
Interaction of Molecules with Light

1 Characterization of the radiation field and molecular field

from Maxwell equations

In this Section we want to describe how a quantum mechanical particle, e.g., an electron in

a hydrogen atom, is affected by electromagnetic fields. For this purpose we need to establish

a suitable description of this field, then state the Hamiltonian which describes the resulting

interaction.

It turns out that the proper description of the electromagnetic field requires a little bit

of effort. We will describe the electromagnetic field classically. Such description should be

sufficient for high quantum numbers, i.e., for situations in which the photons absorbed or

emitted by the quantum system do not alter the energy content of the field. We will later

introduce a simple rule which allows one to account to some limited degree for the quantum

nature of the electromagnetic field, i.e., for the existence of discrete photons. More detailed

derivations are provided in the Chapter 8 of “Notes on Quantum Mechanics” (qmbook.pdf)

posted on the BioCoRe website.

1.1 Description of the Classical Electromagnetic Field / Separation of Lon-

gitudinal and Transverse Components

The aim of the following derivation is to provide a description of the electromagnetic field

which is most suitable for deriving later a perturbation expansion which yields the effect of

electromagnetic radiation on a bound charged particle, e.g., on an electron in a hydrogen

atom. The problem is that the latter electron, or other charged particles, are affected by the

Coulomb interaction V (~r) which is part of the forces which produce the bound state, and are

affected by the external electromagnetic field. However, both the Coulomb interaction due

to charges contributing to binding the particle, e.g., the attractive Coulomb force between

proton and electron in case of the hydrogen atom, and the external electromagnetic field are

of electromagnetic origin and, hence, must be described consistently. This is achieved in the

following derivation.

The classical electromagnetic field is governed by the Maxwell equations. We assume that

the system considered is in vacuum in which charge and current sources described by the

densities ρ(~r, t) and ~J(~r, t) are present. These sources enter the two inhomogeneous Maxwell
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equations1

∇ · ~E(~r, t) = 4π ρ(~r, t) (1)

∇× ~B(~r, t) − ∂t
~E(~r, t) = 4π ~J(~r, t) . (2)

In addition, the two homogeneous Maxwell equations hold

∇× ~E(~r, t) + ∂t
~B(~r, t) = 0 (3)

∇ · ~B(~r, t) = 0 . (4)

Scalar and Vector Potential Setting

~B(~r, t) = ∇× ~A(~r, t) (5)

for some vector-valued function ~A(~r, t), called the vector potential, solves implicitly (4). Equa-

tion (3) reads then

∇×
(

~E(~r, t) + ∂t
~A(~r, t)

)

= 0 (6)

which is solved by
~E(~r, t) + ∂t

~A(~r, t) = −∇V (~r, t) (7)

where V (~r, t) is a scalar function, called the scalar potential. From this follows

~E(~r, t) = −∇V (~r, t) − ∂t
~A(~r, t) . (8)

Gauge Transformations We have expressed now the electric and magnetic fields ~E(~r, t)

and ~B(~r, t) through the scalar and vector potentials V (~r, t) and ~A(~r, t). As is well known, the

relationship between fields and potentials is not unique. The following substitutions, called

gauge transformations, alter the potentials, but leave the fields unaltered:

~A(~r, t) −→ ~A(~r, t) + ∇χ(~r, t) (9)

V (~r, t) −→ V (~r, t) − ∂tχ(~r, t) . (10)

This gauge freedom will be exploited now to introduce potentials which are most suitable for the

purpose of separating the electromagnetic field into a component arising from the Coulomb

potential connected with the charge distribution ρ(~r, t) and the current due to moving net

charges, and a component due to the remaining currents. In fact, the gauge freedom allows us

to impose on the vector potential ~A(~r, t) the condition

∇ · ~A(~r, t) = 0 . (11)

1We assume so-called Gaussian units. The reader is referred to the well-known textbook ”Classical Electro-
dynamics”, 2nd Edition, by J. D. Jackson (John Wiley & Sons, New York, 1975) for a discussion of these and
other conventional units.
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The corresponding gauge is referred to as the Coulomb gauge, a name which is due to the form

of the resulting scalar potential V (~r, t). In fact, this potential results from inserting (8) into

