Course: Semiconductor Device Fundamentals

Level: Undergraduate

Module: B

Test: B3

Type: Closed Book, Closed Notes

Note: Available Info/Equation Sheets

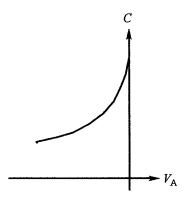
Problem Weighting--- T2-1...40 (a,d-4; b,c,e,f-8) T2-2...28 (a,d-8; b,c,e-4) T2-3...32 (a,b-8; c,d,e,f-4)

	T2 – 1 [Outcome–(iv)]	Score
Pictured below is the ene	ergy band diagram for a Si pn junction diode	maintained at room temperature.
		F
$E_{ m Fp}$		E_{Fn}
FP		E_1
	•	
	. 0	

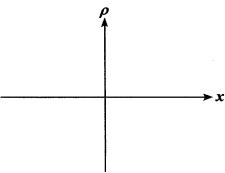
- (a) What is the polarity and magnitude of the applied bias (V_A) ? [Record computational equation(s).]
- (b) Determine the built-in-voltage (V_{bi}) . [Record computational equation(s).]

(c) Assuming a step-junction doping profile, determine W. [Record computational equation(s).]

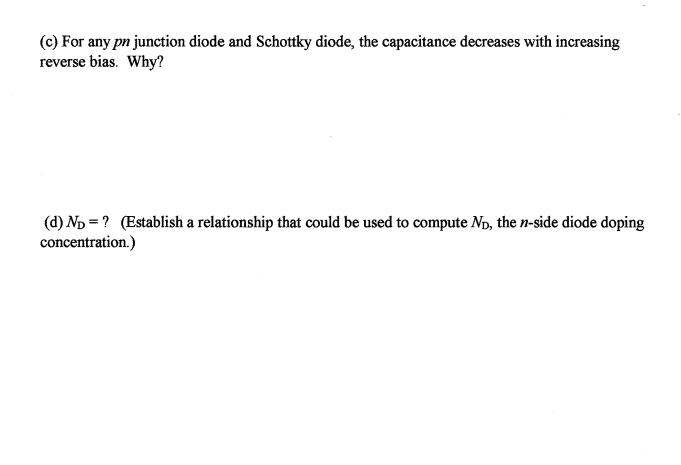
- (d) Adding to the diagram in the problem statement, sketch and label the typically assumed positioning of the electron and hole quasi-Fermi levels (F_N and F_P) through the depletion region.
- (e) What is the np product at x = 0?


(f) Adding carrier symbols (\bullet , O) to the diagram in the problem statement, identify (i) the major source of the diffusion current (I_{DIFF}) and (ii) the source of the recombination—generation current ($I_{\text{R-G}}$) flowing in the diode.

Score /28


The reverse-bias capacitance $(C-V_A)$ characteristic derived from a diode—it could be a p+-n step-junction diode or an n-type Schottky diode—is sketched below. It is further established that a least squares fit to the $1/C^2$ versus V_A data yields

$$1/C^2 = \alpha_1 - \alpha_2 V_A$$


where α_1 and α_2 are positive constants.

(a) Make a sketch of the **d.c.** charge density inside the diode during the C-V measurement. Specifically note the physical origin of the (+) and (-) charges on your sketch for both a p+-n step-junction diode and an n-type Schottky diode.

(b) Indicate how the term "quasistatically" relates to the capacitance measurement.

(e) $V_{bi} = ?$ (An equation for V_{bi} is desired.)

	T2	_	3	
[Out	tco	m	e–((v)]

Score /32

Aluminum (Al) is the metal used in ECE557 to make external contacts to the backside of fabricated Si devices. Except for part (f), answer the following questions assuming the Al-Si contact is ideal and $N_D = 8 \times 10^{16} / \text{cm}^3$ is the backside Si doping. T = 300 K, $\Phi_M(\text{Al}) = 4.28 \text{eV}$, and $\chi(\text{Si}) = 4.03 \text{eV}$.

(a) Determine Φ_S , the Si workfunction.

(b) Roughly to scale, sketch the energy band diagram for the Al-Si contact under equilibrium conditions. Label relevant energy levels.

(c) Is the contact ideally ohmic or rectifying? Explain how you arrived at your answer.

(d) $\Phi_B = ?$ [Record computational equation(s).]

(e) $V_{bi} = ?$ [Record computational equation(s).]

(f) The Al-Si contact described in this problem is not really optimum for contacting the backside of fabricated Si devices. Indicate what must be done to achieve a low-resistance Al-Si contact.