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series resistance (DC)
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series resistance (DC)
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series resistance (small V)
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series resistance (large V)
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series resistance (large V)
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series resistance (DC)
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physical origin of Rg,
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metal-semiconductor contact resistance

ID

metal contact p;, 2-cm
Area = A //
interfacial
layer
n-Si
Top view Side view
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metal-semiconductor contact resistance

pit=pCQ
A A

C

Rco =

C

10° < p. <107° Q-cm’

“interfacial contact resistivity”

A =0.15um x1.0um
p. =107"Q-cm”

R., = 66Q-um
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what determines the M-S contact resistance?

G.~T

T
Qi34k—— T E. Pe~1/T

T ~ e“PB /¢O

(egn. 5.11) of Taur and Ning)
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lateral current flow

effective length of contact?
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lateral current flow (ii)

L, “transfer length” L, = Pe om
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lateral current flow (iii)

L, =\p.!py ‘“transfer length”

Ac = WL, Psp /0

<—LC—>

1) Lo<<L,: R, = Pc

\/_ LW
R, = p‘;/pSD coth(L. /L, )

: ii) L.>L.: R, = Pe
Eqgn. (5.8) Taur and Ning ¢ T LW
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physical origin of Rg,

spacer

metal silicide

1) metal-semiconductor contact resistance
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resistance of the S/D extension

p=1/(Npqu,)
(W into page)
! I,
—_—) X;
p 2-cm l
< S >
S [p\S S
Rixr —pij = kxj) W - Pexr

Pexr QIO sheet resistance of the S/D extensions
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physical origin of Rg,

spacer

metal silicide

1) metal-semiconductor contact resistance
2) extension resistance

3) tip resistance

4) spreading resistance
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physical origin of Rg,

spacer

metal silicide

p-Si

-tip resistance is controlled by the steepness of the junction
-steepness measured in nm/dec
-tip resistance is a significant part of Ry
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physical origin of Rg,

spacer

metal silicide

1) metal-semiconductor contact resistance
2) extension resistance

3) tip resistance

4) spreading resistance
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spreading resistance

spacer

Eqgn. (5.6) of Taur and Ning
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components of Rg,

spacer

metal silicide

p-Si

RS = RD = Rco + REXT + RTIP + RSPR
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summary: components of R,

RS = RD = Rco + REXT + RTIP + RSPR

1) R, =—tc Ac(eff)=W/ L )
A (eff) l\ coth(L. / L) /I
S L, =\pc!p
2) Ripxr = Prxr W ' o
3,4) R, + R link-up resistance’
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Rsp and the ITRS

12 Process Integration, Devices, and Structures

Table 40a High-Performance Logic Technology Requirements—Near-term (continued)

Grey cells delineate one of two time periods: either before initial production ramp has started for wltra-thin body fully depleted (UTB FD) SOI or
double-gate (DG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table
notes for further discussion).

Year of Production 2005 2006 2007 2008 2009 2010 2011 2012 2013
DRAM ¥ Pitch (nm) (contacted) 80 70 65 57 50 45 40 36 32
:}ll"Ux’.’d SIC Metal 1 (M1) % Pitch 90 78 68 59 52 &5 40 36 12
(nm)(contacted)
\MPU Physical Gate Length (nm) 32 258 25 22 20 I8 16 14 13
R.g Effective Parasitic series source/drain resistance [12] =

Planar Bulk (Q-um) 180 [( 170 ) 140 105 80

UTB FD (Q-um) — 125 110

DG (Q-pm) 110

I

[12] Rsd is the maximum allowable parasitic series source plus drain
resistance for a MOSFET of one micron width. The values are scaled to
allow the required saturation current drive values (see Note [9]) to be met.
Yellow and red coloring reflects FEP TWG projections on contact resistance,
salicide sheet resistance, and drain extension scaling.
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Rsp and the ITRS (il

Front End Processes 23

Table 69a Thermal and Thin Film, Doping and Etching Technology Requirements—Near-term Years

Grey cells indicate the requirements projected only for near, intermediate, or long-term years.

Year of Production

2005

2006

2008

2009

2010

2011

2012

2013

DRAM % Pi!c;h (nm)} (contacted)

80

70

57

50

45

40

36

32

Drain extension X; (nm) for bulk MPU/ASIC [F] 1 [ o :} 7.5 7.5 7 6.5
Maximum allowable parasitic series resistance for 180 170 140
bulk NMOS MPU/ASIC = width ((£2-um) [G]
Maximum drain extension sheet resistance for bulk
MPU/ASIC (NMOS) (€sq) [G] 653 N 674 J ©40
Extension lateral abruptness for bulk MPU/ASIC
(nm/decade) [H] 3.5 3.1 2.8 25 2.2 2.0 1.8 1.5
Contact X; (nm) for bulk MPU/ASIC I} 35.2 30.8 27.5 25.3 22 19.8 17.6 15.4
able junction leakage for bulk MPUY.
Allowable junction leakage for bulk MPU/ASIC 0.06 075 0.2 0.2 0.22 0.28 0.32 0.34
(uA/um)
Sidewall spacer thickness (nm) for bulk
MPU/ASIC [J] 35.2 30.8 27.5 253 22 19.8 17.6 154
Maximum silicon consumption for bulk MPU/ASIC 17.6 15.4 13.8
(nm) [K]
Silicide thickness for bulk MPU/ASIC (nm) [L] 21 19 17
Contact silicide sheet R, for bulk MPU/ASIC
(isq) [M] 7.5 8.6 9.6
Contact maximum resistivity for bulk MPU/ASIC
1.6E-07 [(1.3E-07 )9.5E-08

