “gradual 

channel approximation” applies at this point, so that the inversion layer density at the 

source end of the channel remains nearly equal to its equilibrium value even when a drain 

bias is applied. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. The conduction subband edge versus position from the source to the drain of a 
nanoscale MOSFET under high gate and drain bias.  Also shown are the thermal injection 

fluxes from the source and drain. 
  

 Some fraction of the carriers injected from the source into the channel backscatter and 

return to the source, others flow out the drain and comprise the steady-state drain current, 

IDS.  (For a high drain bias, carriers injected from the drain do not need to be considered.)  
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Drain  

X Gate  
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Assuming current continuity, IDS may be evaluated at the beginning of the channel where 

the carrier density is known from MOS electrostatics to find 

 

><−>≈<= )0()()0()0( υυ THGSOXinvDS VVWCWQI ,  (5.2) 

  

where >< )0(υ  is the average velocity of carriers at the beginning of the channel.  The 

maximum value of >< )0(υ  is approximately the equilibrium uni-directional thermal 

velocity, Tυ
~ , because the positive velocity carriers at the beginning of the channel were 

injected from the thermal equilibrium source [55].  Backscattering from the channel 

determines how close to this upper limit the device operates.  Under high drain bias, the 

average velocity at the beginning of the channel can be related to a channel backscattering 

coefficient, r, according to [55] 

 

   Tr
r
υυ ~

1
1)0(

+

−
>≈< ,     (5.3) 

 

where 0 < r < 1 is a backscattering coefficient in the spirit of McKelvey [103-104].  (Note 

that when eqn. 5.3 is inserted into eqn. 5.2, we get a result presented earlier [55]. Also 

note that the backscattering coefficient, r, depends on the scattering physics and on the 

self-consistent potential within the channel, so r is a function of the gate and drain biases.)  

The importance of the source velocity is, of cause, well-known [107], we relate it to a 

channel backscattering coefficient to clarify the source velocity limit. 

 

 Because of the high electric field and strong velocity overshoot, carrier transport 

through the drain end of the channel is rapid.  As a result, the D.C. current is controlled by 

how rapidly carriers are transported across a short low-field region near the beginning of 

the channel.  Carriers diffuse across the beginning of the channel in much the same way 

that they diffuse across the base of a bipolar transistor, and they are collected by the high-

field portion of the channel much as in the collector of a bipolar transistor [108].  We refer 
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to the critical, low field region near the beginning of the channel as the “kT-layer” because 

it is roughly the distance over which the channel potential drops by kBT/q.  Scattering 

within the kT-layer limits the steady-state drain current; scattering near the drain end of 

the channel has only an indirect effect.  This is analogous to the well-known Bethe 

condition for thermionic emission in a forward-biased metal-semiconductor diode [109], 

except that in a MOSFET the flow of carriers is down the potential barrier rather than up.  

For well-designed MOSFET’s, the length of the kT-layer (which is set by 2D 

electrostatics as influenced by velocity overshoot within the channel [106]) is about one-

mean-free path, which means that transport across the kT-layer is quasi-ballistic. 

 

 In the following sections, we use detailed, numerical simulations to confirm this basic 

physical picture and to expand upon it.  Note that in presenting the basic, physical picture, 

we have made several simplifying assumptions.   For example, we assumed high drain bias, 

although a full range expression can be developed [90].  We also assumed non-degenerate 

carrier statistics; degeneracy increases the average thermal velocity, causes the average 

velocities of the positive and negative halves of the distribution at the top of the barrier to 

differ, and influences the length of the critical region (i.e. the criterion of a kBT/q potential 

drop must be generalized for degenerate statistics). Some of these issues will be discussed 

further in this chapter, but our intent is to present the basic, physical picture in simple 

form, so a full discussion must be deferred to later publications.  The following specific 

issues will be addressed in this chapter: 

 

1) injection velocity limits at the source end of the channel 
2) the off-equilibrium distribution function at the source 
3) charge control in a nanoscale MOSFET 
4) the role of scattering and the generalized Bethe Condition for a MOSFET 
5) the role of velocity overshoot in the channel 
6) the magnitude of the quantum contact resistance in nanoscale MOSFETs 

 

To examine these effects, we numerically simulated the simple, model MOSFET shown in 

Fig. 5.2.  The device is a double-gate (DG) MOSFET with an exceptionally thin (1.5 nm) 
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Si body, a 1.5 nm SiO2 gate oxide, and an LG = 10 nm. A hypothetical mid-gap 

workfunction gate material was assumed.  The device is assumed to be wide in the z-

direction (out of the page), so that many transverse modes are occupied.  Also note that 

the idealized metal contacts in Fig. 5.2 represent the actual contacts where dissipative 

scattering would dominate and maintain a thermal equilibrium carrier distribution.  (Real 

contacts would also flare out to reduce series resistance.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Structure of the LG  = 10 nm double gate MOSFET with TOX  = 1.5 nm, TSi = 1.5 
nm, and VDD = 0.6 V.  This device was simulated with a 2D solution to Poisson equation 

coupled to a 1D transport solution [62]. 
 

Our simulations treated electrostatics two-dimensionally, but transport is essentially 

one-dimensional in this geometry, so a simplified, 1D transport model was used [62].  

Quantum confinement effects in the direction normal to the Si film were treated in the one 
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subband approximation.  Several different approaches were used to describe transport 

along the channel. In the ballistic case, both a semiclassical (Boltzmann) solution and a 

quantum transport using a Green’s function approach [72] were used. The Green’s 

function solution was discussed in Chapter 3 and the Boltzmann solution in Appendix B. 

Quantum transport in the presence of phase breaking scattering was treated using a simple 

generalization of the Büttiker probe concept [72]. (As discussed in Chapter 4, we verified 

this approach captured the essential features of scattering observed in semiclassical 

approaches.) Conventional drift-diffusion and energy-transport models were also available. 

 
Fig. 5.3. The computed self-consistent conduction subband edge versus position for DG 

MOSFET of Fig. 5.2.  (a) VDS = 0.05 V and VGS from 0.0 V to 0.6 V.  (b) VDS = 0.6 V and 
VGS from 0.0 V to 0.6 V, (c) VGS = 0.05 V and VDS from 0.0 V to 0.6 V, and (d) VGS = 0.6 

V and VDS from 0.0 V to 0.6 V. 
 

The simplified device geometry and the ultra-thin body help to clarify the device 

physics to be explored in this study, but the conclusions of this study are born out by full 

2D simulations of thicker body devices.  Those results, however, are clouded by multi-

subband conduction and stronger two-dimensional electrostatics (e.g. DIBL).  Although 

the model device is a double gate MOSFET, we expect that the general conclusions of the 

study will apply to bulk MOSFET’s as well. Figure 5.3 shows the computed self-
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consistent conduction subband profiles vs. position under a variety of bias conditions.  

(The program used to perform these simulations is available [110], and more extensive 

simulations of the same device have been reported in [62].) 

 

5.2 The Ballistic MOSFET 
 The physical picture presented in Section 5.1 is most easily examined in the ballistic 

limit, and since present-day devices operate relatively close to this limit [46, 99], there is 

also a practical motivation to examine the ballistic MOSFET. For this purpose, we 

numerically simulated the model MOSFET of Fig. 5.2 using a semiclassical, ballistic 

transport model coupled to a two-dimensional solution to Poisson equation [73]. 

 

 In Section 5.1, we argued that the maximum average carrier velocity at the beginning 

of the channel was the equilibrium, uni-directional thermal velocity.  Assuming that only 

one subband is occupied, it can be shown that [28, 56] 
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where TkEE BF /)( 1−=η , and the factor in brackets accounts for carrier degeneracy and 

approaches unity for a nondegenerate gas. (More generally, when multiple subbands are 

occupied, Schrödinger-Poisson simulations are needed [28].) Figure 5.4 shows the 

equilibrium Tυ
~  vs. nS characteristic computed from eqn. 5.4. Note that below threshold, 

7102.1~ ×≈≈ TT υυ cm/s, but that above threshold, the carriers become degenerate, and 

the thermal injection velocity increases.  Finally, note that the degenerate thermal injection 

velocity is the average velocity of all the carriers, while the Fermi velocity, Fυ , refers to 

the velocity of carriers at the Fermi level.  The two are related by 

 

    FT υ
π

ηυ =∞→
3
4)(~     (5.5) 
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Fig. 5.4. The equilibrium thermal injection velocity, Tυ
~ , versus inversion layer density, 

Sn , for the DG SOI MOSFET as evaluated from eqn. 5.4.  Also shown is Fυ , the Fermi 
velocity. 

 

We assert that the equilibrium, uni-directional thermal velocity is the maximum 

velocity that can be observed at the source end of the channel.  The maximum source 

velocity exceeds the saturated velocity in the bulk, but the origin of this high velocity is 

much different than that of the conventional velocity overshoot that occurs in steep 

electric field gradients [27].  These high source velocities will, however, not be achieved 

unless the velocity within the channel is even higher (e.g. unless strong velocity overshoot 

within the channel). 

 

 The simulations displayed in Figs. 5.5 and 5.6 confirm the assertions made in the 

previous paragraph. Figure 5.5 is a plot of >< )0(υ  versus drain bias as obtained by 

simulating the ballistic device of Fig. 5.2.  (The location, x = 0, is taken as the top of the 

source-to-channel barrier, which changes with bias.)  Under low bias, the average velocity 

is nearly zero because the negative velocities of carriers injected from the drain nearly 

cancel the positive velocities of those injected from the source.  When the drain bias 

Tυ
~

Fυπ3
4
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exceeds a few kBT/q, then the negative velocity carriers injected from the drain are 

suppressed, and the average velocity approaches the equilibrium thermal velocity, Tυ
~ . 

Figure 5.6 shows the average velocity vs. position profiles at different drain to source 

voltages. As expected in this ballistic transistor, the velocity near the drain increases 

without limit (band structure limits have not been included). Under high drain voltages, 

however, the velocity at the top of the barrier saturates at the value displayed in Fig. 5.4.  

These results confirm the assumption made in Section 5.1 and earlier [55]. They show that 

velocity saturations occurs in a ballistic MOSFET, but it is the velocity at the top of the 

barrier that saturates at the thermal limit as opposed to the high-field velocity saturation in 

a bulk semiconductor which occurs because of scattering. 

 
Fig. 5.5. The average velocity at the beginning of the channel versus VDS for the device of 

Fig. 5.2 under ballistic conditions. For the gate voltage used 12105×≈Sn cm-2.  Also 
shown is the ratio, +− JJ / , (negatively-directed flux to the positively-directed flux), which 

is a measure of the anisotropy of the distribution (dashed line).  Note that the velocity at 
the beginning of the channel saturates at the thermal equilibrium injection velocity as given 

by eqn. 5.4 when the negative half of the distribution is suppressed +− JJ /  = 0).  The 
large dots identify the four voltages examined in Fig. 5.7. 
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Fig. 5.6. The average velocity versus position for the device of Fig. 5.2 under ballistic 

conditions. For the gate voltage (VGS = 0.6 V) used 12105×≈Sn cm-2.  Results for several 
different drain voltages are shown (VDS = 0.0 V, 0.05 V, and 0.1 V to 0.6 V, with a step 

of 0.1 V). 
 

 In the ballistic MOSFET, a special kind of equilibrium exists; k-states are in 

equilibrium with the contact from which they were populated [10].  The overall carrier 

distribution, however, can have a highly off-equilibrium shape.  For example, under high 

drain bias, the carrier distribution at x = 0 assumes a hemi-Fermi-Dirac, shape.  This is 

suggested by the dashed line in Fig. 5.5, which shows the ratio, +− JJ / , of the negative 

flux to the positive flux vs. drain bias.  This ratio approaches zero when the drain bias is 

large enough to suppress the injection of negative-velocity carriers from the drain. The net 

velocity then saturates at 7108.1~ ×≈Tυ cm/s, which is 5% higher than the equilibrium 

thermal injection velocity shown in Fig. 5.4 (the difference is due to two-dimensional 

electrostatics).  These effects are shown directly in Fig. 5.7, which plots the computed 

ballistic distribution functions at the top of the barrier for the four different voltages noted 

in Fig. 5.5.  For low VDS the velocity distribution is nearly symmetrical about xυ  = 0.  (In a 

long channel device, this symmetry is a result of carrier scattering, but in the ballistic 

LG 

VDS 
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MOSFET, the positively-directed carriers are injected from the source and the negatively-

directed carriers from the drain.)  As the drain bias increases, the magnitude of the 

negative-velocity component decreases. Note, however, that although the overall velocity 

distribution has a highly nonequilibrium shape, each half is in equilibrium with its 

respective contact. 

 
Fig. 5.7. 2D electron density versus longitudinal velocity as computed at the top of the 

source to channel barrier under ballistic conditions. The results are for VGS = 0.6 V and (a) 
VDS = 0.0 V, (b) VDS = 0.05 V, (c) VDS = 0.1 V, (d) VDS = 0.6 V. 

