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Abstract—This work deals with the modeling and the nu- is equivalent to the NEGF/Poisson system in ballistic regime
merical simulation of quantum transport in multidimensional [4]. However, in contrast to the Sdbdinger approach, making
open nanoscale devices. The electron transport in the device isuse of the NEGF formalism will allow to include scattering

described using the Non-Equilibrium Green'’s Functions (NEGF) . direct b . If f
formalism and the variational form of the problem is solved using Processes in a direct way by using a self-energy fundfioy}.

the finite element method (FEM). In this approach, the derivation

of the boundary conditions at the interfaces of the device with IIl. THE NoN-EQUILBRIUM GREEN'S FUNCTION (NEGF)

the reservoirs, is used to calculate the self-energy functions. The FORMALISM

FEM allows us to consider very complex geometries and non-

uniform mesh, while the NEGF is a powerful formalism which = =+ === - ~  Computational domain
will allow to include scattering in the problem. The simulations ! Gat

are performed by solving self-consistently the NEGF (equivalent ! _l;

to the open Schidinger equation in ballistic regime) for the
transport problem and the Poisson equation to account for the
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space charge effects.
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I. INTRODUCTION

|
|
|
The emergence of new simulation tools becomes critical I 1

Electron reservoir 1 Electron reservoir 2

in the exploration of quantum transport in nanoscale devices.

The quantum transport modeling is usually defined by a self; ;| qeice driven out of equilibrium by two contacts with different

consistent process between the calculation of the electi@fimi levels;; and ps. [S1] and [£2] are respectively the self-energy

density using the NEGF formalism [1] and the calculatiomatrices associated to the contact with the reservand 2. A self-energy

of the space charge effects using the Poisson’s equation. TR [2s] can account for the scattering with the surrounding.

problem is solved in the device region of interest (computa-

tional domain) which is connected to the reservoirs using self-Denoting H the Hamiltonian of the infinite system, for a

energy functions at the contacts (see Fig. 1). The discretizat@Men energyE' the Green's function is then defined as

of the transport_problem, as well as the definition of_the (E —H)G(x,x') = §(x — x'). 1)

self-energy matrices, are generally derived from the finite

difference method (FDM) in uniform grids [2]. However, thdt is possible to evaluate numerically the Green’s function in

modeling of multidimensionnal semiconductor devices, oftepur region of interest (computational domain) without having

requires the ability to accommodate irregular geometries. a deal with the entire infinite system. In this finite system,
Another approach presented in this article, consists to aphe effect of the reservoij can be described by a self-energy

the finite element method on the variational form of th&inctionX; (see Fig. 1), and the retarded Green’s function is

problem. One of the advantage of the finite element methgenerally defined in the matrix notations by

which has been used extensively in engineering [3], is that -1

the mesh can be varied to give high resolution where needed,

and any kind of complex geometries can be considered. In [GE)] = | B[S] — [Ho] Z[Ej(E)] ’ @)

this approach, we show that the self-energy functions are !

associated to open boundary conditions for the &dinger where[H,] is the Hamiltonian of the isolated system, gflis

equation. One can show that the Sidinger/Poisson systemthe overlap matrix of the basis functions used to discretize the



system (i.e. the identity matrix for orthogonal basis functionp. FEM applied to the Sclkdinger equation

Denoting g; the surface Green’s function of the reservgir ¢ stationary Scidinger equation is defined in the mul-
then the self-energy matrices which are of the same size thafimensional domairf by (x € Q)

[Ho], are defined by

YA(E)] = [m]]e] [, 3
25(B)) = [rillellr] 3 For a one band model, the Hamiltoni&his given within the
where [7;] is a coupling matrix between the surface of théffective mass approximation by

HU(x) = EV(x). )

reservoirj and the whole device. 52 1
Denoting 1; the fermi level associated to the reservgjr H=-7 (m*(x) V) + U(x), (10)
the non-equilibrium density matrix is given by
N wherem* is the effective mass and is the potential energy.
*dE Denotingy(x) an arbitrary test function i, then the weak
= E — 1;)[A(E 4 :
2 /_OC 27 Zj:fFD( H3) A ()], @ variational form of this equation is given by:
and one can show that B2 1
. -3 \Y (*V\I/> <de+/ UUpdQ) = E/ Updf,
[A5(E)] = [G(B)] [1;(E)] [G1(B)], ©) o Am " I
whereT; is the broadening function given by where the e_quation (9)is _multipliegl ly(x) and integrated
over ). The first term of this equation can be decomposed
;] =i(Z(E)] - [ET(E)]) . (6) using the Green’s identity such that
The electron density: is given by the diagonal elements ;2 1 52 1
of the matrix density and depends on the potentiain the f?/ \Y% <m*V\If> wd) = - / ﬁV\IJV@dQ (12)
device (since[Hy] depends on the potentidl). To account @ ) 0
for the space charge effect, the problem has to be solved self- R 1 (V\If ) 77) odao,
consistently with the Poisson equation. The current density 2 Joq m*
by of the domain(2. The second term of the right side of (12) is
9y [+ specified on the boundary, and then contains all information
=21 dE T(E) (frp(E —u1) — frp(E — u2)),  about the interactions with the contacts. Assuming that the

