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Abstract— This work deals with the modeling and the nu-
merical simulation of quantum transport in multidimensional
open nanoscale devices. The electron transport in the device is
described using the Non-Equilibrium Green’s Functions (NEGF)
formalism and the variational form of the problem is solved using
the finite element method (FEM). In this approach, the derivation
of the boundary conditions at the interfaces of the device with
the reservoirs, is used to calculate the self-energy functions. The
FEM allows us to consider very complex geometries and non-
uniform mesh, while the NEGF is a powerful formalism which
will allow to include scattering in the problem. The simulations
are performed by solving self-consistently the NEGF (equivalent
to the open Schr̈odinger equation in ballistic regime) for the
transport problem and the Poisson equation to account for the
space charge effects.

I. I NTRODUCTION

The emergence of new simulation tools becomes critical
in the exploration of quantum transport in nanoscale devices.
The quantum transport modeling is usually defined by a self-
consistent process between the calculation of the electron
density using the NEGF formalism [1] and the calculation
of the space charge effects using the Poisson’s equation. The
problem is solved in the device region of interest (computa-
tional domain) which is connected to the reservoirs using self-
energy functions at the contacts (see Fig. 1). The discretization
of the transport problem, as well as the definition of the
self-energy matrices, are generally derived from the finite
difference method (FDM) in uniform grids [2]. However, the
modeling of multidimensionnal semiconductor devices, often
requires the ability to accommodate irregular geometries.

Another approach presented in this article, consists to apply
the finite element method on the variational form of the
problem. One of the advantage of the finite element method
which has been used extensively in engineering [3], is that
the mesh can be varied to give high resolution where needed,
and any kind of complex geometries can be considered. In
this approach, we show that the self-energy functions are
associated to open boundary conditions for the Schrödinger
equation. One can show that the Schrödinger/Poisson system

is equivalent to the NEGF/Poisson system in ballistic regime
[4]. However, in contrast to the Schrödinger approach, making
use of the NEGF formalism will allow to include scattering
processes in a direct way by using a self-energy function[ΣS ].

II. T HE NON-EQUILBRIUM GREEN’ S FUNCTION (NEGF)
FORMALISM
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Fig. 1. A device driven out of equilibrium by two contacts with different
Fermi levelsµ1 and µ2. [Σ1] and [Σ2] are respectively the self-energy
matrices associated to the contact with the reservoir1 and 2. A self-energy
matrix [ΣS ] can account for the scattering with the surrounding.

Denoting H the Hamiltonian of the infinite system, for a
given energyE the Green’s function is then defined as

(E −H)G(x,x′) = δ(x− x′). (1)

It is possible to evaluate numerically the Green’s function in
our region of interest (computational domain) without having
a deal with the entire infinite system. In this finite system,
the effect of the reservoirj can be described by a self-energy
function Σj (see Fig. 1), and the retarded Green’s function is
generally defined in the matrix notations by

[G(E)] =

E[S]− [H0]−
∑

j

[Σj(E)]

−1

, (2)

where[H0] is the Hamiltonian of the isolated system, and[S] is
the overlap matrix of the basis functions used to discretize the



system (i.e. the identity matrix for orthogonal basis function).
Denoting gj the surface Green’s function of the reservoirj
then the self-energy matrices which are of the same size than
[H0], are defined by

[Σj(E)] = [τj ][gj][τ
†
j ], (3)

where [τj ] is a coupling matrix between the surface of the
reservoirj and the whole device.