(1)

∇ ·
(

−∇V (~r, t) − ∂t
~A(~r, t)

)

= 4π ρ(~r, t) . (12)

Using ∇ · ∂t
~A(~r, t) = ∂t∇ · ~A(~r, t) together with (11) yields then the Poisson equation

∇2V (~r, t) = − 4 π ρ(~r, t) . (13)

In case of the boundary condition

V (~r, t) = 0 for ~r ∈ ∂Ω∞ (14)

the solution is given by the Coulomb integral

V (~r, t) =

∫

Ω∞

d3r′
ρ(~r ′, t)

|~r − ~r ′| (15)

This is the potential commonly employed in quantum mechanical calculations for the descrip-

tion of Coulomb interactions between charged particles.

The vector potential ~A(~r, t) can be obtained employing (2), the second inhomogeneous

Maxwell equation. Using the expressions (5) and (8) for the fields results in

∇×
(

∇× ~A(~r, t)
)

+ ∂t

(

∇V (~r, t) + ∂t
~A(~r, t

)

= 4π ~J(~r, t) . (16)

The identity

∇×
(

∇× ~A(~r, t)
)

= ∇
(

∇ · ~A(~r, t)
)

− ∇2 ~A(~r, t) (17)

together with condition (11) leads us to

∇2 ~A(~r, t) − ∂2
t

~A(~r, t) − ∂t∇V (~r, t) = − 4 π ~J(~r, t) . (18)

Unfortunately, equation (18) couples the vector potential ~A(~r, t) and V (~r, t). One would

prefer a description in which the Coulomb potential (15) and the vector potential are uncoupled,

such that the latter describes the electromagnetic radiation, and the former the Coulomb

interactions in the unperturbed bound particle system. Such description can, in fact, be

achieved. For this purpose we examine the offending term ∂t∇V (~r, t) in (18) and define

~Jℓ(~r, t) =
1

4π
∂t∇V (~r, t) . (19)

For the curl of ~Jℓ holds

∇× ~Jℓ(~r, t) = 0 . (20)
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For the divergence of ~Jℓ(~r, t) holds, using ∂t∇ = ∇∂t and the Poisson equation (13),

∇ · ~Jℓ(~r, t) =
1

4π
∂t∇2V (~r, t) = − ∂tρ(~r, t) (21)

or

∇ · ~Jℓ(~r, t) + ∂tρ(~r, t) = 0 . (22)

This continuity equation identifies ~Jℓ(~r, t) as the current due to the time-dependence of the

charge distribution ρ(~r, t). Let ~J(~r, t) be the total current of the system under investigation

and let ~Jt = ~J − ~Jℓ. For ~J also holds the continuity equation

∇ · ~J(~r, t) + ∂tρ(~r, t) = 0 (23)

and from this follows

∇ · ~Jt(~r, t) = 0 . (24)

Because of properties (20) and (24) one refers to ~Jℓ and ~Jt as the longitudinal and the transverse

currents, respectively.

The definitions of ~Jℓ and ~Jt applied to (18) yield

∇2 ~A(~r, t) − ∂2
t

~A(~r, t) = − 4 π ~Jt(~r, t) . (25)

This equation does not couple anymore scalar and vector potentials. The vector potential

determined through (25) and (11) and the Coulomb potential (15) yield finally the electric and

magnetic fields. V (~r, t) contributes solely an electric field component

~Eℓ(~r, t) = −∇V (~r, t) (26)

which is obviously curl-free (∇ × ~Eℓ(~r, t) = 0), hence, the name longitudinal electric field.
~A(~r, t) contributes an electrical field component as well as the total magnetic field

~Et(~r, t) = − ∂t
~A(~r, t) (27)

~Bt(~r, t) = ∇× ~A(~r, t) . (28)

These fields are obviously divergence -free (e.g., ∇ · ~Et(~r, t) = 0), hence, the name transverse

fields.