" @ wave functions vanishes at the device boundary except in the

contact regions with the reservoirs, then the integral over the

whereT'(E) is the transmission coefficient defined by entire boundanf( in (12) can be decomposed into a sum

T(E) = Trace[l'; GT',G]. (8) over the contacts regions so-called
o h? 1 /0
To summarize, in the transport problem the NEGF for- Z—?/ — (atlf> ody;. (13)
malism allows to describe the interactions of the reservoirs ; v NN

with the device by using self-energy functions. Howevefis term will be explicitly described in the case of open

the concepts of self-energy is far more general, and a sl ngary conditions in the next section. For the case that this
energy functions] can also be used to describe all kinds o, ,nqary term is equal to zero (using homogeneous Dirichlet
interactions with the surroundings [2] (for example electronﬁ—r Neumann boundary conditions respectivaly = 0 and
phonons or/and electrons-photons). V¥ = 0 on the frontiero(?), the system becomes an isolated
one, and we obtain the electronic states of a closed system. In

IIl. THE FINITE ELEMENT REPRESENTATION OF THE  the following, we propose to solve this problem making use
GREEN'S FUNCTION AND THE SELFENERGY FUNCTIONS  of the FEM in the variational form (11).

In contrast to the FDM, the FEM is based on the ap- De€notingu = wu,...,uy the vector of the (unknown)
proximation of the solution of the differential equation whild10dal values ofl corresponding to a given mesh; (= ¥ (x;)
the original Hamiltonian operator remains unchanged. TH#€rezi is the position of the_th node), andv; (x) the shape
approximate solution which is expanded in a local basis sifnctions located on each nodsuch thatv;(z:/) = d;i-, then
satisfies the differential equation only in an approximate walg)!ae wave function can be expanded approximately in this local
In this way, the Hamiltonian operator of a closed systeR@SiS function as:
written in a discrete forniH,] using the FEM preserves its N+l
hermitian property even for a non-uniform mesh (the non- Uy (x) = Z wiwi(x) (= ). (14)
hermitian part of G]~! comes from the self-energy matrices). o



The test functionp can be expanded in a similar manner
(we getpy). Inserting the expansions fob, and ¢y into
the equations (11) and (12), we obtain then a generalized

eigenvalue problem in the matrix notation:
1

SNYY R U
[HoJu = E[S]u, (15
with
h? 1 :
[HOL’Z” = ? —*VwVwi/dQ +/ Uwiw;dS), (16)
Qm Q
[S]n" = /Qwiwi’dQ- 17 Fig. 2. Semi-infinite leads associated to a donfir\ 1D device is described

on the left (case 1), and a 2D device on the right (case 2, which could be also
These matrices are real sparse symmetric but in the mipétrpreted as a section of a 3D device). We mention the local coordinates
. - . _ny,&; associated to the lead The potential has an arbitrary form inside the

general CaséHO] will be Herm|t|§1n (as for multi b_and mOd _domain(, but is assumed to be independent of tfjedirection in the lead
els). Transport problems often involve several discontinuitigsror the case of 2D and 3D leads, one also has to account for transverse
of the potential and of the effective mass at the interfageedes due to the confinement of the electrons in the diregtjofwheres;
between different materials. If these quantities are defin%%]] matched a 1D or a 2D coordinates respectively for a 2D or a 3D lead).
constants by element in an appropriate mesh, then they can

be treated in an exact way in the equation 16). These boundary conditions are equivalent to those described

in [5]. The boundary conditions also satisfy the following

) ] continuity relation at); = 0
The Green’s function can be considered as the wave function

at x resulting for a unit excitation applied at. We are only 1 0] gour_ 1 0]y (20)
interested by the retarded Green's function which represents m; onj|, m* oy

the response of the system of an impulse excitation within tWherem;f is the effective mass inside the contactUsing the

devic_e_ & < Q) Therefore, we have to define such _bounda%lations (19) and (20), the finite element discretization of the
conditions which appear transparent for the outgoing WaV@)?pression (13) can be written Ej [33,], where the elements

functions from the device to the contacts. N of the self-energy matricels;] are given byvj = 1,2
A general form of the transparent boundary condition on

the interfacey; for the outgoing solutions of the problem is
supposed to supply a relation between the normal derivatives

of the solutions and their boundary values (so-called a mixffjase >
boundary condition). In the NEGF formalism, these boundal
conditions orry; are described by the operator in (3).