 

 We turn now to the issue of charge control in the ballistic nanotransistor.  Because the 

carrier distribution at the top of the barrier approaches a hemi-Fermi-Dirac distribution 

under high drain bias, it might be expected that under high bias, nS(0) would be one-half of 

its equilibrium value, eqn. 5.1.  Figure 5.8, however, shows that this is not the case — 

nS(0) is approximately  constant with drain bias.  This occurs because MOS electrostatics 

demands that the charge on the gate balance that in the semiconductor, so that as VDS 

increases, the conduction band is pushed down, more electrons are injected from the 

source, and ns(0) is maintained approximately at the value given by eqn. 5.1. This barrier 

lowering mechanism was also seen in Fig. 5.3d. The plot of nS(0) versus VDS confirms that 

in a “well-tempered MOSFET,” which is designed to electrostatically isolate the drain 
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from the source [97], MOS electrostatics maintains the inversion layer charge at the 

beginning of the channel at an approximately constant value. Although the velocity 

distribution is highly nonequilibrium in shape, the charge density is maintained at 

approximately its equilibrium value.  The same effect has also been observed in 2D Monte 

Carlo simulations [98]. 

 
Fig. 5.8. Illustration of the charge control mechanism for the device of Fig. 5.2 under 

ballistic conditions. Solid line: the carrier density at the beginning of the channel versus 
VDS for the device.  Dashed line:  The source to channel barrier height vs. VDS.  Figure 5.5 
showed that as the ratio, +− JJ / , decreases from 1 to 0, the average velocity increased.  
This figure shows that )0(Sn remains essentially constant and that the source-to-channel 
barrier height decreases with increasing VDS to maintain a constant carrier density at the 

top of the barrier. (The small increase is attributed to DIBL.) 
 

 Because the physics of the ballistic MOSFET is rather simple, a compact model is 

readily developed. Using the approach of [28] and assuming single subband occupation, 

one can show that [90] 
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where Qinv(VGS) is the inversion layer charge (approximately 2CEFF (VGS - VTH) above 

threshold) and UDS is VDS normalized to kBT/q.  (Under nondegenerate conditions, the 

Fermi-Dirac integrals are replaced by exponentials, and under high drain bias, the term in 

brackets approaches unity.)  Under high gate bias Qinv  2CEFF(VGS - VTH), so eqn. 5.6 

reverts to eqn. 5.2 . 
 

 Conventionally, a MOSFET’s channel resistance is proportional to its channel length, 

but there is also a ballistic component independent of channel length that may be important 

in nanoscale MOSFETs [28].  For low drain bias, eqn. 5.6 gives the ballistic conductance 

as 
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As discussed in [28], under fully degenerate conditions, eqn. 5.7 reduces to 

GDS = M e2 2h( ), where M is the number of occupied transverse modes.   

 

In Fig. 5.9 we compare the ballistic I-V characteristics as computed by direct 

numerical simulation and by the analytical expression, eqn. 5.6.  The agreement is good – 

except for the output conductance, a two-dimensional effect not treated by the 1D 

analytical model. The channel resistance, RDS , of this nano-MOSFET, as computed from 

the slope of the simulated characteristic in Fig. 5.9 or from eqn. 5.7, is about 60 -µm.  

For comparison, we also show the simulated IDS vs. VDS characteristic for the transistor 

including a simple model for scattering (to be discussed in the next section).  With 

scattering included, the channel resistance increases to about 200 -µm. This value 

includes the conventional channel resistance, which is proportional to channel length, LG, 

and the quantum contact resistance, which is given by eqn. 5.7 and is independent of LG.  

Note that the ballistic channel resistance is about 35% of the total channel resistance. 
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Depending on the channel length and inversion layer mobility, this length-independent 

component to RDS may be important.   

 
Fig. 5.9. Comparison of the simulated IDS - VDS characteristics of the ballistic device with 

the analytical model of eqn. 5.6.  Solid line:  simulated ballistic IDS vs. VDS for a gate 
voltage of 0.6 V. Dashed line:  analytical IDS vs. VDS.  Solid line with symbols:  simulated 
IDS vs. VDS including the effects of scattering. (An inversion layer mobility of 100 cm2/V-s 

was assumed.) 
 
5.3 Scattering 
 In a ballistic MOSFET, the positive-velocity carriers at the top of the barrier are 

injected from the source and negative-velocity carriers from the drain, but scattering mixes 

the two streams. The result is that the carrier distribution at the top of the barrier does not 

approach a hemi-Fermi-Dirac distribution under high drain bias; >< )0(υ  is less than Tυ
~  

under on-current conditions. When VDS >> kBT/q, so that all negative-velocity carriers at 

the top of the barrier arise from backscattering, eqn. 5.3 applies.  Well-designed 

MOSFETs currently operate with 4.0≈r  [46], so from eqn. 5.3 >< )0(υ  is about one-

third of its limit (but devices with r ≈ 0.2 have been recently reported [99]). Figure 5.9 

illustrates how scattering reduces device performance with respect to the ballistic limit; the 

channel resistance increases to several times the ballistic resistance, the on-current is 
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reduced to about one-half of the ballistic limit, the drain saturation voltage increases, and 

the output conductance increases.   

 

 In this section, we examine two issues in detail: 1) charge control in the presence of 

scattering, and 2) the issue of why the channel backscattering coefficient is sensitive to 

backscattering very near the source end of the channel but relatively insensitive to 

scattering deep within the channel. For these studies, we use a Green’s function method 

with a simple, Büttiker probe model of scattering, which we tested to ensure that it 

captures the essential physics of scattering in a MOSFET. As shown in [62], device 

operation is essentially classical (except for the strong quantum confinement effects); the 

quantum transport model was used because it was available and had been extensively 

tested on this device [62]. The broadening parameter, η , in the scattering model (see 

[72]) was set to 30 meV, which results in an inversion layer mobility of 100 cm2/V-s for a 

long channel device. See Chapter 4 for a discussion of the formalism and solution 

methods. 

 

Figure 5.10, which compares the self-consistent conduction subband profiles under on-

current conditions with and without scattering, shows that the source-to-channel barrier is 

higher in the presence of scattering.  This can be understood in terms of the self-consistent 

electrostatics of the MOSFET.  For a given gate voltage, we expect the same inversion 

layer charge density at the top of the barrier – in the presence or absence of scattering. For 

the ballistic case, the carrier distribution is a hemi-Fermi-Dirac distribution, and the barrier 

height is established to provide the necessary inversion layer density.  In the present of 

scattering, the carrier distribution function at the top of the barrier is more nearly 

symmetric in xυ ; so a higher barrier results in the same inversion layer density. 

 

 Figure 5.11 displays the simulated average velocity and carrier density at the top of the 

barrier vs. VDS with a high gate voltage applied.  The corresponding results for the ballistic 

case (from Figs. 5.5 and 5.8) are also displayed.  Note first of all, that the inversion layer 
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density at the top of the barrier, is nearly equal to its equilibrium value in the presence or 

absence of scattering (this is a simple consequence of self-consistent electrostatics and is 

relatively insensitive to the specific transport model).  Note also that the maximum 

velocity at the top of the barrier does not saturate as clearly as for the ballistic case and 

that it is well below the thermal injection limit.  Still, one can identify a drain saturation 

voltage of VDSAT  0.3 V, which is significantly greater than the  0.2 V in the ballistic 

case.  It’s clear that the mechanism for velocity saturation at the top of the barrier is 

different in the case of scattering and that it does not involve suppression of carrier 

injection from the drain as it in the ballistic case. 

 
Fig. 5.10. Illustration of the effects of scattering on the self-consistent potential within the 
device of Fig. 5.2 under a bias of VDS = VGS = 0.6 V.  Solid line:  the lowest conduction 
subband energy vs. position in the presence of scattering.  Dashed line:  the same plot in 
the absence of scattering. The key difference is a slightly lower source-to-channel energy 

barrier in the presence of scattering. 
 

In the presence of scattering, velocity saturation at the beginning of the channel occurs 

because of the self-consistent electrostatics in the device.  As shown in Fig. 5.3d, for VDS 

greater than about 0.2 V, most of the additional applied drain voltage is dropped across 

the drain end of the channel, and conditions near the source are relatively constant.  From 

LG 
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eqn. 5.3, one can estimate that r  0.3 at VDS  VDSAT . Below VDSAT , the electric field near 

the source varies directly with VDS , but above VDSAT , the source electric field increases 

slowly with increases in VDS. The slow rise in >< )0(υ  with VDS beyond the saturation 

voltage occurs because of the slow increase in electric field, which slowly decreases r.  

Since IDS is the product of >< )0(υ  and Qi(0), which is approximately constant, these 

observations also explain the IDS vs. VDS characteristic displayed in Fig. 5.9. 

 
Fig. 5.11. Illustration of the effects of scattering on the average velocity and charge at the 

top of the barrier for the device of Fig. 5.2 with VGS = 0.6 V. The carrier density at the 
beginning of the channel vs. VDS (right vertical axis). The average velocity at the beginning 
of the channel vs. VDS (left vertical axis). The solid lines include scattering, and the dashed 

lines are the corresponding results for ballistic conditions  (from Figs. 5.5 and 5.8). 
 

Given the central role of the backscattering coefficient, r, in the operation of a 

MOSFET, we should examine the physics that controls it.  The backscattering coefficient 

is determined by both carrier scattering and by the potential drop within the channel.  

Figure 5.12 schematically illustrates a stream of carriers injected into the channel from the 

quasi-equilibrium point at the top of the barrier. The fraction that backscatters and returns 

to the source is defined as r.  If backscattering occurs beyond a certain critical distance 

(denoted as  in Fig. 5.12), then it is unlikely that the carrier will have sufficient 
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longitudinal energy to surmount the barrier and exit into the source.  More likely, it will be 

reflected by the channel potential, perhaps undergo several scattering electric field 

reflections, and exit from the drain.  These scattering events will increase the carrier 

density in the channel and through Poisson equation, the self-consistent electric field 

throughout the entire channel, but they do not contribute directly to r as we have defined 

it.  To understand why this occurs, one must realize that Fig. 5.12 is a plot of longitudinal 

energy ( 2/2*
xm υ ) not total energy ( 2/2*υm ). For the typical case of a wide MOSFET, 

there is a continuous distribution of transverse modes.  Only a small fraction of the carriers 

will backscatter directly at the source and possess sufficient longitudinal energy to 

surmount the barrier.  Note that this argument applies to both elastic and inelastic 

scattering. Finally, note that If this were a quantum wire MOSFET in which the only 

degree of freedom was the x-axis, then r would be sensitive to backscattering through out 

the entire channel. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.12. Illustration of carrier backscattering in a MOSFET under high drain bias. If a 

carrier backscatters beyond a critical distance, , from the beginning of the channel, then it 
is likely to exit from the drain and likely to return to the source. 

 
 From the argument presented above, we conclude that the steady-state drain current is 

limited only by backscattering that occurs within a critical distance, , from the beginning 

of the channel.  The existence of such a critical distance was first noted by Price, who 

observed in performing Monte Carlo simulations of carrier transport down a potential 
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barrier, that if carriers penetrated only a very short distance into the potential drop, then 

even if they did scatter, they were unlikely to return to their injection point at the top of 

the barrier [100].  Price used a detailed balance argument to relate his “down the 

potential” simulations to  “up the potential” transport.  Recognizing the close connection 

between transport up or down the barrier, we can make use of the well-known Bethe 

condition for a metal-semiconductor junction to establish .  Bethe showed that currents 

near the thermionic (i.e. ballistic) limit occurs when the first kBT/q of potential drop at the 

junction, occurs over a distance much less than the mean-free-path. Since this critical 

distance (known as the kT-layer [101]) is a small fraction of the barrier width, the 

thermionic emission typically applies.  From Price’s detailed balance argument, we 

recognize a close connection between transport with and against the barrier, which 

suggests that the critical layer for the MOSFET is also the distance over which the first 

kBT/q of channel potential drops, typically a small fraction of the channel length.   

 

 By identifying the critical distance, , with the kBT layer, the expression for the 

backscattering coefficient for a field free semiconductor slab of length, L, [10, 27],  

 

λ+
=

L
Lr       (5.8) 

 

can be generalized to [55] 

 

   
λ+

=r .      (5.9) 

 

Since the critical backscattering occurs in a region where the carriers have gained little 

energy from the channel field, the appropriate mean-free-path to use in eqn. 5.9 is oλ , the 

near-equilibrium mean-free-path for backscattering, which can be obtained from the 

measured mobility of a long-channel MOSFET.  A comparison of the simple expression, 
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eqn. 5.9, with a rigorous evaluation of r by direct Monte Carlo simulation, shows good 

agreement [55].  Note also that the key result, eqn. 5.9, need not be postulated; it can be 

derived by scattering theory (see Chapter 9 of [27] for an introduction to scattering 

theory).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13. Illustration of backscattering and how it contributes to r. A 2D confined carrier 
is injected into the source with momentum p0. It propagates down the potential drop 
towards the drain gaining an energy ΔE with corresponding momentum, p1. It then 

scatters to momentum p1’ (since we assume elastic scattering, p1 = p1’). Only carriers 
within the shaded region have sufficient longitudinal momentum to cross the barrier and 

enter the source. 
 