1.2 Planar Electromagnetic Waves

The current density ~Jt describes ring-type currents in the space under consideration; such

current densities exist, for example, in a ring-shaped antenna which exhibits no net charge,

yet a current. Presently, we want to assume that no ring-type currents, i.e., no divergence-

free currents, exist in the space considered. In this case (25) turns into the well-known wave
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equation

∇2 ~A(~r, t) − ∂2
t

~A(~r, t) = 0 (29)

which describes electromagnetic fields in vacuum. A complete set of solutions is given by the

so-called plane waves
~A(~r, t) = Ao û exp

[

i(~k · ~r ∓ ωt)
]

(30)

where the dispersion relationship

|~k| = ω (31)

holds. Note that in the units chosen the velocity of light is c = 1. Here the “-” sign corresponds

to so-called incoming waves and the “+” sign to outgoing waves2, the constant ~k is referred to

as the wave vector. The Coulomb gauge condition (11) yields

û · ~k = 0 . (32)

û is a unit vector (|û| = 1) which, obviously, is orthogonal to ~k; accordingly, there exist two

linearly independent orientations for û corresponding to two independent planes of polarization.

We want to characterize now the radiation field connected with the plane wave solutions

(30). The corresponding electric and magnetic fields, according to (27, 28), are

~Et(~r, t) = ±i ω ~A(~r, t) (33)

~Bt(~r, t) = i~k × ~A(~r, t) . (34)

The vector potential in (30) and the resulting fields (33, 34) are complex-valued quantities.

In applying the potential and fields to physical observables and processes we will only employ

the real parts.

Obviously, ~Et(~r, t) and ~Bt(~r, t) in (33, 34), at each point ~r and moment t, are orthogonal

to each other and are both orthogonal to the wave vector ~k. The latter vector describes the

direction of propagation of the energy flux connected with the plane wave electromagnetic

radiation. This flux is given by

~S(~r, t) =
1

4π
Re ~Et(~r, t) × Re ~B(~r, t) . (35)

Using the identity ~a × (~b × ~c) = ~b (~a · ~c) − ~c (~a ·~b) and (30, 31, 33, 34) one obtains

~S(~r, t) = ±ω2

4π
A2

o k̂ sin2(~k · ~r ∓ ωt ) (36)

2The definition incoming waves and outgoing waves is rationalized below in the discussion following Eq. (77);
see also the comment below Eqs. (37, 38).
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where k̂ is the unit vector k̂ = ~k/|~k|. Time average over one period 2π/ω yields

〈 ~S(~r, t) 〉 = ±ω2

8π
A2

o k̂ . (37)

In this expression for the energy flux one can interprete k̂ as the propagation velocity (note

c = 1) and, hence,

〈ǫ〉 =
ω2

8π
A2

o (38)

as the energy density. The sign in (37) implies that for incoming waves, defined below

Eqs. (30,31), the energy of the plane wave is transported in the direction of −~k, whereas

in the case of outgoing waves the energy is transported in the direction of ~k.

A correct description of the electromagnetic field requires that the field be quantized. A

‘poor man’s’ quantization of the field is possible at this point by expressing the energy density

(38) through the density of photons connected with the planar waves (30). These photons

each carry the energy h̄ω. If we consider a volume V with a number of photons Nω the energy

density is obviously

〈ǫ〉 =
Nωh̄ω

V . (39)

It should be pointed out that Nω represents the number of photons for a specific frequency ω,

a specific k̂ and a specific û. Comparision of (38) and (39) allows one to express then the field

amplitudes

Ao =

√

8πNωh̄

ωV . (40)

Inserting this into (30) allows one finally to state for the planar wave vector potential

~A(~r, t) =

√

8πNωh̄

ωV û exp
[

i(~k · ~r − ωt)
]

, |~k| = ω , û · ~k = 0 . (41)

2 Characterization of the interaction of the radiation field and

molecules

2.1 Hamilton Operator

The classical Hamiltonian for a particle of charge q in a scalar and vector potential V (~r) and
~A(~r, t), respectively, is

H =

[

~p − q ~A(~r, t)
]2

2 m
+ qV (~r)

+
1

8π

∫

Ω∞

d3r′ E2
ℓ +

1

16π

∫

Ω∞

d3r
(

|Et|2 + |Bt|2
)

. (42)
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Here the fields are defined through Eqs. (26, 27, 28) together with the potentials (15, 30). The

integrals express the integration over the energy density of the fields. Note that ~Eℓ(~r, t) is

real and that ~Et(~r, t), ~Bt(~r, t) are complex leading to the difference of a factor 1
2 in the energy

densities of the lontitudinal and transverse components of the fields.