(.Q-r:m'?) INj]




Rsp and the ITRS (ii)

[G] The maximum allowable parasitic series resistance for NMOS
devices comes from the PIDS device design. The allowable resistance
for PMOS is taken to be 2.2 times the NMOS values. The maximum
drain extension sheet resistance is modeled by allocating 15% of the
allowable source and drain parasitic resistances to the drain
extensions. ...The drain extension sheet resistance value must be
optimized together with the contact resistance and junction lateral
abruptness (which affects spreading resistance), in order to meet the
overall parasitic resistance requirements. This is a relatively crude
model and the resultant sheet resistance values should only be used as
a guide.

[H] Channel abruptness in nm per decade drop-off in doping
concentration) = 0.11 * Physical Gate Length based on Short Channel
effect. This lateral abruptness is consistent with a 3 decade fall off of
doping over the lateral extent of the junction, which is taken to be 60%
of the vertical junction depth. ...



Rsp and the ITRS (iii)

[Il] Contact Junction Depth = 1.1*Physical Gate Length (with a
range of +/-33%) for Bulk devices. Junction depths for NMOS and
PMOS are the same.

[J] Spacer thickness (width) is taken as the same as the Contact
Junction Depth, namely 1.1 x Lgate, for bulk devices...

[N] The Si/Silicide maximum interfacial contact resistivity
values were calculated assuming that 100% of the PIDS total
allowed MOSFET Source/Drain resistance is allocated to the
contact resistivity. It further assumes that the transistor contact
length is taken to be twice the MPU half pitch, where length is in
the direction of current flow. ...These values should be
appropriately modified if different transistor contact lengths are
assumed... The values of contact resistivity, drain extension sheet
resistance, and drain extension lateral abruptness must be co-
optimized in order to meet the overall parasitic resistance
requirements. 31



structure of 70nm node MOSFET

31 nm

metal silicide

9 nm
Py = 674 Q/sq.

3.1 nm/dec.
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components of Rg at the 70 nm node

RS = RD = Rco + REXT + RTIP + RSPR

L, =Jp. / pgp =N13x107 /674 =139 nm

L. =2x78 =156 nm

L
A . (eff) = W/ L \ =0.83L.W =1.15x10" cm”?
C l\ /I T

coth(L./L;)
O 1.3x 107’

R. = - ~113Q-um (R, (ITRS) =170 Q
0T A (eff)  1.15x107 um . (Ry, (ITRS) )
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components of Rg at the 70 nm node (ii)

RS = RD = Rco + REXT + RTIP + RSPR

S 31 nm
R, ... = — =674 x =21 Q- um
exr = Pexr W 1000 nm U

R,,(ITRS) = 170 Q

2R, =~25% of R, (ITRS)
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components of Rg at the 70 nm node (iii)

RS = RD = Rco + REXT + RTIP + RSPR

R, =R, =113+ 21 Ry, (ITRS) = 170 ©

also significant, but hard to
estimate

How do these components scale?
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scaling of Ry

Vﬂ Vop 1K

—

ON ION/K

R =

ON I

RON — RON

In practice, Ry IS decreasing

need Rs < 10% Rpy

How does Rg scale?
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scaling of R¢

RS = RCO + REXT + RTIP + RSPR

Pc Pc

R = — —s 2
O A(eff) A (eff) /x Rey = K" Rey
S S/K
Riyr = Pexr W — K Ogxr W/ x Ry — KRy

p/x

J

R increases with scaling!
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scaling of Ry

Vﬂ Vop 1K

—

ON ION/K

R =

ON I

RON — RON

In practice, Ry IS decreasing

need Rs < 10% Rpy

How does Rg scale?
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effective channel length

(VG - VT)VDS = VDS /RCH

L, Ly — AL

mask

cH WﬂeﬁCG (VGS - VT) Wtueﬁ‘CG(VG - VT)
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measuring Leff

SD

with series resistance
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what is Leff?

“measure of gate-controlled current”

Y. Taur, IEEE Trans. Electron Devices, 47, pp. 160-170, 2000

See also, Taur and Ning, pp. 202-221
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various channel lengths

L MASK
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physical interpretation

accumulation layers

EFF

p-Si

N

inversion layer

G o— |

gate voltage independent resistances = Rg,
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physical interpretation

n+ Z ; LE: n+

when sheet resistance underneath the accumulation
layer is less than the sheet resistance of the

accumulation layer, current spreads into the bulk n+
region and the channel ends.
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