Calculating the channel backscattering coefficient (even under the simplifying 

assumptions that lead to eqn. 5.9) is non-trivial, but a simple argument explains why the 

importance of backscattering decreases from source to the drain. Consider a charge carrier 

injected from the source into the channel with momentum ),(0 zoxo pp=p .  (Because of 

the quantum confinement in the y-direction, the electron has two degrees of freedom.)  If 

this injected carrier gains an energy, EΔ , by acceleration in the longitudinal electric field, 

then its momentum is 1p , where ( ) 222
1 2 zoxo pEmpp +Δ+= .  Assume that the electron then 

 

 

X 

Z 

p’1 p1 p0 

maxθ θ



 - 125 - 

 

125

backscatters elastically to momentum, ʹ′ p 1 (see Fig. 5.13).  If the backscattered electron 

propagates ballistically to the beginning of the channel, what is the probability that it can 

cross the barrier, and, therefore, contribute to r?   To do so, requires sufficient 

longitudinal kinetic energy, 

 

   E
m
p

m
px Δ≥= θ2

*

2
1

*

2'
1 cos

22
.    (5.10) 

 

Equation 5.10 defines a maximum angle, maxθ , for backscattered carriers that contribute 

to r, 
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Δ
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0
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EE
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(see Fig. 5.13).  Finally, the fraction of the scattered carriers that contribute to r is the 

fraction with maxθθ < or 
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Figure 5.14 is a plot of F versus 0/ EEΔ ; it shows that when the carriers have traveled 

down the potential drop by an amount equal to the injection energy, E0 (kBT for a non-

degenerate, 2D carrier gas), then even if they do scatter, only 50% of them have a chance 

to contribute to r.  As carriers travel further down the potential drop, the probability that a 

scattering event will contribute to the channel backscattering coefficient, r, steadily 

decreases. 
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Fig. 5.14. The fraction of the scattered electrons that contribute to the channel 

backscattering coefficient, r (i.e. the shaded region in Fig. 5.13).  The curve is evaluated 
from eqn. 5.12 assuming that a carrier gains an energy, ΔE, before isotropically scattering, 

then propagates back to the barrier without scattering again. 
 

 The simple argument presented above explains why scattering near the source controls 

the backscattering coefficient, r.  In practice, the critical region is even more weighted 

towards the beginning of the channel than suggested by Fig. 5.14.  There are two reasons; 

first, as the backscattered carrier propagates towards the source, it may be scattered again, 

and second, as the injected carrier penetrates deeper into the channel, its energy increases 

and so does the probability of scattering by phonon emission, which lowers its energy and 

makes it less likely to return to the source. 

 

5.4 Discussion 
 Transport in a nanoscale MOSFET is nonlocal; the average carrier velocity does not 

depend on the local electric field. A mobility can be precisely defined, but since it depends 

on an essentially unknown distribution function, it is not a useful parameter [102].)  

Mobility is, however, well-defined parameter in a long channel MOSFET.  From the near-

equilibrium mobility, which is readily measured in a long-channel MOSFET, the near-
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equilibrium mean-free-path for backscattering, which is the important transport parameter 

for a nanoscale MOSFETs, can be determined. In this case, one can say that mobility is a 

meaningful parameter for nanoscale MOSFETs. (There are, of course, complicating 

factors that have to be dealt with, such as the use of halo implants which can result in 

different channel dopings for long and short-channel devices and, therefore, different 

mobilities.) 

 

 Shockley used scattering theory to relate the near-equilibrium diffusion coefficient, Do, 

to the mean-free-path for backscattering as [103-104] 

 

    2/oToD λυ= .      (5.13) 

 

(See Chapter 9 in [27] for an alternative derivation of this result.)  Since near-equilibrium 

conditions prevail, the Einstein relation may be invoked and the result is a simple relation 

between the near-equilibrium mobility and the near-equilibrium mean-free-path for 

backscattering.  Finally, we note that eqn. 5.13 assumes nondegenerate carrier statistics, 

but this assumption fails above threshold.  In the more general case, the relation between 

oλ  and oµ  becomes more complex.  Note also, that defining the width of the critical 

region from the kBT/q potential drop also assumes nondegenerate carrier statistics.  Our 

use of nondegenerate statistics establishes the central ideas simply.  

  

 We have been careful to refer to oλ  as the mean-free-path for backscattering, but we 

have not defined it precisely.  The relation of the mean-free-path for backscattering that 

we use and the mean-free-path itself is analogous to the relation between the momentum 

relaxation time, mτ , and the mean time between scattering events, τ .  This mean-free-

path can be precisely defined in terms of the transition rate per unit time for scattering 

from state k to k’ S(k, k’) as [105] 
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where we have assumed nondegenerate carrier statistics.   

  

 

 

 

 

 

 

 

                                    (a)                                                               (b) 

Fig. 5.15. (a) Average velocity vs. position at VGS = VDS = 0.6 V for the 10 nm DG SOI-
MOSFET. (b) IDS vs. VDS for VGS = 0.6 V for the 10 nm DG-SOI MOSFET. 
 

 For the past decade, much of the modeling and simulation work has focused on 

accurately describing velocity overshoot within the channel, but in the view presented in 

this chapter, velocity overshoot is considered to play a secondary role.  It can, however, 

have significant effects on devices [106].  We should note first that to achieve a velocity at 

the source that approaches the thermal limit, the velocity within the channel must be even 

higher.  When the source velocity is well below the thermal limit, it is possible for a 

velocity saturated simulation to get the velocity at the source correct, but it will 

erroneously clamp the velocity near the drain at an unphysically low value.  The inversion 

layer density in the channel will be too high near the drain, which will lead to errors in the 

self-consistent channel potential.  These carriers will screen the source from charges on 

the drain, so we should expect a unphysically low output conductance from a velocity-

saturated model. These effects are shown in Fig. 5.15.  Figure 5.15a compares the channel 

velocity vs. position profiles under on-current conditions for a velocity-saturated drift-

diffusion transport model and for the Green’s function method.  We observe that the 

Quantum Model 

Drift-Diffusion 
7100.1 ×=Satυ  cm/s 

LG Quantum Model 

Drift-Diffusion 
7100.1 ×=Satυ  cm/s 



 - 129 - 

 

129

Green’s function method captures the velocity overshoot that occurs near the drain. 

Figure 5.15b compares the simulated IDS vs. VDS characteristics for the two transport 

models. Note that the output conductance is considerably higher when velocity overshoot 

is included. Bude has observed that the effect can be as large as 40% for nanoscale bulk 

MOSFETs [106]. 

 

5.5 Summary 
 A conceptual view of the essential physics of carrier transport in nanoscale MOS 

transistors was presented and confirmed by numerical simulation.  Key results are: 1) that 

the source velocity saturates and that its limit is set by thermal injection, 2) that the carrier 

density at the top of the source to channel barrier is fixed by MOS electrostatics (in an 

electrostatically well-designed MOSFET), 3) that scattering in very short region near the 

beginning of the channel limits the on-current, and 4) that the role of velocity overshoot is 

primarily an indirect one based on its influence on the self-consistent potential throughout 

the channel.  The results show that the physics that determines the steady-state current of 

a MOSFET can be understood in terms of a simple model.  This view of nanoscale 

MOSFET device physics should provide a useful guide for experimental and theoretical 

work, for developing compact models, and for interpreting detailed simulations. 
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6. COMPUTATIONAL STUDY OF LG = 10 NM DOUBLE-GATE 
MOSFETS 

 
6.1 Introduction 

In this chapter we explore the device design and physics issues for transistors near 

their ultimate scaling limits using a simulation tool, nanoMOS [62, 110]. The 

International Technology Roadmap (ITRS-99) specifications for the year 2014 transistor 

generation, equivalent oxide thickness (0.6 nm), off-state leakage (160 nA/µm) and 

power supply voltage (0.6 V) have been followed [2]. The device structure we examine is 

a double gate (DG) n-channel MOSFET with a metallurgical gate length of 10 nm. The 

issues addressed are: 

 

1) Device design: First, we outline the procedure to select the correct combination of 

silicon film thickness and gate dielectric in order to meet short channel 

requirements.  We then discuss the technique used to engineer the gate stack in 

order to meet the threshold voltage and gate leakage requirements. 

 

2) I-V Characteristics in the Ballistic Limit: We present simulation results from both 

classical and quantum ballistic transport models and discuss quantum effects in 

this nanoscale transistor. 

 

3) I-V Characteristics with Scattering: A simplified quantum mechanical scattering 

model is used to treat the effect of surface roughness and to capture mobility 

degradation due to high doping concentrations. Using this model, we present 

results that highlight the role of gate overlap/underlap, source/drain extension and 

quantum contact resistance on the performance of nanoscale transistors. A study 

of the expected on-current as a function of channel mobility is also presented. 
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4) Gate tunneling: Assuming an empirical gate tunneling model, we examine the 

leakage current distribution along the gate and predict the gate leakage current. 

 

Our analysis enables us estimate the performance of LG = 10 nm generation 

transistors. This analysis also helps identify important design issues that need to be 

considered in order to achieve the performance targets specified by ITRS-99, as critical 

transistor dimensions are scaled down in the future. 

 
6.2 Theory 
 The Schrödinger equation is solved in two dimensions in order to generate the results 

presented in this work. As discussed in Chapter 3, a 2D solution to the Schröedinger 

equation is obtained by solving two 1D problems, one in the direction normal to the 

channel, which yields the vertical electron concentration and subband profiles, and the 

other, along the channel direction based on the subband profiles yielding the electron 

concentration in the transmission direction. Two different approaches are used to treat the 

physics of carrier transport along the channel direction. The first approach is a solution to 

the Boltzmann equation in the ballistic limit (only the thermionic emission part is 

captured) while the second approach, which is more general, uses the Green’s function 

formalism described in Chapter 3 (tunneling through the source to channel barrier is 

captured) to simultaneously capture the physics of both ballistic and dissipative transport 

in a full quantum framework. A 2D Poisson solver is coupled to each of the transport 

models to provide self-consistent solutions. Note that electrostatic effects due to 

penetration of the electron wavefunctions into the oxide regions are accounted for in our 

simulations by extending the quantum solution domain to include the these regions. Gate 

leakage current calculations, however, are based on an empirical model and are a post 

processing operation. In the following section, we provide a brief description of the 

procedure used to calculate the charge and current distributions in case of ballistic and 

dissipative transport. Details of the calculation scheme were discussed in Chapters 3 and 

4. 
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6.2.1  Ballistic transport 
 When the SiO2/Si interface is parallel to the (100) plane, the six equivalent 

conduction band minima of the silicon body split into two sets of subbands due to 

different effective masses in the confinement direction [51] (the so called unprimed and 

primed subbands).  

 

 Within the Boltzmann framework, carriers are injected into the channel from a 

thermal equilibrium reservoir (the source), over a subband energy barrier whose height is 

modulated by the gate voltage. The spatial subband profile therefore can be divided into 

two regions: points to the left of the peak subband energy and points to the right of the 

peak subband energy. The 2D electron density for these sets of points is (the detailed 

derivation is given in Appendix B), 
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where, Din2  is a constant with the dimension of areal carrier density for subband, i,  PiE  

the peak energy for subband i, and Sµ  and Dµ , the source and drain contact Fermi 

energies. 2/1−ℑ  is the Fermi integral of order –1/2 [60].  It should be noted that all 

energies are specified relative to the local subband potential and are normalized to the 

thermal energy ( TkB ).  
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 Quantum mechanically, there is no division of points depending on their spatial 

location along the channel. The 2D electron density, calculated based on the Green’s 

function formalism is given by (see also Chapter 3),  

 

[ ]−ℑ+−ℑ=
+∞

∞−
−−

i
iDDiSSOi xEDExEDEdEnxn ),()(),()()( 2/12/1 µµ   (6.2) 

 

where, Oin  is a constant with the dimensions of 2D carrier density, SiD  and DiD are the 

source and drain contributions to the local density function for subband, i.  

 

 The ballistic current can be evaluated either at the source or the drain contact as (see 

also Chapter 3 and Appendix B) 
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where, OiI  is a constant with the dimensions of current/length for subband i, and SDiT  is 

the source–to-drain transmission as a function of electron energy. In the classical case, 

)(ETSDi  is 1 above the subband barrier maximum, and 0 below it. Therefore the integral 

over energy in eqn. 6.3 can be computed analytically. In the quantum model, )(ETSDi  

includes contributions from above and below the subband barrier maximum [61-62]. 

Therefore current contributions at every energy, have to be evaluated numerically. This 

distinctive treatment of channel transmission provides a way of assessing quantum 

tunneling against the thermionic limit.  