We assume that the energy content of the fields is not altered significantly in the processes

described and, hence, we will neglect the respective terms in the Hamiltonian (42). We are left

with a classical Hamiltonian function which has an obvious quantum mechanical analogue

Ĥ =

[

~̂p − q ~A(~r, t)
]2

2 m
+ qV (~r) . (43)

replacing the classical momentum ~p by the differential operator ~̂p = h̄
i ∇. The wave function

Ψ(~r, t) of the particle is then described by the Schrödinger equation

i h̄ ∂t Ψ(~r, t) = Ĥ Ψ(~r, t) . (44)

Gauge Transformations It is interesting to note that in the quantum mechanical descrip-

tion of a charged particle the potentials V (~r, t) and ~A(~r, t) enter whereas in the classical

equations of motion

m~̈r = q ~E(~r, t) + q ~̇r × ~B(~r, t) (45)

the fields enter. This leads to the question in how far the gauge transformations (9, 10) affect

the quantum mechanical description. In the classical case such question is mute since the gauge

transformations do not alter the fields and, hence, have no effect on the motion of the particle

described by (45).

Applying the gauge transformations (9, 10) to (43, 44) leads to the Schrödinger equation

ih̄∂tΨ(~r, t) =






[

~̂p − q ~A − q((∇χ))
]2

2 m
+ qV − q((∂tχ))




 Ψ(~r, t) (46)

where ((· · ·)) denotes derivatives in ((∇χ)) and ((∂tχ)) which are confined to the function

χ(~r, t) inside the double brackets. One can show that (46) is equivalent to

ih̄∂te
iqχ(~r,t)/h̄Ψ(~r, t) =






[

~̂p − q ~A
]2

2 m
+ qV




 eiqχ(~r,t)/h̄Ψ(~r, t) . (47)

For this purpose one notes

ih̄∂t eiqχ(~r,t)/h̄Ψ(~r, t) = eiqχ(~r,t)/h̄ [ ih̄∂t − q((∂tχ)) ] Ψ(~r, t) (48)

~̂p eiqχ(~r,t)/h̄Ψ(~r, t) = eiqχ(~r,t)/h̄
[

~̂p + q((∇χ))
]

Ψ(~r, t) . (49)
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The equivalence of (46, 47) implies that the gauge transformation (9, 10) of the potentials is

equivalent to multiplying the wave function Ψ(~r, t) by a local and time-dependent phase factor

eiqχ(~r,t)/h̄. Obviously, such phase factor does not change the probability density |Ψ(~r, t)|2 and,

hence, does not change expectation values which contain the probability densities3.

An important conceptual step of modern physics has been to turn the derivation given

around and to state that introduction of a local phase factor eiqχ(~r,t)/h̄ should not affect a

system and that, accordingly, in the Schrödinger equation

ih̄∂tΨ(~r, t) =






[

~̂p − q ~A
]2

2 m
+ qV




 Ψ(~r, t) . (50)

the potentials ~A(~r, t) and V (~r, t) are necessary to compensate terms which arise through the

phase factor. It should be noted, however, that this principle applies only to fundamental

interactions, not to phenomenological interactions like the molecular van der Waals interaction.

The idea just stated can be generalized by noting that multiplication by a phase factor

eiqχ(~r,t)/h̄ constitutes a unitary transformation of a scalar quantity, i.e., an element of the

group U(1). Elementary constituents of matter which are governed by other symmetry groups,

e.g., by the group SU(2), likewise can demand the existence of fields which compensate local

transformations described by ei~σ·~χ(~r,t) where ~σ is the vector of Pauli matrices, the generators

of SU(2). The resulting fields are called Yang-Mills fields.