Denotingµj the fermi level associated to the reservoirj,
the non-equilibrium density matrix is given by

[ρ] =
∫ +∞

−∞

dE

2π

∑
j

fFD(E − µj)[Aj(E)], (4)

and one can show that

[Aj(E)] = [G(E)] [Γj(E)] [G†(E)], (5)

whereΓj is the broadening function given by

[Γj ] = i
(
[Σ(E)]− [Σ†(E)]

)
. (6)

The electron densityn is given by the diagonal elements
of the matrix density and depends on the potentialU in the
device (since[H0] depends on the potentialU ). To account
for the space charge effect, the problem has to be solved self-
consistently with the Poisson equation. The current density
between the contacts1 and2, is finally given in ballistic regime
by

I =
2q

h

∫ +∞

−∞
dE T (E) (fFD(E − µ1)− fFD(E − µ2)) ,

(7)
whereT (E) is the transmission coefficient defined by

T (E) = Trace[Γ1GΓ2G†]. (8)

To summarize, in the transport problem the NEGF for-
malism allows to describe the interactions of the reservoirs
with the device by using self-energy functions. However,
the concepts of self-energy is far more general, and a self-
energy function[ΣS ] can also be used to describe all kinds of
interactions with the surroundings [2] (for example electrons-
phonons or/and electrons-photons).

III. T HE FINITE ELEMENT REPRESENTATION OF THE

GREEN’ S FUNCTION AND THE SELF-ENERGY FUNCTIONS

In contrast to the FDM, the FEM is based on the ap-
proximation of the solution of the differential equation while
the original Hamiltonian operator remains unchanged. The
approximate solution which is expanded in a local basis set,
satisfies the differential equation only in an approximate way.
In this way, the Hamiltonian operator of a closed system
written in a discrete form[H0] using the FEM preserves its
hermitian property even for a non-uniform mesh (the non-
hermitian part of[G]−1 comes from the self-energy matrices).

A. FEM applied to the Schrödinger equation

The stationary Schrödinger equation is defined in the mul-
tidimensional domainΩ by (x ∈ Ω)

HΨ(x) = EΨ(x). (9)

For a one band model, the HamiltonianH is given within the
effective mass approximation by

H = − h̄2

2
∇

(
1

m∗(x)
∇

)
+ U(x), (10)

wherem∗ is the effective mass andU is the potential energy.
Denotingϕ(x) an arbitrary test function inΩ, then the weak

variational form of this equation is given by:

− h̄2

2

∫
Ω

∇
(

1
m∗∇Ψ

)
ϕdΩ +

∫
Ω

UΨϕdΩ = E

∫
Ω

ΨϕdΩ,

(11)
where the equation (9) is multiplied byϕ(x) and integrated

over Ω. The first term of this equation can be decomposed
using the Green’s identity such that

− h̄2

2

∫
Ω

∇
(

1
m∗∇Ψ

)
ϕdΩ =

h̄2

2

∫
Ω

1
m∗∇Ψ∇ϕdΩ (12)

− h̄2

2

∫
∂Ω

1
m∗

(
∇Ψ · ~η

)
ϕd∂Ω,

where~η is the normal vector exterior along the boundary∂Ω
of the domainΩ. The second term of the right side of (12) is
specified on the boundary, and then contains all information
about the interactions with the contacts. Assuming that the
wave functions vanishes at the device boundary except in the
contact regions with the reservoirs, then the integral over the
entire boundary∂Ω in (12) can be decomposed into a sum
over the contacts regions so-calledγj∑

j

− h̄2

2

∫
γj

1
m∗

(
∂

∂ηj
Ψ

)
ϕdγj . (13)

This term will be explicitly described in the case of open
boundary conditions in the next section. For the case that this
boundary term is equal to zero (using homogeneous Dirichlet
or Neumann boundary conditions respectivelyΨ = 0 and
∇Ψ = 0 on the frontier∂Ω), the system becomes an isolated
one, and we obtain the electronic states of a closed system. In
the following, we propose to solve this problem making use
of the FEM in the variational form (11).