  

6.2.2  Dissipative transport 
 Scattering in MOSFETs is treated through the Green’s function formalism using a 

very simple Büttiker-probe model discussed in Chapter 4. Scattering centers are viewed 

as reservoirs similar to the source and drain. However, they differ from the source and 
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drain reservoirs as they can only change the energy of the carriers and not the total 

number of carriers in the system. This model captures the essential physics of scattering 

as can be seen from our simulation results and results presented in [72, 74, 111]. Each 

scattering center is modeled as a Büttiker probe with a perturbation strength characterized 

by a position dependent self energy,η . The self energy can be related to a dephasing time 

which can be interpreted as the time within which a carrier’s (electron in our case) initial 

state is fully destroyed by a scattering event [72]. Therefore it is possible to map the 

dephasing time onto an equivalent mobility. The 2D electron density including the effect 

of all scattering centers as well as the source and drain reservoirs is given by eqn. 4.18a 

(refer to Chapter 4 for detailed derivations), it is also presented here for readers’ 

convenience, 

 

]),()([ 2/1

+∞

∞−

− −ℑ=
j

jij
i

Oi xEDEdEnn µ      (6.4) 

 

where, summation over i  accounts for contributions from all subbands, the summation 

over j  represents contributions from all reservoirs, jiD  the local density for subband 

i due to source j , and jµ the Fermi potential of reservoir j .  

 

 Electrons reaching a scattering center are fully thermalized according to the 

scatterer’s Fermi potential. Because scattering processes lead to energy relaxation while 

simultaneously conserving the number of particles, the net current at each scattering 

center must be identically equal to zero. The total current at reservoir j  has been derived 

in detail in Chapter 4, the expression is given as (see also eqn. 4.18b) 
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where, summation over i  accounts for contributions from all subbands, summation over 

k accounts for current due to all sources and jkiT  is transmission from source k  to j  in 

subband i . The requirement that the net current at each scatterer j , equals zero ie: ejI = 

0, imposes a set of constraints on jµ ’s (Fermi-potential of scatterers). This set of 

constraining equations can be solved for the jµ ’s using a non-linear Newton’s method as 

discussed in Sec. 4.2.1. Note, that the scatterer’s Fermi potentials are position and not 

energy dependent in our treatment. Therefore electrons are thermalized (or scattered) 

among all transverse modes and subbands based on a unique Fermi-potential of the 

scatterer at each real-space position, thus capturing the essential physics of scattering as 

described in [111].  

 

 Our work extends recent pioneering work [61] by using the Green’s function 

approach to obtain quantum solutions in both the ballistic and dissipative regimes 

(without invoking the WKB approximation). Based on results from our ballistic and 

dissipative transport models we critically examine device physics and design issues for 

future generation double gate MOSFETs. 

 

6.3 Results 
The device structure we examine is shown in Fig. 6.1. This device is a simplified and 

ultra-scaled version of a DG transistor fabricated at Purdue [23]. The gate length is 10 nm 

and so are the lengths of the source/drain extension regions. An intrinsic body (NA = 1016 

/cm3) is assumed in order to eliminate threshold voltage fluctuations due to variations in 

body doping and to reduce mobility degradation due to ionized impurity scattering. Both 

abrupt as well as graded junctions have been examined in this simulation study using an 

effective oxide thickness as specified by ITRS-99 (year 2014 generation transistor). In 

this section we analyze the issues outlined in the Introduction. 
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Fig. 6.1. Sketch of the double-gate MOSFET fabricated by Tai-Chi Su et al. [23] and the 
idealized device structure used in our study. Current flow is along the x-direction, the 

gate confinement is in the y-direction, and the width of the device is along the z direction. 
 
 
6.3.1 Device design 

Figure 6.2 is a plot of the threshold voltage sensitivity to channel length around LG  = 

10 nm, the threshold voltage is defined at a current value of 1 µA/µm when VDS = VDD = 

0.6 V. This quantity, GTH dLdV / , is plotted as a function of silicon film thickness and 

gate dielectric constantκ  (The equivalent oxide thickness is 0.6 nm in all cases). The 
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maximum acceptable variation in the threshold voltage is chosen to be 50 mV. Use of a 

high κ  gate material permits a thicker physical insulator which helps meet the gate 

leakage requirement but degrades short channel immunity thus reducing the maximum 

silicon film thickness that can be used [4, 112]. Mobility in thin silicon films could be 

extremely low [113]. Therefore, our aim is to try to maximize κ  and TSi simultaneously 

while trying to minimize threshold voltage rolloff and gate leakage. The best combination 

of κ  and TSi isκ =19.5 (physical insulator thickness Tins (physical) = 3 nm) and TSi = 3 

nm. Figure 6.3, which shows the subthreshold swing vs. TSi for differentκ  materials 

yields a similar conclusion. A subthreshold swing of 80 mV/decade is selected in order to 

efficiently turn off the device in case of reduced threshold voltage due to fluctuations. 

 

 
Fig. 6.2. Threshold voltage (defined at a current value of 1 µA/µm when VDS = VDD = 0.6 
V) variation for fluctuations in the gate length around LG  = 10 nm is plotted vs. silicon 

body thickness. Results for three different gate dielectric constants have been shown. The 
dashed line indicates the maximum permissible VTH variation to turn off the device in the 

worst case (10% LG variation, one lattice constant variation in TSi). 
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Fig. 6.3. Subthreshold swing vs. TSi for differentκ  materials. The dashed line indicates 
the maximum permissible subthreshold swing to turn off the device in the worst case. 

Both Fig.6.2 and Fig.6.3 provide a similar conclusion for the best combination of κ  and 
TSi  needed to achieve the desirable SCE for the LG =10 nm MOSFET under study. 

 

It is also important to look at the threshold voltage variation as a function of the 

silicon film thickness because fluctuations in thickness will produce a spread in THV . A 

one monolayer (~0.5 nm for silicon (100) planes) variation in the film thickness as a 

result of fabrication uncertainties could cause a 20% variation in body thickness for the 3 

nm body. Figure 6.4, is a plot of THVΔ vs. TSi around TSi = 3nm from 1D non-self-

consistent (empirical expression based on a rectangular quantum well model [25]), 1D 

self-consistent, and 2D self-consistent solutions. Both, non-self-consistent 1D and self-

consistent 1D solutions under-predict the threshold voltage variation with body thickness 

as they do not account for 2D short channel effects. However, self-consistent 2D 

simulations show that the threshold voltage change is within 50 mV for a 20% variation 

in TSi about TSi = 3nm, which is the assumed nominal body thickness. 
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Fig. 6.4. Threshold voltage sensitivity vs. body thickness around TSi = 3nm. Comparison 
between 1D analytical predictions (based on ideal rectangular well confinement, dashed 

lines with dots), 1D self-consistent MOS simulations (dashed lines), and 2D self-
consistent device (solid lines) simulations is shown. VTH fluctuations are shown on the 

left, and VTH sensitivity is shown on the right. 
 

With the silicon film thickness, TSi, and physical insulator thickness, Tins selected  

based on the aforementioned analysis, we look for suitable gate materials that would 

provide a nominal threshold voltage of ~ 0.15 V ( DDV×25.0 ). This threshold voltage was 

selected to account for subthreshold degradation due to channel length and silicon film 

thickness variations as discussed in previous paragraphs.  Figure 6.5 shows the charge 

density vs. gate voltage relation for five different gate designs: (I) symmetric N+-N+ poly-

germanium, (II) symmetric N+-N+ poly-silicon, (III) asymmetric N+-P+ poly-germanium, 

(IV) asymmetric N+-P+ poly-silicon, and (V) symmetric N+-N+ poly-silicon with a back 

gate bias of –0.9 V. It should be noted that all of the results in Fig. 6.5, are from 1D 

Schrödinger-Poisson simulations and do not account for 2D short channel effects that 

lower the threshold voltage. Thus the threshold voltage predictions in Fig. 6.5 have to be 

corrected to account for these 2D effects. On making the corrections (about 0.1 V), it is 

seen that due to the use of an intrinsic body and a thin effective oxide, the symmetric N+-

N+ poly-silicon and poly-germanium gates yield low threshold voltages.  The asymmetric 
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N+-P+ design, however, with its strong quantum confinement results in a very high 

threshold voltage for both poly-silicon and poly-germanium gates [47]. It seems 

impossible to obtain an appropriate gate material that would provide the desired threshold 

voltage. Therefore the threshold voltage requirement of ~ 0.15 V is met by using a 

symmetric N+-N+ poly-silicon gate with a back gate bias (-0.9 V) increasing circuit 

design complexity. It should be noted that this threshold voltage meets the off-current 

requirement (160 nA/µm) in the worst case when both, channel length and body 

thickness exhibit maximum variation (see Table 6.2). 

 
Fig. 6.5. Inversion electron density vs. gate bias for five different gate designs. TSi  = 

3nm, and TOX (Phys) = 3nm (TOX (Eff) = 0.6 nm) for both top and bottom gates. I) N+/ N+ 
poly-germanium gate, II) N+/ N+ poly-silicon gate, III) N+/P+ poly-germanium gate, IV) 
N+/P+ poly-silicon gate, and V) N+/N+ poly-silicon gate with a back gate bias of -0.9V. 

Note that Fig. 6.5 has to be corrected to account for 2D SCE degradations. On making the 
corrections, threshold voltage requirement of ~ 0.15 V can only be met by using a 

symmetric N+ /N+ poly-silicon gate with a back gate bias (-0.9 V). 
 

It has been pointed out in the literature that the use of an asymmetric gate design, 

especially in case of thick body DG MOSFETs degrades short channel immunity [114]. 

Channel charge is primarily confined to a region near one gate and does not effectively 

screen the drain electric field from penetrating the source. However, the use of a thin 

I II III VIV
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body in our device structure ensures that despite using an asymmetric gate and shifting 

the charge centroid towards one gate, we still have enough body charge to effectively 

screen the effect of the drain. This ensures that we obtain the same degree of short 

channel immunity with our asymmetric device structure as we would if a symmetric 

device structure had been used instead.  

 

Due to the use of a very thin effective gate oxide, it may be expected that poly-

depletion will strongly degrade the total gate capacitance. As shown in Fig. 6.6, which 

plots the inversion layer density vs. gate voltage for different levels of polysilicon 

doping, this degradation is not pronounced (~ 10%) for two reasons: 1) The use of an 

asymmetric structure ensures that the bottom gate is accumulated and contributions to 

poly depletion are from the top gate alone and 2) The degradation of the total gate 

capacitance is primarily due to the silicon film rather than the poly or the oxide because 

of the use of an intrinsic body and the quantum mechanical nature of the charge 

distribution within the body. Thus, although the effective oxide thickness is very small, 

poly-depletion effects are not pronounced. It should be noted that different levels of poly-

silicon doping result in different work functions for the gate. Therefore in order to assess 

the effect of poly-depletion alone, the plots in Fig. 6.6 were corrected to account for 

differences in threshold voltage. The effective gate capacitance ( EFFC ) as extracted from 

the slope of SN  versus GSV  in Fig. 6.6 is only ~50% of the oxide capacitance ( OXC ) as 

defined by OXo T/κε . CEFF  is the overall gate capacitance of  a series combination of Cinv 

and COX, as the oxide and inversion capacitances become comparable, CEFF is degraded 

considerably. This result is consistent with that reported in [28]. Also note that for such a 

thin body SiT = 3 nm, the gate symmetry has little effect on the electron distribution. The 

electron centroid is very close to the body middle line. Even a symmetrical gate design 

(with midgate workfunction gate contacts) can not make appreciable difference in Cinv, 

therefore on CEFF. 
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Fig. 6.6. Poly-depletion effects on inversion electron density are shown through 1D MOS 
simulations. Compared to metal gates (solid line), 20101× cm-3 poly-silicon gates (dashed 
line) and 21102.1 × cm-3 poly-silicon gates (dashed line) show ~20% to ~10% reductions 

in the effective gate capacitance. 
 

Table 6.1 
 Structural specifications of the simulated model double gate MOSFET. 

Parameter Value 

)( calmetallurgiLG  10 nm 

SiT  3.0 nm 

insT  (physical) 3.0 nm 

OXT (effective) 0.6 nm 

SDL  10 nm 

UL   

SDN  

0.0 nm 

1020
 cm-3 

BN  

SDσ  

1016
 cm-3 

1.0 nm/dec 

 

Metal 

Poly Si 3102.1 21 −×= cmND  

Poly Si 3100.1 20 −×= cmND  
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 In Table 6.1, )( physicalTins  is the physical gate insulator thickness, while 

)(effectiveTOX is the equivalent SiO2 thickness. A dielectric constant of 19.5 is assumed 

for the gate oxide. SDN  and BN  are source/drain and channel doping concentrations, 

respectively. SDL  and UL  are source/ drain extension and gate underlap lengths, SDσ  is 

the gradient of Gaussian source/drain profile. Discussions on UL and SDσ  can be found 

in Section 3.3. 

 

6.3.2 I-V characteristics in the ballistic limit 
We now focus on the physics of ballistic transport for the device structure presented 

in Table 6.1. Figure 6.7 shows the IDS vs. VGS characteristics for the nominal device in the 

ballistic limit at different drain voltages from both Boltzmann (semiclassical) and 

Green’s function (quantum) simulators. The semiclassical solution accounts for quantum 

effects in the confinement direction alone, while the quantum solution accounts for 

quantum effects in both the confinement and the transmission directions. The predicted 

off-current from the quantum simulator is higher as a result of tunneling through the 

source barrier, an effect that not captured by the semiclassical simulator. The current 

characteristics indicate that transport in this nanoscale transistor is essentially classical. 