The Hamiltonian (43) can be expanded

H =
~̂p

2

2m
− q

2m

(

~̂p · ~A + ~A · ~̂p
)

+
q2

2m
A2 + qV (51)

For any function f(~r) holds

(

~̂p · ~A − ~A · ~̂p
)

f(~r) =
h̄

i

(

~A · ∇f + f ∇ · ~A − ~A · ∇f
)

=
h̄

i
f ∇ · ~A . (52)

This expression vanishes in the present case since since ∇·A = 0 [cf. (11)]. Accordingly, holds

~̂p · A f = ~A · ~̂p f (53)

and, consequently,

H =
~̂p

2

2m
− q

m
~̂p · ~A +

q2

2m
A2 + qV . (54)

2.2 Time-Dependent Perturbation Theory

We want to consider now a quantum system involving a charged particle in a bound state

perturbed by an external radiation field described through the Hamiltonian (54). We assume

3The effect on other expectation values is not discussed here.
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that the scalar potential V in (54) confines the particle to stationary bound states; an example

is the Coulomb potential V (~r, t) = 1/4πr confining an electron with energy E < 0 to move in

the well known orbitals of the hydrogen atom. The external radiation field is accounted for by

the vector potential ~A(~r, t) introduced above. In the simplest case the radiation field consists

of a single planar electromagnetic wave described through the potential (30). Other radiation

fields can be expanded through Fourier analysis in terms of such plane waves. We will see

below that the perturbation resulting from a ‘pure’ plane wave radiation field will serve us to

describe also the perturbation resulting from a radiation field made up of a superposition of

many planar waves.

The Hamiltonian of the particle in the radiation field is then described through the Hamil-

tonian

H = Ho + VS (55)

Ho =
~̂p
2

2m
+ q V (56)

VS = − q

m
~̂p · ~A(~r, t) +

q2

2m
A2(~r, t) (57)

where ~A(~r, t) is given by (41). Here the so-called unperturbed system is governed by the

Hamiltonian Ho with stationary states defined through the eigenvalue problem

Ho |n〉 = ǫn |n〉 , n = 0, 1, 2 . . . (58)

where we adopted the Dirac notation for the states of the quantum system. The states |n〉 are

thought to form a complete, orthonormal basis, i.e., we assume

〈n|m〉 = δnm (59)

and for the identity 1 =
∞∑

n=0

|n〉〈n| . (60)

We assume for the sake of simplicity that the eigenstates of Ho can be labeled through integers,

i.e., we discount the possibility of a continuum of eigenstates. However, this assumption can

be waved as our results below will not depend on it.

Estimate of the Magnitude of VS

We want to demonstrate now that the interaction VS(t), as given in (57) for the case of

radiation-induced transitions in atomic systems, can be considered a weak perturbation. In

fact, one can estimate that the perturbation, in this case, is much smaller than the eigenvalue

differences near typical atomic bound states, and that the first term in (57), i.e., the term

∼ ~̂p · ~A(~r, t), is much larger than the second term, i.e., the term ∼ A2(~r, t). This result will
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allow us to neglect the second term in (57) in further calculations and to expand the wave

function in terms of powers of VS(t) in a perturbation calculation.

For an electron charge q = −e and an electron mass m = me one can provide the estimate

for the first term of (57) as follows4. We first note, using (40)

∣
∣
∣
∣

e

me
~̂p · ~A

∣
∣
∣
∣ ∼ e

me

∣
∣
∣
∣
∣
2me

p2

2me

∣
∣
∣
∣
∣

1

2

√

8πNωh̄

ω V . (61)

The virial theorem for the Coulomb problem provides the estimate for the case of a hydrogen

atom ∣
∣
∣
∣
∣

p2

2me

∣
∣
∣
∣
∣
∼ 1

2

e2

ao
(62)

where ao is the Bohr radius. Assuming a single photon, i.e., Nω = 1, a volume V = λ3 where

λ is the wave length corresponding to a plane wave with frequency ω, i.e., λ = 2πc/λ, one

obtains for (61) using V = λ 4π2c2/ω2

∣
∣
∣
∣

e

me
~̂p · ~A

∣
∣
∣
∣ ∼ e2

4πao

∣
∣
∣
∣

2

π

ao

λ

h̄ω

mec2

∣
∣
∣
∣

1

2

(63)