We propose to define the self-energy at the contagis
wh_en the resc_arvows can be conS|dered_as.sem|-|nf|n|te Igatjs. q;;?"t(nj,gj) = ZAj_’le;n(gj)exp(ik‘;nnj% (22)
This assumption means that the potential in the reservoirs is m
invariant by translation along the transport direction and th
the outgoing solutions are plane waves. We deal with

B. Derivation of the self-energy with the contacts

h2
Yiliin = ———1ki0ie~, Oireny. - 21
[ J} QTTL;Z JY1EY; Se?i ( )

the outgoing plane waves solutions f@r;’“t in the local
coordinates;, &;) of the contactj, become;

Shere the unknown outgoing coefficiends, ,, and the wave

ector k7", depend on the mode: which corresponds to the

particular one-band problems where the dispersion relationdﬁh normalized eigenfunctiog™ in the transverse direction
J

parabolic in the contacts. The first (case 1) is related to ap lead j. ;). At the interfacer, — 0, one can show that
one dimensional problem with two contacts. The second (case T I '

2) deals with a two or three dimensional problem with an 9 WOt (5, 65) = i SO RPN (ES) O (€)W (0, €5

arbitrary number of contacts (see Fig. 2). Mo J

Case 1 (23)

the outgoing plane waves solutions fdr‘]?“t in the local These conditions are equivalent to the quantum transmitting
coordinaten; are given by boundary conditions described in [6]. Using the relation (23)

and (20) in the expression (13), the elements of the matrices

out _ — oy A R . . .
W5 (n;) = Ay exp(ikjny), (18) [%;] are now given after discretization by}
wherek; is the wave vector associated to leacnd A7, is h? =k .
the unknown outgoing coefficient. At the interfage = 0, [25]ir = 5t m* (G (&) |wa) (wir X" (§5))bien; i eny
one can show that moJ (24)

8 ou . ou
o O‘I’j "(n;) = ik; U5(0). (19)

where the effective mass in the legdis assumed invariant
along the transverse directid.



Finally, for all the cases, the self-energy matrices aftmear systems (only few number of column of the Green’s
complex symmetric and their elements are only non-zero fiamction are required for a given energy). Therefore, for very
points which belong to the frontiey; with the contact. large systems, the calculations of the electron density is ex-
IV. THE NUMERICAL SELFE-CONSISTENT ALGORITHM AND tremely timg cons'uming even yvith a parallel implgmentation,

APPLICATIONS and a full-dimensional description of the transport is not often

A P! finite element method is used to discretize both t suitable to obt_al_n the I-V curves in re!evant time (however, we

. . r}? te the promising method [9] which is currently under study).
NEGF problem anq the P0|s§on equanon_ on the same M&¥Norder to overcome these difficulties, we can apply a fast
Because _Of the highly non-linear behavior _Of t_h(_a couple gorithm based on a subbands decomposition method which
!\IEGF/POlsson_ s_ystem, we make use (.)f the 'mpl'c't Gumm&&counts for the confinement of the electrons in the structure,
fterations. An |n|t|al_ guess can be derived using a Thomage § then reduce the dimension of the transport problem. In
Fermi/Poisson semi-classical approach, Wh'.Ch IS solved WEgactice, the method requires to subdivide the structures into
a Newt.on—Rap_hson method. The examples in Fig. 3_and F ‘large number of (1D or 2D) slices along the transport
4 obtamed with the NESSlE. code, are used to '”usnaﬁ?rection. For a given potential, the method consists in solving
respectlyely the glectron density calculations for 3D elec'[rqﬂany independent eigenvalues problems associated to each
waveguides devices [7] (HI_'V_ heterostructure) and for 2Iglice (see [10] for the trace minimization method). Then, the
nanoscale MOSFETSs [8] (SI/Si02 structure). obtained multi-mode Hamiltonian reduced in this new basis
function is solved using the FEM for all the energies. When
all the subbands are coupled, this approach is equivalent to
the full-dimensional one but having a much lower numerical
cost [8] (see [11] for the uncoupled case). This approach was
applied to study the coupling modes effects for the double-
gate MOSFETSs, and to investigate the 3D silicon nanowire
transistors [12].

The FEM method applied to NEGF, can also be generalized
to describe multi-band Hamiltonian where the self-energy
functions need to be properly defined. For example, if we con-
sider the spin transport properties in a device with spin “up”,
“down” selective contacts, the electron system can be split
into two coupled subsystems composed of electrons having the
same spin orientation (up,down). The FEM/NEGF technique is
used to solve this two-band model for the electron-spin trans-

Fig. 3. The density profile after the 3D quantum model convergence for t ; : : e
T-stub (left) and the directional coupler (right). The electron gas is Iocalizecﬁg)rt' Some obtained results with the Slmpllfled 1D prOblem

few nanometer below the AlGaAs/GaAs interface (at z=150nm) and quantdi@ve been shown in [13] and compared to one analytical case
interference effects appear in the active region. [14]. In order to simulate the spin-FET (as proposed in [15]), a

2D transport model for spintronics has also been implemented.

V. CONCLUSION

We have shown that the FEM can be used to discretize
the NEGF formalism. This approach allows to consider non-
uniform meshes and any kind of complex geometries.
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