(Quantum confinement effects normal to the channel lead to substantial VTH shifts, but 

quantum effects along the channel are weak). Quantum effects do not affect device 

electrostatics as seen from the same degree of DIBL observed in both quantum and 

semiclassical solutions. 

 

Figure 6.8 shows the IDS vs. VDS characteristics in the ballistic limit at two different 

gate voltages. It can be seen that at low VGS the quantum solution always predicts a lower 

current as compared to its semiclassical counterpart. However, at high VGS the quantum 

currents that begin lower actually become higher than their corresponding semiclassical 

values as VDS is increased. These trends can be understood when one looks at the areal 

electron density and injection velocity at the top of the potential barrier at high VGS (Fig. 
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6.9). The 2D charge at the top of the barrier consists of both tunneling as well as 

thermionic components. Thus, although the quantum simulator predicts a higher charge at 

the top of the potential barrier due to source tunneling, these carriers have low velocities. 

Therefore the current from quantum simulations is initially low (at low VDS). However, as 

we continue to increase VDS, the low source barrier also shrinks in width. Therefore the 

amount of tunneling charge increases. Thus although these carriers have low velocities, 

the tunneling charge contribution becomes significant. This finally results in a higher 

quantum current in the on-state for this device.  

 
Fig. 6.7. IDS vs. VGS based on the classical (dashed lines) and quantum (solid lines) 

ballistic simulations for the LG = 10nm, TSi = 3nm device. Biased back gate is used to 
obtain VTH of ~0.15 V. Drain biases are 0.05 V and 0.6 V, respectively. Quantum 

simulations show similar amount of DIBL (75mV/V) as compared to classical 
simulations, but larger subthreshold swing and higher off-state current due to quantum 

tunneling through the source-to-channel barrier. 
 

Note that in a previous study [62], the source to channel barrier was relatively high. 

The tunneling charge contribution was not as significant as we show here, resulting in a 

quantum on-current that was lower than the classical result. This is similar to the low VGS 

case (VGS = 0.5 V) as seen in Fig. 6.8. It should also be noted that the quantum charge 

density shows some oscillations due to interference effects. However, when Poisson 

VDS = 0.6V 

VDS = 0.05V 
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equation is solved for the potential, these local charge oscillations are washed out, 

resulting in a smooth potential profile. Electron transmission (current), which is a 

function of the overall potential profile varies smoothly with increasing VDS. Thus the 

quantum current does not reflect the observed local charge oscillations. 

 
Fig. 6.8. IDS vs. VDS using classical (dashed lines) and quantum (solid lines) ballistic 
simulations for the LG = 10 nm, TSi = 3 nm device. Gate biases are 0.5 V and 0.6 V, 

respectively. 
 

Figure 6.10 shows the energy profiles along the channel for both the primed and the 

unprimed subbands and Fig. 6.11 their corresponding charge contributions. In the channel 

region, the charge density is relatively low compared to the source/drain regions. 

Therefore the first unprimed subband accounts for almost all of the channel charge. This 

results in the high injection velocities observed in Fig. 6.9. However, due to the high 

donor density in the source/drain, we see that the higher subbands also contribute 

significantly to the total 2D charge in those regions, thus rendering a single subband 

treatment inadequate. From a semiclassical point of view, the four primed subbands are 

electrostatically equivalent although electrons in two of these subbands respond with a 

heavy mass while those in the other two respond with a light mass in the channel 

direction. This is because the four primed subbands, within the semiclassical framework, 

VGS = 0.6V 

VGS = 0.5V 
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have the same density of states effective mass. However, it can be seen from the quantum 

charge density profiles, that the four primed subbands are actually not equivalent. 

Carriers in those primed subbands that respond with a heavy mass behave in a classical 

manner as compared to those that respond with a light mass in the transmission direction. 

The charge density contributions from the light subbands (primed) are pushed away from 

the source barrier along the channel and also exhibit a higher degree of tunneling into the 

forbidden energy regions due to quantum effects along the channel direction. Other 

researchers also reported this effect, and they believed that this effect could improve short 

channel effects because the charge repulsion from the channel barrier makes the channel 

length effectively longer  [115]. We do not observe the improvement, and actually find 

that electron tunneling into the channel forbidden energy regions increases the off-

current. 

 
Fig. 6.9. Electron injection velocity (on the left) and areal density (on the right) at the 

channel beginning region are plotted vs. VDS. VGS is 0.6 V. The solid lines indicate results 
from quantum ballistic simulations, while the dashed lines represent results from classical 

ballistic simulations. 
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Fig. 6.10. Subband profiles along the channel simulated using the quantum ballistic 
model at VGS = VDS = VDD.  Solid lines represent the unprimed ladder of subbands (heavy 

mass in the confinement direction) and dashed lines represent the primed ladder of 
subbands (light mass in the confinement direction). 

 

 
Fig. 6.11. 2D charge density profiles along the channel simulated using the quantum 
ballistic model at VGS = VDS = VDD.  The total 2D electron density in the source/drain 
regions equals the total dopant density ensuring charge neutrality. Due to different 

effective masses in the channel direction, primed subband charge distributions exhibit 
varying degrees of quantum effect (crossed and dashed lines). 

Primed ladder 

Unprimed ladder 

Primed ladder Unprimed ladder 

Total carrier 
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6.3.3 I-V characteristics with scattering 
  The first step in simulating dissipative transport through Büttiker-probes is to 

calibrate the state lifetime in the quantum simulations to an equivalent mobility. We 

assume that the primary scattering mechanisms in our model device are due to ionized 

impurities ( Iµ ) and surface roughness ( SRµ ). The resultant mobility is obtained using 

Mathissen’s rule, 

 

    
SRI µµµ
111

+= .     (6.6) 

 

In the channel region, the doping concentration is low, and the use of an ultra-thin 

body causes the charge centroid to be very close to the Si/SiO2 interface. Therefore 

channel mobility is expected to be primarily determined by surface roughness scattering. 

In order to quantify surface scattering in our device, we performed 1D simulations in 

bulk MOS capacitors to evaluate the distance (Tinv) of the charge centroid from the 

oxide/silicon interface at different average vertical electric fields (Eeff). The effective 

surface roughness scattering mobility ( SRµ ) is computed using the Bell labs mobility 

model in the universal region [116]. Since surface roughness scattering is primarily 

characterized by Tinv, and both Tinv and SRµ  are functions of Eeff, we can directly relate 

SRµ  to Tinv. Although this derived mobility applies to a bulk MOSFET, we assume that it 

provides a rough estimate of carrier mobility in our ultra-thin body in regions where 

surface roughness scattering dominates. It is worth noting that the computed SRµ  vs. Tinv 

curves do not show strong universality for different levels of bulk doping concentrations.  

 

The curve shown in Fig. 6.12 is simulated using a doping concentration of 18105×  

cm-3 and should be viewed as an average estimation. Using this approach, we estimate the 

electron mobility due to surface roughness scattering in the TSi = 3 nm double gate 

MOSFET to be 200 cm2/V-s. This mobility value was extracted at a high gate bias (VGS = 
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0.6 V) which corresponds to the on-state of device operation. The dashed line in Fig. 6.12 

indicates the centroid of electrons from the top Si/SiO2 interface at VGS = 0.6 V.   

 
Fig.6.12. Mobility vs. electron inversion layer thickness is plotted by simulating a 1D 
bulk MOS capacitor using the Bell Labs model [116]. The dashed line indicates the 

average distance of inversion layer electrons from the top Si/SiO2 interface in our model 
device at VGS = VDD. The estimated channel mobility in our device is 200 cm2/V-s. 

 

In the source/drain regions, the doping concentration is high. The Caughey-Thomas 

model was used to obtain mobility as a function of doping density [117]. High doping 

concentrations in the source/drain regions and the use of a thin body, result in mobility 

degradation (mobility as low as ~50 cm2/V-s) due to surface roughness as well as ionized 

impurity scattering in these regions. Thus the use of a position dependent mobility 

enables us model the source/drain extension and tip resistances accurately.  

 

It has been pointed out in the literature that source/drain abruptness and gate overlap 

are important device design parameters in case of end-of-the-roadmap generation 

transistors [22, 112]. Therefore, we quantify the effect of gate overlap and source/drain 

junction abruptness on the performance of our model device using the scattering model 

outlined in Sec. II. A source/drain abruptness of 1-2 nm/decade using Gaussian doping 
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profiles has been examined. The gate overlap is varied from –2 nm to +4 nm (negative 

overlap implies that the gate actually underlaps the channel region) with the metallurgical 

junction length fixed at 10 nm. It is clearly seen from Fig. 6.13, that a more abrupt 

junction (1 nm/decade) gives a better on-current performance (~ 20%) due to reduced 

parasitic resistances (mainly the tip resistance). However, the on-current variation with 

gate overlap does not exhibit a monotonic trend. When the gate underlaps the channel 

region, it cannot effectively modulate the source-to-channel barrier. This implies an 

increased tip resistance that accounts for the observed decrease in on-current. As the gate 

overlap is increased, we find that the on-current that initially increases, begin to decrease 

at high gate overlap values. This trend can be explained from an electrostatic point of 

view. The effect of increased gate overlap, is to flatten the potential profile over a longer 

distance as we move from source to drain. This reduces the effective channel electric 

field at the beginning of the channel thus increasing the channel reflection coefficient 

leading to a reduced on-current [55]. 

 
Fig.6.13. Device performance vs. gate overlap/underlap is plotted for two different 

source/drain junction gradients. Steep gradients improve device performance 
significantly. Optimized gate alignment (neither too much overlap or underlap) is also 

important for better performance. 
 

S/D Gradient 
1nm/dec 

S/D Gradient 
2nm/dec 



 - 152 - 

 

Figure 6.14, is a plot of the sheet resistivity vs. position along the channel. Sheet 

resistivity is derived at low VDS using the following expression [15], 

 

   
WI
xV

DS
sh /

/ ∂∂
=ρ        (6.7) 

 

where, V(x) is the Fermi potential at a point x along the channel and IDS is a constant 

independent of x as required by current continuity and evaluated in the linear region (VGS 

= 0.6 V, VDS = 0.01 V). The non-uniform sheet resistivity in the channel direction can be 

divided into the following regions: 1) quantum contact resistance region, 2) source/drain 

extension resistance region, 3) tip resistance region and 4) channel resistance region. In 

the case of a graded junction, it can be seen that the tip resistance is higher and spreads to 

a greater degree into the source/drain extensions as compared to an abrupt junction. This 

enables the gate voltage to modulate the tip resistance to a greater extent in case of abrupt 

junctions. Thus junction abruptness is necessary to obtain high on-currents (Fig. 6.13).  

 
Fig.6.14. Sheet resistivity is plotted along the channel in the linear region (VGS = VDD, VDS 

= 10 mV). The various components of the device resistance are: 1) quantum contact 
resistance 2) source/drain extension resistance 3) tip resistance and 4) channel resistance. 

It can be clearly seen that tip resistance contributes significantly to the overall device 
resistance for the LG = 10 nm model device. 

S/D Gradient 
1nm/dec 

Abrupt S/D  

LG = 10 nm 

1) 2) 2) 3) 1) 4) 3) 
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It should be noted that non-equilibrium conditions prevail at the interface between the 

contacts and the active device region in order to maintain current flow through the 

device. This implies a discontinuity in the Fermi potential at the contact/device interface 

thus resulting in the observed quantum contact resistance [28]. In the presence of strong 

scattering within the device, the quantum contact resistance represents a minor 

contribution to the overall device resistance. However, as the active device regions 

become more and more ballistic, contributions from the quantum contact resistance 

become significant. In the ballistic limit, the quantum contact resistance is the only 

resistance that is present and accounts for the finite ballistic current [28].  

 

Source/drain extension resistances pose important design issues for the future 

generation MOSFETs. In our model device the use of a thin body and high doping 

concentration in the source/drain extensions, results in a low mobility (~50 cm2/V-s) and 

high resistance in these regions as compared to a bulk device with deeper source/drain 

junctions. Also, the tip resistance is a significant fraction of the overall device resistance 

(~50%). Therefore, unlike long channel devices, the channel resistance does not dominate 

the I-V characteristics of ultra-scaled transistors. The total resistance in the linear region 

for our model device is ~160 -µm. This value is 30% of VDD/ION (ITRS-99 target is 10% 

of VDD/ION). It is clear that source/drain and tip doping engineering is necessary to reduce 

the linear region resistance. Note that in all of our simulations this far, there is no real 

metal-semiconductor contact resistance. Inclusion of this resistance would further reduce 

the performance of our device. 

 

The applied voltage is equal to the Fermi level offset between the source and drain 

contacts. This voltage is dropped across the various resistance components mentioned in 

the previous section. Due to the high channel resistance at low VGS, most of this applied 

voltage is dropped in the channel region as shown in Fig. 6.15. The voltage drop in the 

source/drain extensions and at the contacts is relatively low. However, as the gate voltage 

is increased, the channel conductivity increases. Therefore the voltage dropped in the 
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channel region is reduced. This leads to a flattened Fermi potential profile in the channel 

and large voltage drops in the contact, source/drain and tip regions. In the ballistic limit, 

there is no mechanism responsible for an internal voltage drop and all of the applied 

voltage is dropped across the contact/device interface resulting in a finite ballistic current. 