For h̄ω = 3 eV and a corresponding λ = 4000 Å one obtains, with ao ≈ 0.5 Å, and mec
2 ≈

500 keV ∣
∣
∣
∣

2

π

ao

λ

h̄ω

mec2

∣
∣
∣
∣ ≈ 10−8 (64)

and with e2/ao ≈ 27 eV, altogether,

∣
∣
∣
∣

e

me
~̂p · ~A

∣
∣
∣
∣ ∼ 10 eV · 10−4 = 10−3 eV . (65)

This magnitude is much less than the differences of the typical eigenvalues of the lowest states

of the hydrogen atom which are of the order of 1 eV. Hence, the first term in (57) for radiation

fields can be considered a small perturbation.

We want to estimate now the second term in (57). Using again (40) one can state

∣
∣
∣
∣
∣

e2

2me
A2

∣
∣
∣
∣
∣
∼ e2

2me

1

ω2

8πNωh̄ω

V (66)

For the same assumptions as above one obtains

∣
∣
∣
∣
∣

e2

2me
A2

∣
∣
∣
∣
∣
∼ e2

8πao
·

(
ao

λ

4h̄ω

mec2

)

. (67)

4The reader should note that the estimates are very crude since we are establishing an order of magnitude
estimate only.

10



Employing for the second factor the estimate as stated in (64) yields

∣
∣
∣
∣
∣

e2

2me
A2

∣
∣
∣
∣
∣
∼ 10 eV · 10−8 = 10−7 eV . (68)

This term is obviously much smaller than the first term. Consequently, one can neglect this

term as long as the first term gives non-vanishing contributions, and as long as the photon

densities Nω/V are small. We can, hence, replace the perturbation (57) due to a radiation field

by

VS = − q

m
~̂p · ~A(~r, t) . (69)

In case that such perturbation acts on an electron and is due to superpositions of planar waves

described through the vector potential (41) it holds

VS ≈ e

m

∑

~k,û

√

4πNkh̄

kV α(~k, û) ~̂p · û exp
[

i(~k · ~r − ωt)
]

. (70)

where we have replaced ω in (41) through k = |~k| = ω. The sum runs over all possible ~k

vectors and might actually be an integral, the sum over û involves the two possible polarizations

of planar electromagnetic waves. A factor α(~k, û) has been added to describe eliptically or

circularly polarized waves. Equation (70) is the form of the perturbation which, under ordinary

circumstances, describes the effect of a radiation field on an electron system and which will be

assumed below to describe radiative transitions.

2.3 Perturbations due to Electromagnetic Radiation

We had identified in Eq. (70) above that the effect of a radiation field on an electronic system

is accounted for by perturbations with a so-called harmonic time dependence ∼ exp(−iωt). A

perturbation expansion for the transition amplitude is derived on page 218 of Chapter 8 of

qmbook.pdf. We want to apply now the perturbation expansion to such perturbations. For

the sake of including the effect of superpositions of plane waves we will assume, however, that

two planar waves simulataneously interact with an electronic system, such that the combined

radiation field is decribed by the vector potential

~A(~r, t) = A1 û1 exp
[

i (~k1 · ~r − ω1 t)
]

incoming wave (71)

+ A2 û2 exp
[

i (~k2 · ~r ∓ ω2 t)
]

incoming or outgoing wave

combining an incoming and an incoming or outgoing wave. The coefficients A1, A2 are defined

through (40).
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The resulting perturbation on an electron system, according to (70), is

VS =
[

V̂1 exp(−iω1t) + V̂2 exp(∓iω2t)
]

eλt , λ → 0+ , to → −∞ (72)

where V̂1 and V̂2 are time-independent operators defined as

V̂j =
e

m

√

8πNj h̄

ωjV
︸ ︷︷ ︸

I

~̂p · ûj

︸ ︷︷ ︸

II

ei~k·~r

︸︷︷︸

III

. (73)

Here the factor I describes the strength of the radiation field (for the specified planar wave) as

determined through the photon density Nj/V and the factor II describes the polarization of

the planar wave; note that ûj , according to (33, 71), defines the direction of the ~E-field of the

radiation. The factor III in (73) describes the propagation of the planar wave, the direction of

the propagation being determined by k̂ = ~k/|~k|. We will demonstrate below that the the sign

of ∓iωt determines if the energy of the planar wave is absorbed (“-” sign) or emitted (“+”

sign) by the quantum system. In (73) ~r is the position of the electron and ~̂p = (h̄/i)∇ is the

momentum operator of the electron. A factor exp(λt), λ → 0+ has been introduced which

describes that at time to → −∞ the perturbation is turned on gradually. This factor will

serve mainly the purpose of keeping in the following derivation all mathematical quantities

properly behaved, i.e., non-singular.