Denoting u = u1, . . . , uN the vector of the (unknown)
nodal values ofΨ corresponding to a given mesh (ui ≡ Ψ(xi)
wherexi is the position of theith node), andωi(x) the shape
functions located on each nodei such thatωi(xi′) = δii′ , then
the wave function can be expanded approximately in this local
basis function as:

Ψh(x) =
N+1∑
i=0

uiωi(x) (' Ψ). (14)



The test functionϕ can be expanded in a similar manner
(we get ϕh). Inserting the expansions forΨh and ϕh into
the equations (11) and (12), we obtain then a generalized
eigenvalue problem in the matrix notation:

[H0]u = E[S]u, (15)

with

[H0]ii′ =
h̄2

2

∫
Ω

1
m∗∇ωi∇ωi′dΩ +

∫
Ω

Uωiωi′dΩ, (16)

[S]ii′ =
∫

Ω

ωiωi′dΩ. (17)

These matrices are real sparse symmetric but in the most
general case[H0] will be Hermitian (as for multi-band mod-
els). Transport problems often involve several discontinuities
of the potential and of the effective mass at the interface
between different materials. If these quantities are defined
constants by element in an appropriate mesh, then they can
be treated in an exact way in the equation 16).

B. Derivation of the self-energy with the contacts

The Green’s function can be considered as the wave function
at x resulting for a unit excitation applied atx′. We are only
interested by the retarded Green’s function which represents
the response of the system of an impulse excitation within the
device (x′ ∈ Ω). Therefore, we have to define such boundary
conditions which appear transparent for the outgoing waves
functions from the device to the contacts.

A general form of the transparent boundary condition on
the interfaceγj for the outgoing solutions of the problem is
supposed to supply a relation between the normal derivatives
of the solutions and their boundary values (so-called a mixed
boundary condition). In the NEGF formalism, these boundary
conditions onγj are described by the operatorτj in (3).

We propose to define the self-energy at the contactsγj ,
when the reservoirs can be considered as semi-infinite leads.
This assumption means that the potential in the reservoirs is
invariant by translation along the transport direction and then
the outgoing solutions are plane waves. We deal with two
particular one-band problems where the dispersion relation is
parabolic in the contacts. The first (case 1) is related to an
one dimensional problem with two contacts. The second (case
2) deals with a two or three dimensional problem with an
arbitrary number of contacts (see Fig. 2).
Case 1
the outgoing plane waves solutions forΨout

j in the local
coordinateηj are given by

Ψout
j (ηj) = A−

j exp(ikjηj), (18)

wherekj is the wave vector associated to leadj and A−
j , is

the unknown outgoing coefficient. At the interfaceηj = 0,
one can show that

∂

∂ηj

∣∣∣∣
0

Ψout
j (ηj) = ikjΨout

j (0). (19)
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Fig. 2. Semi-infinite leads associated to a domainΩ. A 1D device is described
on the left (case 1), and a 2D device on the right (case 2, which could be also
interpreted as a section of a 3D device). We mention the local coordinates
ηj , ξj associated to the leadj. The potential has an arbitrary form inside the
domainΩ, but is assumed to be independent of theηj direction in the lead
j. For the case of 2D and 3D leads, one also has to account for transverse
modes due to the confinement of the electrons in the directionξj (whereξj

can matched a 1D or a 2D coordinates respectively for a 2D or a 3D lead).

These boundary conditions are equivalent to those described
in [5]. The boundary conditions also satisfy the following
continuity relation atηj = 0

1
m∗

j

∂

∂ηj

∣∣∣∣
0

Ψout
j =

1
m∗

∂

∂ηj

∣∣∣∣
0

Ψ, (20)

wherem∗
j is the effective mass inside the contactj. Using the

relations (19) and (20), the finite element discretization of the
expression (13) can be written as

∑
j [Σj ], where the elements

of the self-energy matrices[Σj ] are given by:∀j = 1, 2

[Σj ]ii′ = − h̄2

2m∗
j

ikjδi∈γj
δi′∈γj

. (21)

Case 2
The outgoing plane waves solutions forΨout

j in the local
coordinates (ηj , ξj) of the contactj, become;

Ψout
j (ηj , ξj) =

∑
m

A−
j,mχm

j (ξj) exp(ikm
j ηj), (22)

where the unknown outgoing coefficientsA−
j,m, and the wave

vectorkm
j , depend on the modem which corresponds to the

mth normalized eigenfunctionχm
j in the transverse direction

of lead j. ξj). At the interfaceηj = 0, one can show that

∂

∂ηj

∣∣∣∣
0

Ψout
j (ηj , ξj) = i

∑
m

km
j χm

j (ξj) 〈χm
j (ξj)|Ψout

j (0, ξj)〉.