 
Fig.6.15. Fermi energy along the channel is plotted at different gate voltages. The 

source/drain junction gradient is 1nm/decade and the drain voltage is 10 mV. As the gate 
voltage is increased, channel resistance is reduced and contact resistance is increased. 

 

Real devices operate below the ballistic limit because of carrier scattering. Mobility, 

in our device is estimated using eqn. 6.6. In the channel region, carrier mobility is 

primarily determined by the extent of surface roughness scattering as the body doping is 

extremely low. However, in the heavily doped source/drain extensions, carrier mobility is 

a function of both surface roughness and ionized impurity scattering. The IDS vs. VDS 

characteristics, assuming a channel mobility of 200 cm2/V-s and a source/drain junction 

gradient of 1nm/decade is shown in Fig. 6.16.  

 

VGS = 0.5V 

VGS = 0.7V 

VGS = 0.3V 

LG = 10 nm 
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Fig. 6.16. The IDS vs. VDS characteristics for the LG = 10 nm, TSi = 3 nm device, assuming 
a channel mobility of 200 cm2/V-s and a source/drain junction gradient of 1nm/decade. 

 

It is in our interest to examine the on-current performance of our device vs. channel 

mobility (see Fig. 6.17), assuming that superior interface engineering could actually 

reduce the extent of surface roughness scattering in the channel region. The pure ballistic 

result (no scattering anywhere within the device region) is also plotted in Fig. 6.17 for 

comparison purposes. It can be seen the on-current initially increases linearly with 

increase in channel mobility. However, as channel mobilities increase beyond 100 

cm2/V-s, carrier transport in the channel region becomes quasi ballistic and insensitive to 

the channel mobility. The on-current in this regime, is limited by the parasitic 

source/drain and tip resistances and clamped around 1000 µA/µm (no metal–

semiconductor contact resistance included in the simulations). These results indicate that 

the ITRS-99 on-current target of 1500 µA/µm for double gate MOSFETs cannot be met 

even under the assumption of ballistic transport in the channel region of the LG = 10 nm 

MOSFET. It seems that for future generation transistors, engineering the source/drain, tip 

and contact regions to reduce parasitic resistances is more important as compared to 

channel engineering. A possible solution would be the use of an extremely small 

extension region whose length would be ultimately limited by parasitic gate-to- 

VGS = 0.55V 

VGS = 0.6V 

VGS = 0.5V 
VGS = 0.45V 



 - 156 - 

 

source/drain capacitance requirements, by reducing the source/drain junction abruptness 

to less than1 nm/decade, and by employing big fanned out source/drain regions for large 

contact areas.  

 
Fig.6.17. Device performance vs. channel mobility including the effect of parasitic 
resistances is compared to the ballistic limit (no contact resistance). It is clear that 

parasitic resistances limit device performance because very high channel mobilities yield 
on-currents much below the ultimate limit. 

 

6.3.4 Gate tunneling 
 Quantum tunneling into the insulator affects the electrostatics within the device. and 

generates gate leakage current. From the electrostatic point of view, electron 

wavefunction penetration into the insulator region, relaxes the body quantum 

confinement resulting in a reduced threshold voltage. This reduction in threshold voltage 

is more pronounced in case of ultra-thin bodies because higher electron confinement 

energies in these ultra-thin bodies can cause significant penetration (in our model device 

with a body thickness of 3 nm, this threshold voltage shift was not significant). This 

threshold voltage reduction increases the off-current. In the on-state, electron penetration 

effects are stronger due to the high gate voltage resulting in an increased effective body 

thickness (wider quantum well). Therefore, the separation between subbands is reduced, 

Ballistic limit 
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increasing the carrier concentrations in high energy subbands. The 2D charge density in 

the inversion layer is increased but the average injection velocity in the channel direction 

is reduced compared to a device exhibiting idealized body confinement. Since the on-

current is a product of the 2D charge density and the average injection velocity, the 

overall effect of electron penetration is a relatively unchanged on-current. 

 

The constant field scaling method maintains the same VDD/TOX (physical) for 

successive technology generations to maintain device reliability. As the physical oxide 

thickness is reduced while maintaining a constant electric field, the gate leakage current 

increases exponentially. It has been reported in the literature that SiO2 cannot be used as a 

gate insulator when the physical oxide thickness is less than 1 nm [112]. A high κ  gate 

material has to be used instead. An acceptable level of gate leakage density for a 

technology generation is estimated based on the acceptable off-current [2]. It has been 

recently reported that a gate leakage density of 100 A/cm2 is acceptable to meet the 

performance requirements for nanoscale MOSFETs [112]. We use this current density 

level as a reference to assess gate leakage within our model device. The use of a high κ  

material in our device structure, will cause the band off-set between the silicon film and 

the gate insulator to be reduced. A high κ  material also enables us to use a thick 

insulator. Due to the increased thickness and reduced barrier height of the gate insulator, 

we assume that Fowler-Nordheim tunneling will be the primary mechanism inducing gate 

leakage [15, 66]. The conduction band offset between the semiconductor and insulator 

was calibrated to obtain the reference leakage current density of 100 A/cm2.  

 

Fig. 6.18 illustrates the leakage current distribution along the gate for our model 

device generated using the Fowler-Nordheim model as a post processing operation. It is 

clear from Fig. 6.18 that the leakage current distribution is highly non-uniform. The 

current density is negligible over most of the channel region, but attains very high values 

near the drain side of the device. This is because vertical electric fields are strongest near 

the drain side due to the high gate to drain bias in the off-state. Therefore, estimating the 

total gate current assuming a uniform leakage current density is erroneous. In fact the 
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gate leakage current assuming a uniform leakage current density of 100 A/cm2 is 10 

nA/µm, while our 2D calculations that capture the high current density contributions near 

the drain actually yield a value as high as 40 nA/µm. One might reduce gate leakage by 

engineering the insulator at the drain end of the device. Such engineering would leave the 

source end unaffected, thus resulting in relatively unchanged on-characteristics. 

 
Fig.6.18. Off-state gate leakage is plotted along the channel assuming a leakage density 

of 100 A/cm2. It should be noted that the current distribution is non-uniform with most of 
the leakage occurring at the drain side of the device. 

 

The maximum permissible off-current for the year 2014 generation transistor 

specified by ITRS-99 at an operating temperature of 25 0C is 160 nA/µm. The off-current 

could be much higher at 100 0C, due to a degradation of subthreshold characteristics with 

increasing temperature. For the model device under study the maximum permissible off-

currents have been presented at 25 0C and 100 0C in Fig. 6.19. We compare the total gate 

leakage current against IOFF at various gate leakage current density values for our model 

device. It can be seen from Fig. 6.19 that a gate leakage density of 100 A/cm2 provides a 

tolerable level of leakage current (40 nA/µm) compared to IOFF (160 nA/µm). Thus, a 

gate leakage density of 100 A/cm2 is feasible from a design point of view provided 

insulator reliability is guaranteed. Figure 6.19 also shows that a gate leakage density of 

2/100 cmAJGATE =

VGS = 0.0V 
VDS = 0.6V 
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1000 A/cm2 results in a leakage current which is significantly less than IOFF for operating 

temperatures of 100 0C.  

 
Fig.6.19. Estimated gate leakage current values are plotted vs. gate leakage density in the 

off-state, VGS = 0.0 V, VDS = 0.6 V. ITRS-99 specifications for the year 2014 transistor 
generation is also shown (dashed lines) for two operating temperatures. A leakage density 

of 100 A/cm2 provides an acceptable degree of gate leakage in our model device. 
 

6.4 Discussion 

It is clear from the results presented in the previous sections that several issues need 

to be considered when designing an LG = 10 nm DG MOSFET. The final performance of 

our model device is summarized in Table 6.2. In order to achieve good short channel 

characteristics at such small channel lengths, a thin silicon body needs to be used. It has 

been reported in the literature that a 5 nm body can meet the ITRS-99 specification of 

IOFF for a channel length of 10 nm [22]. In our study we find that if fabrication 

uncertainties are considered, the permissible value of body thickness needed to meet the 

off-current requirement is reduced to 3 nm. For this choice of silicon film thickness, a 

10% variation in the gate length along with a single monolayer variation in the body 

thickness results in a net threshold voltage degradation of ~80 mV. This degradation is 

~50% of the nominal threshold voltage. Had a thicker body been used, this variation 

CoIOFF 100

CoIOFF 25
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would be more pronounced as a result of reduced short-channel immunity. It appears that 

a very high degree of fabrication accuracy will be required to produce such small 

transistors.  

 

Table 6.2 also indicates that for a 3 nm body with a nominal threshold voltage chosen 

to be ~0.15V, the nominal off-current at room temperature could be as low as 6 nA/µm. 

However, in the worst case (10% reduction in channel length and one monolayer increase 

in body thickness) the off-current could be as high as 130 nA/µm which is still below the 

ITRS-99 requirement.  

 

It has been shown that an asymmetric N+-P+ polysilicon gate design provides an 

acceptable threshold voltage for a silicon film thickness of 10 nm [47]. However, as the 

silicon film thickness is reduced quantum confinement effects increase the threshold 

voltage. Our study indicates that as the body thickness is reduced, it is no longer possible 

to use an N+-P+ polysilicon gate, and one would have to resort to using exotic gate 

materials to meet the threshold voltage requirement. Searching for exotic gate materials 

as the body thickness is varied seems to be a very difficult task. Incorporating a new 

material into existing technology is even more practically formidable. An alternate 

solution is to employ a back-gate bias in order to adjust the threshold voltage. This 

introduces an additional power supply complicating the layout and circuit design unless a 

more tractable solution is obtained in the future.  

 

The on-current in our model device is severely degraded as a result of quantum 

contact, source/drain extension and tip parasitic resistances. No contact resistance has 

been included in our study this far. A commercial simulator can be used to estimate the 

contact resistance by simulating the fanned out region of the contact as illustrated in Fig. 

6.20. We assume an optimistic value of the contact resistance of 10-8 -cm2 as specified 

by the ITRS-99 for the year 2014 technology generation. The length of the fanned out 

region is chosen to be equal to the source/drain extension lengths. The calculation 

indicates that the contact resistance on either side of the device is 100 - m, thus 
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resulting in a total parasitic source resistance of 180 - m. The contact resistance 

reduces the effective gate voltage resulting in a drop in the on-current. This reduced on-

current can be estimated from the results plotted in Fig. 6.16 (includes all resistances 

except the contact resistance) using a bisection scheme. The maximum on-current we 

finally obtain from our model device is 650 A/ m. Based on this on-current we find that 

the parasitic source resistance in our device is ~ 20% of VDD/ION. Note that in making this 

estimate, we have assumed a very optimistic value of cρ = 10-8 -cm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6.20. Top and side views of the double-gate MOSFET followed by the simulation 
domain used to estimate the contact resistance. Current flow lines are indicated within the 

simulation domain. 
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One could reduce the source/drain extension resistances by shrinking the length of the 

source/drain regions. Such a solution, however, would introduce a large gate-to-

source/drain capacitance degrading circuit performance significantly. Moreover the tip 

and contact resistances are unaffected by the reduction in source/drain extension lengths 

and will continue to degrade the on-current performance in any case. The parasitic 

resistance limits the final on-current to just ~30% of the ballistic limit in our model 

device. Furthermore, dimensional uncertainty also degrades the on-current, which in the 

worst case (10% increase in the channel length and one monolayer decrease in body 

thickness) could be as low as 500 A/ m. It seems that the critical issues affecting 

device performance of future generation transistors are device parasitics, which degrade 

the on-current and dimensional stability, which affect both the on and the off-currents. 

 

Table 6.2 
Computed performance of the model double-gate MOSFET. 

 

Parameter Nominal Worst Case 

DDV  0.6 V  

THV  0.15 V ±  80 mV 

S 75 mV/V  

DIBL 80 mV/dec  

OXeff CC /  ~0.5   

ONI  650 A/ m 500 A/ m 

B = ONI / BALLI  30%  

CI o
OFF 25@  6 nA/ m 130 nA/ m 

@GateI  JGate = 100 A/cm2 40 nA/ m  

sourceRPar @  180 - m  

ONDDCh IVR /≡   900 - m  
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6.5 Summary 
In this chapter we examined the device design issues for an n-channel double gate 

MOSFET with a metallurgical gate length of 10 nm. The device structure was engineered 

to meet the ITRS-99 specifications for the year 2014 transistor generation. Our 

simulations show that, 

 

• Ultra-thin bodies (TSi = 3 nm) and extremely thin effective oxides (TOX 

(effective) = 0.6 nm) are needed in order to suppress short channel effects and 

maximize channel inversion charge density.  

 

• 10% fluctuations in LG and TSi will lead to ~50% fluctuations in VTH (as 

compared to ~15% for present-day technology). 

 

• The quantum mechanical nature of the charge distribution in the body causes 

the inversion layer thickness to be comparable to the ultra-thin effective oxide 

thickness thus significantly reducing the effective gate capacitance 

( OXeff CC / ~0.5). 