The generic situation we attempt to describe entails a particle at time t = to in a state |0〉
and a radiation field beginning to act at t = to on the particle promoting it into some of the

other states |n〉, n = 1, 2, . . .. The states |0〉, |n〉 are defined in (58–60) as the eigenstates of

the unperturbed Hamiltonian Ho. One seeks to predict the probability to observe the particle

in one of the states |n〉, n 6= 0 at some later time t ≥ to. For this purpose one needs to

determine the state |ΨS(t)〉 of the particle. This state obeys the Schrödinger equation

ih̄ ∂t|ΨS(t)〉 = [Ho + VS(t) ] |ΨS(t)〉 (74)

subject to the initial condition

|ΨS(to)〉 = |0〉 . (75)

The probability to find the particle in the state |n〉 at time t is then

p0→n(t) = |〈n|ΨS(t)〉|2 . (76)

Using derivations in Eqs. (8.145-8.157) of Chapter 8, one can conclude for the average

transition rate

k = 〈 d

dt
p0→n(t) 〉t =

2π

h̄

[

|〈n|V̂1|0〉|2 δ(ǫn − ǫo − h̄ω1) (77)

+ |〈n|V̂2|0〉|2 δ(ǫn − ǫo ∓ h̄ω2)
]
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Obviously, the two terms apearing on the rhs. of this expression describe the individual effects

of the two planar wave contributions of the perturbation (71–73). The δ-functions appearing

in this expression reflect energy conservation: the incoming plane wave contribution of (72,

73), due to the vector potential

A1 û1 exp
[

i (~k1 · ~r − ω1 t)
]

, (78)

leads to final states |n〉 with energy ǫn = ǫo + h̄ω1. The second contribution to (77), describing

either an incoming or an outgoing plane wave due to the vector potential

A2 û2 exp
[

i (~k1 · ~r ∓ ω2 t)
]

, (79)

leads to final states |n〉 with energy ǫn = ǫo ± h̄ω2. The result supports our definition of

incoming and outgoing waves in (30) and (71)

The matrix elements 〈n|V̂1|0〉 and 〈n|V̂2|0〉 in (77) play an essential role for the transition

rates of radiative transitions. First, these matrix elements determine the so-called selection

rules for the transition: the matrix elements vanish for many states |n〉 and |0〉 on the ground

of symmetry and geometrical properties. In case the matrix elements are non-zero, the matrix

elements can vary strongly for different states |n〉 of the system, a property, which is observed

through the so-called spectral intensities of transitions |0〉 → |n〉.

2.4 One-Photon Absorption and Emission in Atoms

We finally can apply the results derived to describe transition processes which involve the

absorption or emission of a single photon. For this purpose we will employ the transition rate

as given in Eq. (77) which accounts for such transitions.

Absorption of a Plane Polarized Wave

We consider first the case of absorption of a monochromatic, plane polarized wave described

through the complex vector potential

~A(~r, t) =

√

8πN h̄

ωV û exp

[
ı

h̄
(~k · ~r − ωt)

]

. (80)

We will employ only the real part of this potential, i.e., the vector potential actually assumed

is

~A(~r, t) =

√

2πN h̄

ωV û exp

[
ı

h̄
(~k · ~r − ωt)

]

+

√

2πN h̄

ωV û exp

[
ı

h̄
(−~k · ~r + ωt)

]

. (81)

The perturbation on an atomic electron system is then according to (72, 73)

VS =
[

V̂1 exp(−iωt) + V̂2 exp(+iωt)
]

eλt , λ → 0+ , to → −∞ (82)
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where