(23)
These conditions are equivalent to the quantum transmitting
boundary conditions described in [6]. Using the relation (23)
and (20) in the expression (13), the elements of the matrices
[Σj ] are now given after discretization by:∀j

[Σj ]ii′ = − h̄2

2
i
∑
m

km
j

m∗
j

〈χm
j (ξj)|ωi〉〈ωi′ |χm

j (ξj)〉δi∈γj
δi′∈γj

,

(24)
where the effective mass in the leadj is assumed invariant
along the transverse directionξj .



Finally, for all the cases, the self-energy matrices are
complex symmetric and their elements are only non-zero for
points which belong to the frontierγj with the contactj.

IV. T HE NUMERICAL SELF-CONSISTENT ALGORITHM AND

APPLICATIONS

A P1 finite element method is used to discretize both the
NEGF problem and the Poisson equation on the same mesh.
Because of the highly non-linear behavior of the coupled
NEGF/Poisson system, we make use of the implicit Gummel
iterations. An initial guess can be derived using a Thomas-
Fermi/Poisson semi-classical approach, which is solved with
a Newton-Raphson method. The examples in Fig. 3 and Fig.
4 obtained with the NESSIE code, are used to illustrate
respectively the electron density calculations for 3D electron
waveguides devices [7] (III-V heterostructure) and for 2D
nanoscale MOSFETs [8] (Si/Si02 structure).

Fig. 3. The density profile after the 3D quantum model convergence for the
T-stub (left) and the directional coupler (right). The electron gas is localized a
few nanometer below the AlGaAs/GaAs interface (at z=150nm) and quantum
interference effects appear in the active region.

Fig. 4. Density profile obtained at equilibrium with the 2D quantum self-
consistent model for the 25nm MOSFET (left) and 10nm DG-MOSFET
(right). The results show the confinement of the electrons in the channel(s).

One can show that the NEGF formalism in ballistic regime,
involves the computation of a large number of independant

linear systems (only few number of column of the Green’s
function are required for a given energy). Therefore, for very
large systems, the calculations of the electron density is ex-
tremely time consuming even with a parallel implementation,
and a full-dimensional description of the transport is not often
suitable to obtain the I-V curves in relevant time (however, we
note the promising method [9] which is currently under study).
In order to overcome these difficulties, we can apply a fast
algorithm based on a subbands decomposition method which
accounts for the confinement of the electrons in the structure,
and then reduce the dimension of the transport problem. In
practice, the method requires to subdivide the structures into
a large number of (1D or 2D) slices along the transport
direction. For a given potential, the method consists in solving
many independent eigenvalues problems associated to each
slice (see [10] for the trace minimization method). Then, the
obtained multi-mode Hamiltonian reduced in this new basis
function is solved using the FEM for all the energies. When
all the subbands are coupled, this approach is equivalent to
the full-dimensional one but having a much lower numerical
cost [8] (see [11] for the uncoupled case). This approach was
applied to study the coupling modes effects for the double-
gate MOSFETs, and to investigate the 3D silicon nanowire
transistors [12].

The FEM method applied to NEGF, can also be generalized
to describe multi-band Hamiltonian where the self-energy
functions need to be properly defined. For example, if we con-
sider the spin transport properties in a device with spin “up”,
“down” selective contacts, the electron system can be split
into two coupled subsystems composed of electrons having the
same spin orientation (up,down). The FEM/NEGF technique is
used to solve this two-band model for the electron-spin trans-
port. Some obtained results with the simplified 1D problem
have been shown in [13] and compared to one analytical case
[14]. In order to simulate the spin-FET (as proposed in [15]), a
2D transport model for spintronics has also been implemented.

V. CONCLUSION

We have shown that the FEM can be used to discretize
the NEGF formalism. This approach allows to consider non-
uniform meshes and any kind of complex geometries.
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