 

• Use of an ultra-thin silicon body increases surface roughness scattering, which 

in turn reduces the channel mobility (< 200 cm2/V-s). 

 

• It is difficult to find a suitable gate material in order to achieve the right 

threshold voltage for this transistor generation. A possible solution would 

involve the use of a back gate bias, which complicates circuit design.  

 

• Device performance is limited by parasitic resistances. In long channel 

devices, channel transport significantly affects device performance. However, 

at the length scale considered in our study, even the occurrence of quasi 
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ballistic transport in the channel resulted in an on-current far below the 

ultimate ballistic limit. 

 

•  The junction tip and contact resistances provide the most significant 

contribution to the overall device resistance. Extremely abrupt source/drain 

junctions and large flared out contacts would be needed to minimize parasitic 

resistances. Accurate gate alignment would also help improve device 

performance.  

 

• With VDD = 0.6 V it is difficult to simultaneously achieve the on and off-

current targets.  

 

• The gate leakage current distribution is extremely non-uniform with most of 

the leakage occurring over a small region near the drain. Gate oxide 

engineering at the drain end will present an important design consideration as 

dielectric dimensions are scaled in the future. 

 

In summary, we have performed a comprehensive simulation study of double gate 

MOSFETs which shows that channel length at the 10 nm scale should be feasible. The 

device was idealized in number of ways, notably the assumption of a high-κ  gate 

dielectric and an especially low metal-semiconductor contact resistance. Even with these 

optimistic assumptions, however, our study shows that it will be extremely difficult to 

achieve the desired device performance targets. The study identified issues that will need 

to be addressed. New channel materials with high mobility would be especially helpful, 

but appears that these issues will also to be addressed by circuit design and system 

architecture. 

 

 

 



 - 165 - 

 

 

 
 

7. CONCLUSION 
 

7.1 Summary 
This thesis addressed device physics, modeling and design issues of nanoscale 

transistors at the quantum levels. The device structures studied were double gate 

MOSFETs, with extremely scaled channel lengths (less than 30 nm) and body 

thicknesses (less than 5 nm). To accomplish the objectives, simulation tools were 

developed [49, 110]. The fundamental physics equations that were solved include the 

Poisson equation, which dictates the electrostatics in the devices, and the Schrödinger 

equation, which describes the transport and distribution of carriers in the devices.  

 

The first stage of the work focused on simulations of 1D MOS structures, in which 

the 2D carrier gas was studied in the equilibrium state. The study of the 2D carrier gas 

revealed important quantum effects related to gate confinement in MOSFETs.  We found 

that for DG MOSFETs with ultra-thin bodies ( SiT < 3.0 nm): i) sensitivity of THV  to SiT  

becomes significant, increasing the difficulty to control THV , ii) electron penetration into 

gate oxide layers becomes considerable, affecting both THV  and EFFC , iii) a one subband 

approximation is satisfactory in simulating devices, and iv) occupation degeneracy may 

strongly enhance injυ . We also found that for the n+/p+ asymmetric MOSFETs ( SiT ~10 

nm), gate charge coupling can provide the desired THV  and extraordinarily high EffC .  

 

The second stage of the work constitutes the primary portion of this thesis. We 

developed a 2D simulator for nanoscale double-gate MOSFETs (nanoMOS) [110]. The 

program solves open-boundary transport problems using a non-equilibrium Green’s 

function (NEGF) formalism. We were one of the first reported groups to apply the NEGF 

in simulating MOSFETs. We examined both ballistic transport (Chapter 3) and 
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dissipative transport (Chapter 4) in MOSFETs. In the former case, we focused on 

quantum transport features occurring in extremely scaled MOSFETs by contrasting 

quantum solutions to semiclassical solutions (Appendix B). In the latter case, we 

implemented and compared different scattering models in the effort of pursuing an 

appropriate dissipative transport modeling. We began the dissipative transport study by 

describing the Büttiker probe based scattering models where scattering centers are treated 

as reservoirs that change the energy or momentum of the carriers and not the total 

number of carriers in the system. Each scattering center is modeled through a 

perturbation strength characterized by a position dependent self-energy, which can be 

mapped onto an equivalent mobility. We then described a simplified phonon-electron 

scattering. The phonon-electron scattering model provides a more theoretical sound 

benchmark, helping us better understand a specific scattering process. 

 

Using a model 10 nm double-gate MOSFET as a vehicle, we conducted extensive 

device physics and design simulation studies (see Chapter 5 and Chapter 6) with the 

approaches developed in this work. Important conclusions are: i) MOSFETs essentially 

operate as classical devices until the channel length shrinks below about 10 nm, when 

quantum tunneling through the channel barrier becomes significant, limiting device 

scaling, ii) solving the Green’s function in a mode space representation can greatly 

reduce the size of the problem and provides good accuracy as compared to full 2D spatial 

discretization, iii) the Büttiker probe model captures the physics of dissipative transport 

in MOSFETs, and is computationally affordable at a PC level, iv) future devices may 

intrinsically operate very close to the ballistic limit, but their extrinsic performance will 

be limited by device parasitics and the desired level of dimensional control, rather than 

channel mobility engineering.  

 

7.2 Future work 
There could be three immediate extensions to this work, we describe them one by one 

as follows.  
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1) The NEGF approach can be used to simulate gate oxide leakage characteristics of 1D 

MOS structures. Currently, the widely used method in modeling gate leakage is the 

WKB approximation [65, 118]. In this method quantum transmissions through the 

oxide layers are evaluated approximately in a post-process operation. The 

electrostatic profile is obtained separately, without considering the effects on the 

charge distribution of the tunneling current. In addition, incident electrons are 

represented by plane-waves, so the effects of 2D carriers in the inversion layer on the 

gate tunneling can never be properly assessed. The NEGF method, however, can 

exactly solve the transport problem, when coupled to the Poisson equation, providing 

a way of self-consistently assessing the gate leakage and electrostatics profile. As was 

illustrated in Chapter 4, this method also allows us to examine the energy spectrum of 

the leakage current, which distinguishes the contributions from the 2D discrete states 

and 3D continuous states.   

 

2) In Chapter 4, we described a methodology for simulating phonon-electron scattering 

in MOSFETs within the NEGF framework. The treatment was essentially one-

dimensional however, focusing on the longitudinal component of the transport. 

Scattering related to the transverse modes was not explicitly accounted for. Real 

devices are typically wide, involving a large numbers of transverse modes. It is 

important to incorporate a more rigorous method of treating the transverse mode 

contribution. In the discussion section of Chapter 4, we presented a theoretical recipe 

for characterizing 2D scattering in MOSFETs, but numerical solutions to the 2D 

problem have not been attempted in this work. Numerical implementation of this 

approach requires an extremely large computational capability, in addition to precious 

experiences with nanoscale device physics. Venupopal in the Device Simulation 

Group at Purdue is currently working on this project, generating some promising 

results [92]. 

 

3) Schottky Barrier MOSFETs recently have caught the attention of device engineers for 

their possible applications in future VLSI technology [119]. A Schottky Barrier 
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device has a relatively simple structure (no source and drain extension regions), and 

therefore shows promises of low parasitic resistance. Reported simulation studies of 

such devices have been primarily based on the WKB approximation or other 

empirical models in obtaining thermionic emission and quantum tunneling current 

components through the Schottky barriers [119-121]. These conventional approaches 

raise similar concerns to those we addressed in part 1, namely that current evaluation 

has to be done as a post-process operation, and neither tunneled charges within the 

barrier region nor quantum coherence between the source and drain barriers can be 

included in the semiclassical framework. As device channel lengths scale, these 

quantum effects may appreciably impact device performance. Therefore it is desirable 

to apply the NEGF formalism in the replacement of semiclassical approximations. 

Assuming ballistic transport within devices (refer to Chapter 3 in this thesis), Guo in 

the Device Simulation Group at Purdue is currently extending the NEGF method in 

modeling nanoscale Schottky barrier transistors [122]. 

 

The NEGF approach is a very powerful mathematical tool for addressing how a 

quantum-state evolutes temporally under a varieties of interactions within any tiny 

system (or quantum level device). As device scaling continues, novel structures/designs 

must eventually take over the role currently played by semiconductor-based transistors. 

Some recent works have brought carbon-tube and molecule-cluster based device 

structures into focus [123-126]. These new areas provide us plenty of opportunities to 

apply the NEGF approach at theoretical research levels. In principle, the NEGF 

formalism not only enables us to understand the microscopic phenomena, but also enable 

us to exploit the potential of them.  Moreover, it should be noted that this approach is 

applicable in all non-equilibrium systems, not limited to electron devices (see the 

introduction of  [9, 127]). 
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Appendix A  

Expressions for Constants Appearing in Equations in Chapter 2 
 

In Chapter 2, we described a simulation tool, Schred-2.0, which solves the 

Schrödinger-Poisson equation set self-consistently in 1D MOS structures. We presented 

there a list of formulae of how the program computes interesting quantities, such as 

carrier density, ballistic current and ballistic limit channel conductance, etc. To keep the 

chapter concise, some parameters in those formulae were not explicitly expressed. This 

appendix provides the complete expressions. 

 

 We assume that the SiO2/Si interface is parallel to the (100) plane, the channel 

transport direction is along [100]. We account for six valleys in the conduction band and 

heavy hole and light hole valleys in the valance band (see Fig. 2.1). The six valleys in the 

conduction band split into two sets of subbands, namely the unprimed set and primed set 

(see Chapter 2 for the definitions). We use simple parabolic E-k relations in all 

derivations. So there are two effective masses lm  and tm  in characterizing the 

conduction band valleys, where  

   

  el mm 98.0=  and et mm 19.0= , 301091.0 −×=em kg.  (A.1a) 

 

There are four effective masses tlm , llm , thm  and hlm  in characterizing the valance band 

valleys. For the light hole valley, we use tlm  to denote the effective mass responding in 

the transverse direction (or the gate confinement direction), and tlm  to denote the 

effective mass responding in the longitudinal direction (parallel to the gate surface). For 

the heavy hole valley, thm  and hlm  assume the similar meanings [52-53]. 
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  elt mm 20.0= , ell mm 169.0= , eht mm 29.0=  and ehl mm 433.0= .  (A.1b) 

 

 In terms of these effective masses, the density-of-state effective mass, Cm , and 

conductivity effective mass, Dm  can be defined. For the unprimed set electrons, they are  

 

     tC mm 4=  and tD mm 2= .    (A.2a) 

 

For the primed set electrons, they are 

 

    2)(4 ltC mmm +=  and ltD mmm 4= .   (A.2b) 

 

For heavy holes,  

 

      hlDC mmm == .    (A.3a) 

 

For light holes, 

 

      llDC mmm == .    (A.3b) 

 

Carrier density 

 In the carrier density expressions (see eqn. (2.3a) for electrons, and eqn. (2.3c) for 

holes),  

    Dn2  or 22 π
Tkmp BD

D = .    (A.4) 

 

Current density 

 In the current density expression, eqn. (2.5),  
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2/3

2 2
=

π
TkmqI BC

O ,    (A.5) 

 

where q  is the elementary charge constant. 

Ballistic channel conductance 

 In the conductance expression, eqn. (2.6),  

 

     
222/3

2 TkmqG BC
O π
= .    (A.6) 

 

In the expression of uni-directed thermal velocity of source-injected carriers, eqn. (2.7), 

 

     2

2

D

CB
T m

Tmk
π

υ = .     (A.7) 
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Appendix B 

1D Solution to Boltzmann transport equation in ballistic limit 
 

A 1D solution to the Boltzmann Transport Equation (BTE) in the ballistic limit can be 

obtained directly [128]. In our treatment, the quantum effect in ultra-thin body double 

gate MOSFETs is accounted for by solving the Schrödinger equation in the gate 

confinement direction. The solutions give rise to discrete subbands within which carriers 

(electrons in our case) are constrained. Since the device widths are assumed to be infinite 

and translational invariance holds, subband potential energies can only vary in one 

direction in response to different bias conditions. Therefore, a 1D solution is sufficient to 

describe the electron transport within the MOSFETs. (More precisely speaking, this 1D 

solution is actually a charge-sheet description.) The solution procedure can be illustrated 

through Fig. B1. 

 

 

 

 

  

 

 

 

 

 

Fig. B1. Real space and k-space distribution of electrons within a 1D subband in the 
ballistic transport limit. 
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The energy profile, 
jkiE , , illustrated in Fig. B1 represents subband, i, with a 

transverse direction (the y direction) quantum number, jk , as discussed in Chapter 3. 

This profile can be spatially divided into two regions: points to the left of the peak 

subband energy (region 1) and points to the right of the peak subband energy (region 2).  

In region 1, electrons with energy lower than PeakE  are in equilibrium with the source 

reservoir, electrons with energy higher than PeakE  are either coming from the source 

reservoir (right-going electrons) or coming from the drain reservoir (left-going electrons). 

In region 2 electrons can be sorted in the similar way. The two reservoirs are 

characterized by two Fermi potential energies Sµ  and Dµ . Based on the analyses given 

above, electron density along the subband, and current density at source/drain terminal 

can be easily obtained. 