V̂1,2 =
e

m

√

2πN h̄

ωV ~̂p · û e±i~k·~r . (83)

Only the first term of (72) will contribute to the absorption process, the second term can be

discounted in case of absorption. The absorption rate, according to (77), is then

kabs =
2π

h̄

e2

m2
e

2πN h̄

ωV
∣
∣
∣ û · 〈n| ~̂p ei~k·~r |0〉

∣
∣
∣

2
δ(ǫn − ǫo − h̄ω) (84)

Dipole Approximation We seek to evaluate the matrix element

~M = 〈n| ~̂p ei~k·~r |0〉 . (85)

The matrix element involves a spatial integral over the electronic wave functions associated

with states |n〉 and |0〉. For example, in case of a radiative transition from the 1s state of

hydrogen to one of its three 2p states, the wave functions are (n, ℓ, m denote the relevant

quantum numbers)

ψn=1,ℓ=0,m=0(r, θ, φ) = 2

√

1

a3
o

e−r/ao Y00(θ, φ) 1s (86)

ψn=2,ℓ=1,m(r, θ, φ) = −1

2

√

6

a3
o

r

ao
e−r/2ao Y1m(θ, φ) 2p (87)

and the integral is

~M =
h̄
√

6

ia4
o

∫
∞

0
r2dr

∫ 1

−1
dcosθ

∫ 2π

0
dφ r e−r/2ao Y ∗

1m(θ, φ) ×

×∇ei~k·~re−r/ao Y00(θ, φ) (88)

These wave functions make significant contributions to this integral only for r-values in the

range r < 10 ao. However, in this range one can expand

ei~k·~r ≈ 1 + i~k · ~r + . . . (89)

One can estimate that the absolute magnitude of the second term in (89) and other terms are

never larger than 20π ao/λ. Using |~k| = 2π/λ, the value of the wave length for the 1s → 2p

transition

λ =
2πh̄c

∆E2p−1s
= 1216 Å (90)

and ao = 0.529 Å one concludes that in the significant integration range in (88) holds ei~k·~r ≈
1 + O( 1

50) such that one can approximate

ei~k·~r ≈ 1 . (91)
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One refers to this approximation as the dipole approximation.

Transition Dipole Moment A further simplification of the matrix element (85) can then

be achieved and the differential operator ~̂p = h̄
i ∇ replaced by by the simpler multiplicative

operator ~r. This simplification results from the identity

~̂p =
m

ih̄
[~r, Ho ] (92)

where Ho is the Hamiltonian given by (56) and, in case of the hydrogen atom, is

Ho =
(~̂p)2

2me
+ V (~r) , V (~r) = − e2

r
. (93)

For the commutator in (92) one finds

[~r, Ho ] = [~r,
~̂p
2

2me
] + [~r, V (~r) ]

︸ ︷︷ ︸

= 0

=
1

2me

3∑

k=1

p̂k [~r, p̂k ] +
1

2me

3∑

k=1

[~r, p̂k ] pk (94)

Using ~r =
∑3

j=1 xj êj and the commutation property [xk, p̂j ] = ih̄ δkj one obtains

[~r, Ho ] =
ih̄

m

3∑

j,k=1

pk êj δjk =
ih̄

m

3∑

j,k=1

pk êk =
ih̄

m
~̂p (95)

from which follows (92).

We are now in a position to obtain an alternative expression for the matrix element (85).

Using (91) and (92) one obtains

~M ≈ m

ih̄
〈n| [~r, Ho] |0〉 =

m (ǫo − ǫn)

ih̄
〈n|~r |0〉 . (96)

Insertion into (84) yields

kabs =
4π2 e2 N ω

V
∣
∣
∣ û · 〈n| ~̂r |0〉

∣
∣
∣

2
δ(ǫn − ǫo − h̄ω) (97)

where we used the fact that due to the δ-function factor in (84) one can replace ǫn − ǫo by h̄ω.

The δ-function appearing in this expression, in practical situations, will actually be replaced

by a distribution function which reflects (1) the finite life time of the states |n〉, |0〉, and (2) the

fact that strictly monochromatic radiation cannot be prepared such that any radiation source

provides radiation with a frequency distribution.
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