 

1) Electron density 

The electron spatial density in region 1 of subband, 
jkiE , , can be written as, 
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where the subscript left stands for region 1. Fermi-Dirac statistics are assumed, and spin 

degeneracy is also included. To account for the contributions from all transverse modes, 

integration over 
jkE is needed, which gives 
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where the hat ~ means that all quantities are specified relative to the local subband 

potential )(xEi  and normalized to the thermal energy TkB . The areal electron density 

factor, Din2 , for subband, i, is 
22

** Tkmm
Byx

π
. To numerically accomplish the first integral 

in eqn. B.1b, a variable change, xEx ~
= , can be made to avoid the divergence difficulty 

at xE~ =0.  

  

 In the same way, the electron density in region 2 can be obtained, 
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The 2D density is then distributed according to the corresponding wavefunctions in 

the gate confinement direction (due to the quantum effect) to give the 3D density profile. 

Finally, summation over all relevant subbands has to be done for the total electron 

density. Note that in eqns. B.1b and B.1c, only a single conduction band valley has been 

considered. To account for contributions from all valleys, the expressions should be 

multiplied by the valley degeneracy factor, which is 4 for the unprimed subbands and 2 

for the primed subbands (refer to Chapter 2 for definitions of the sets of subbands).  

 

2) Terminal current 
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Following a very similar procedure, the terminal current can be computed. Since the 

current is conserved throughout the entire device, it can be evaluated at any cross section 

normal to the current flow direction. To keep the result general, we assume the cross 

section is located at x, which is to the left of the channel barrier peak (readers will see in a 

moment that the result is independent of x). Again, starting with the energy band, 
jkiE , , 

the current is given as 
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where */2 xx mE  represents the current related velocity derived from the parabolic E-k 

relationship. q is the elementary charge constant. Because of the opposite signs in 

electron velocity, the contribution from the first integral cancels that from the third 

integral. So eqn. B.2a becomes  
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Integrating over 
jkE gives  
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where the hat ~ assumes the same meaning as that in eqn. B.1b. The total current is the 

sum of contributions from all relevant valleys and subbands.  
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Appendix C  
nanoMOS2.0: A 2D-Simulator for Double-gate MOSFETs 

  

This brief document explains the procedure to run the program, nanoMOS2.0, on the 

Purdue Simulation Hub [110]. This program is a self-consistent (Poisson with a transport 

model) 2D-simulator for thin body (less than 5 nm), fully depleted, double gated, n-

MOSFETs (no holes). nanoMOS2.0 provides a choice of four transport models:  classical 

ballistic, quantum ballistic, drift-diffusion, and quantum dissipative. It should be noted 

that each of these models accounts for quantum effects in the confinement direction 

exactly, and the names indicate the method to treat transport in the channel direction.  

 

nanoMOS2.0 extends nanoMOS1.0 by adding a new quantum dissipative transport 

model. The new model treats scattering in MOSFETs through the Green’s function 

formalism using a simple Büttiker-probe model [41]. Scattering centers are treated as 

reservoirs similar to the source and drain except that they only change the energy of the 

carriers and not the total number of carriers in the system. Each scattering center is 

modeled through a perturbation strength characterized by a position dependent self-

energy,η , which can be mapped onto an equivalent mobility. For detailed discussion, 

reader may want to refer to Chapter 4 of this report. 

   

1) Running nanoMOS_2.0: 

In order to run nanoMOS2.0, an input file has to be specified. Creation of an input 

file is most easily achieved by copying an example file from the “EXAMPLES” directory 

to the working directory and modifying the example input file to simulate the desired 

problem. Each input file is divided into several directives. These directives are used to 

organize the input assignment statements into groups that characterize the device 
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geometry, transport model choice etc. For example, the format of the “device” directive 

looks like, 
device  nsd=1e20, nbody=0, lgtop=10, lgbot=10, lsd=7.5, overlap=0, 

+       tsi=1.5, tox_top=1.5, tox_bot=1.5, temp=300     

Each directive begins on a new line. First the directive name is specified, followed by the 

various assignment statements. If a directive statement is longer than one line, the 

continuation symbol “+”, must appear in the first column for the following lines. 

Commas or blanks are assumed to be separators between two assignments. However, 

neither tabs nor upper case letters may not be used anywhere in the input deck.  Also, an 

assignment statement cannot contain any blanks. For example 

nsd =  1e20  

is not allowed. The assignment should read, 

nsd=1e20. 

Comments can be added to the input deck by preceding the comment with a “$” sign. 

After creating the input deck, typing nanamos at the Matlab prompt results in a request 

for an input file. Specifying the input file name results in the start of a simulation. 

 
2) Description of parameters in the input file: 

Device 
nanoMOS2.0 is a 2D-simulator for thin body, fully depleted, double gated n-MOSFETs.  

A Gaussian distribution doping profile is assumed in the silicon body [129], and the gate 

is modeled as a metal with a user-specified work function. The parameters needed to 

generate the device structure and the coordinate system used in nanoMOS2.0 is 

illustrated in Fig. C1. 

 

The device structure is symmetric about the x-axis and the top oxide silicon interface 

represents the y=0 plane. The various parameters in the device directive are, 

nsd: Source/Drain doping concentration (cm-3) 

nbody: Body doping concentration (cm-3) 

lgtop: Length of the top gate (nm) 



 - 191 - 

lgbot: Length of the bottom gate (nm) 

lsd: Length of the Source/Drain (nm) 

overlap: Source/Drain extension length (nm) 

xchar: Horizontal characteristic length of the source/drain Gaussian distrubution (nm) 

tox_top: Top insulator thickness (nm) 

tox_bot: Bottom insulator thickness (nm) 

tsi: Silicon film thickness (nm) 

temp: Lattice temperature (K) 

 
Grid 
The grid is specified through two parameters 

hx: Horizontal node spacing (nm) 

hy: Vertical node spacing (nm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C1. Parameters to specify the device structure. 
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Transport model 
Classical Ballistic Transport model (clbte): In this model, quantum effects in the y-

direction (threshold voltage shift) are treated exactly by solving a 1D Schrödinger 

equation at every “x” (transmission direction) point within the device. This results in a set 

of subband profiles (ESUB(x)). Carrier transport in each subband is then modeled to 

account for the thermionic emission component alone. Quantum tunneling through the 

source-channel barrier is assumed to be zero. For more detailed description, please read 

Chapter 3 and Appendix B in this report. 

 

Quantum ballistic Transport model (qbte): In this model, quantum effects in the y-

direction (threshold voltage shift) are treated exactly by solving a 1D Schrödinger 

equation at every “x” point as in the case of model 1, to yield a set of subband profiles 

(ESUB(x)). Carrier transport in each subband is then treated by solving a 1D Schrödinger 

equation in the transmission (x) direction using the non-equilibrium green’s function 

method [62, 72]. This approach accounts for quantum tunneling through the source-

channel barrier, which was ignored in model 1. For more detailed description, please read 

Chapter 3 in this report. 

 

Drift Diffusion (dd): This model is a quantum corrected drift diffusion model, where 

quantum effects in the y-direction (threshold voltage shift) are accounted for exactly. The 

y-direction is treated quantum mechanically by solving a 1D Schrödinger equation at 

every “x” point as in the case of model 1, to yield a set of subband profiles (ESUB(x)). 

Carrier transport in each subband is then treated by solving a 1D drift-diffusion equation 

in the transmission direction (x). A field dependent mobility model (Caughey-Thomas 

[130]) is used in the drift-diffusion solution and the model parameters mu_low, beta and 

vel_sat (saturation velocity) are user specified quantities, 
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where is //E  the electric field in the transport direction. 
 
Quantum Dissipative Transport model (qdte): In this new model, quantum effects in 

the y-direction (threshold voltage shift) are treated exactly by solving a 1D Schrödinger 

equation at every “x” point as in the case of model 1, to yield a set of subband profiles 

(ESUB(x)). Dissipative transport in MOSFETs is treated through the Green’s function 

formalism using a simple Büttiker-probe model [41]. Scattering centers are treated as 

reservoirs similar to the source and drain except that they only change the energy of the 

carriers and not the total number of carriers in the system. Each scattering center is 

modeled through a perturbation strength characterized by a position dependent self-

energy,η . The user specified parameter, mu_low, can be mapped onto an equivalent η . 

For detailed discussion, please read Chapters 4 and 5 of this report.  

 
Options 
There are five assignments under the “options” directive. Three of them are flags that 

take on a value of “true” or “false”, while the remaining pertain to the subband and valley 

information. 

 

ox_penetrate: If set to “true”, when solving the Schrödinger equation in the vertical (y) 

direction, the electron wave function is allowed to penetrate into the oxide regions, but 

the gate leakage current is NOT computed. If set to “false”, the Schrödinger equation is 

solved in the y-direction assuming an infinite potential barrier at the oxide-silicon 

interface. 

 

dg: If set to “true”, both the top and bottom gate voltages are ramped in voltage 

simultaneously. If set to “false”, the bottom gate voltage is fixed at vgbot while the top 

gate voltage, vgtop is ramped. 

 

fermi: If set to “true”, Fermi-Dirac statistics are used in solving the transport models. If 

set to “false”, Maxwell-Boltzmann statistics are used. Note that this flag only applies to 
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the drift-diffusion model. For the other three models, Fermi-Dirac statistics are always 

assumed. 
 

valleys: There are 3 sets of valleys as shown in Fig. C2. Electrons in one set respond to 

the vertical (y) confining potential with a heavy effective mass ( lm , the so-called 

unprimed valleys) while those in the other two sets of valleys respond with a light 

effective mass ( tm , the so-called primed valleys) Thus valleys can be set to “unprimed” 

or “all”. If set to “unprimed”, only those electrons in valleys for which ym  is equal to 

em98.0  are treated in the simulation. If set to “all”, electrons in all valleys are included in 

the simulation. 

 

num_subbands: Each set of valleys yields a corresponding set of subbands when a 1D 

Schrödinger equation is solved in the confinement direction. However, it is not necessary 

to consider all of the subbands when solving for electron transport, as only the lowest few 

from each valley are occupied by electrons. Higher subbands are unoccupied and do not 

contribute to carrier transport. The parameter num_subbands, is thus the number of 

subbands that needs to be considered for each of the 3 valleys (e.g: num_subbands=2 (2 

from each valley), valleys=all (3 valleys) implies that a total of 6 subbands will be used 

in the simulation). We suggest that the users do a Schred-2.0 simulation to determine how 

many subbands to use. 

 

Bias  
Bias information is specified through the following parameters. 

vgtop:  Top gate voltage 

vgbot:  Bottom gate voltage 

vs: Source contact voltage 

vd: Drain contact voltage. It is recommended that a very high drain bias not be used to 

run Full Quantum simulations as the tight binding bandstucture at high energies may not 

be accurate despite using a fine real space grid. 
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vd_initial: Drain start voltage. When solving a non-equilibrium problem, it is sometimes 

difficult to get convergence if the drain voltage is ramped to a high value. Specifying 

vd_initial, less than vd, enables the simulator establish a low Vd solution which can be 

used as an initial guess to speed up convergence for high drain voltages. 

vgstep: Step size for the gate voltage 

ngstep: Number of gate voltage steps 

vdstep: Step size for the drain voltage 

ndstep: Number of drain voltage steps 

 

 

 

 

 

 

 

 

 

 

 

Fig. C2. Valley information 

 

Solve 
dvmax: For any choice of transport model, the Poisson equation is solved self-

consistently with the corresponding transport equation. The self-consistent solution of a 

transport equation with the Poisson equation, is said to have converged if the maximum 

change in potential between two self-consistent iterations is less than dvmax (eV).  

 

Material parameters 
The user has the flexibility of altering the following material parameters: 

wfunc_top: Top gate contact work function (eV) 
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wfunc_bot: Bottom gate contact work function (eV) 

mlong: Longitudinal relative electron mass ratio 

mtrans: Transverse relative electron mass ratio 

eps_top: Top insulator relative dielectric constant 

kox_top: Top insulator relative dielectric constant 
kox_bot: Bottom insulator relative dielectric constant 

dec_top: Conduction band offset between the substrate and the top gate insulator (eV) 

dec_bot: Conduction band offset between the substrate and the bottom gate insulator 

(eV) 

 

3) Output: 

At the end of each simulation, a number of postscript files and “.dat” files will be 

written to the “output/” directory.  These data contained in these files is described at the 

end of this section. Errors can be reported to celab@ecn.purdue.edu by forwarding the 

Matlab error message and the input deck to the aforementioned email address. The “.dat” 

files contain ascii data that has been plotted in the corresponding postscript file with the 

same name but with a “.ps” extension. The data files generated are: 

 

Output.dat: Containing the entire simulation convergence information. 

Esub_X.dat: The subband energy vs x for the lowest subband, for the entire bias range. 

Fermi_X.dat: The calculated Fermi energy of each Büttiker proble, for the entire bias 

range. 

ID_VG.dat/ID_VD.dat: The I-V characteristics for the bias range specified. 

N2D_X.dat: Integrated 2D electron density (cm-2) along the channel. 

Ec_X_Y.dat: The full 2D potential profile for the last bias point. 

Ne_X_Y.dat: The electron concentration (cm-2) for the last bias point. 

 


