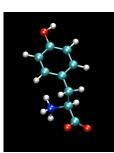
PHYS 498: Introduction to Biological Physics Loomis 158


A glimpse of computational methods in biological physics:

Case study on two proteins

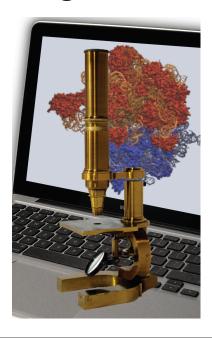
Klaus Schulten

Theoretical and Computational Biophysics Group February 15, 2012

Introduction to Protein Structures and Molecular Graphics Tool

amino acid tyrosine, Y

Amino Acid	SLC			DNA	codo	ns	
Isoleucine	I	ATT,	ATC,	ATA			
Leucine	L	CTT,	CTC,	CTA,	CTG,	TTA,	TTG
Valine	V	GTT,	GTC,	GTA,	GTG		
Phenylalanine	F	TTT,	TTC				
Methionine	M	ATG					
Cysteine	С	TGT,	TGC				
Alanine	A	GCT,	GCC,	GCA,	GCG		
Glycine	G	GGT,	GGC,	GGA,	GGG		
Proline	P	CCT,	CCC,	CCA,	CCG		
Threonine	T	ACT,	ACC,	ACA,	ACG		
Serine	S	TCT,	TCC,	TCA,	TCG,	AGT,	AGC
Tyrosine	Y	TAT,	TAC				
Tryptophan	W	TGG					
Glutamine	Q	CAA,	CAG				
Asparagine	N	AAT,	AAC				
Histidine	Н	CAT,	CAC				
Glutamic acid	Е	GAA,	GAG				
Aspartic acid	D	GAT,	GAC				
Lysine	K	AAA,	AAG				
Arginine	R	CGT,	CGC,	CGA,	CGG,	AGA,	AGG
Stop codons	Stop	TAA,	TAG,	TGA			

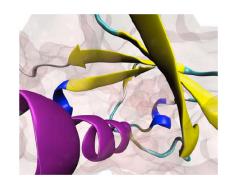

Quick Overview of Protein Structure

What Proteins are Made of: Primary Structure (Sequence) of Amino Acids

Proteins: polymeric molecules linking amino acids through peptide bonds

Peptide bond linking two amino acids

Looking at Proteins Through the Program VMD

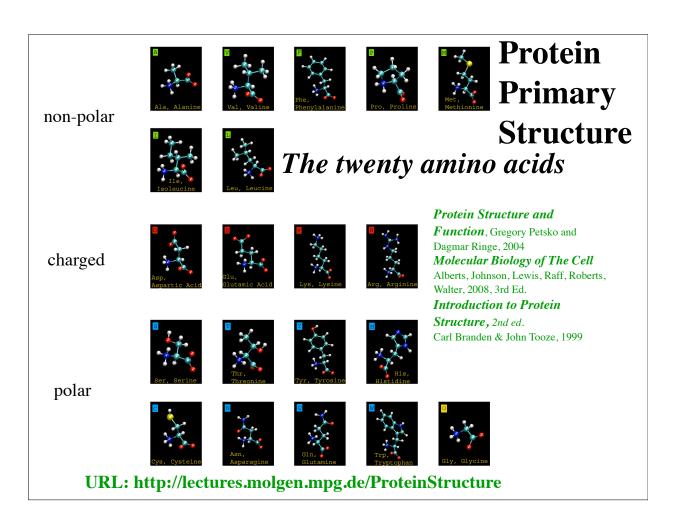


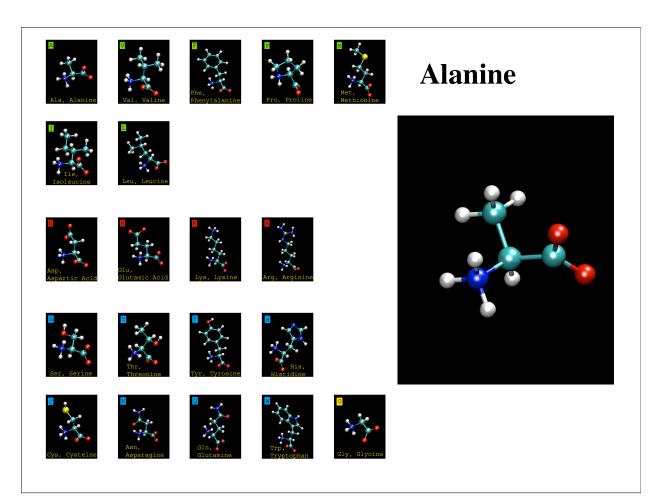
University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology Theoretical and Computational Biophysics Group Computational Biophysics Workshop

Learn to use VMD from the "Using VMD" tutorial available at http://www.ks.uiuc.edu/Training/Tutorials/

Using VMD

VMD for Mac OS X, Unix, and Windows is available for download at http://www.ks.uiuc.edu/Research/vmd/



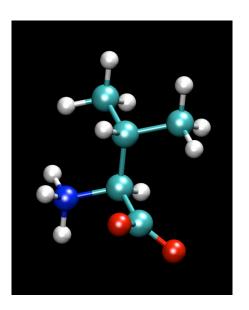

VMD Developer: John Stone

Tutorial Contributors:

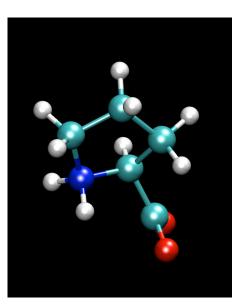
Alek Aksimentiev, Anton Arkhipov, Robert Brunner, Jordi Cohen, Brijeet Dhaliwal, John Eargle, Jen Hsin, Fatemeh Khalili, Eric H. Lee, Zan Luthey-Schulten, Patrick O'Donoghue, Elijah Roberts, Anurag Sethi, Marcos Sotomayor, Emad Tajkhorshid, Leonardo Trabuco, Elizabeth Villa, Yi Wang, David Wells, Dan Wright, Ying Yin

July 2009

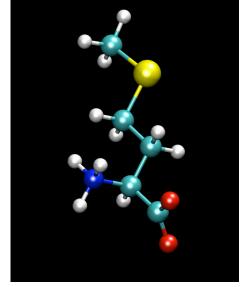
Valine



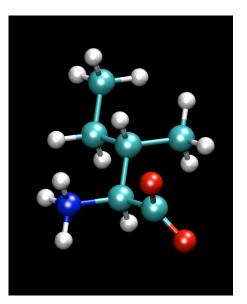
Phenylanaline



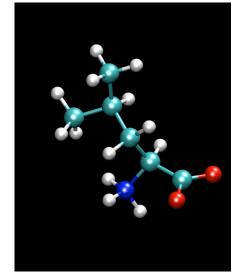
Methionine

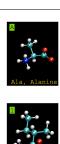


Isoleucine

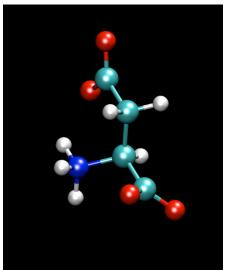


Leucine

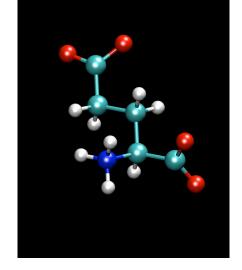


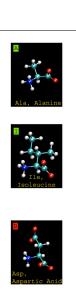


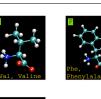
Aspartate

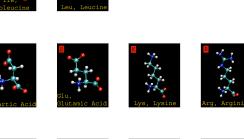


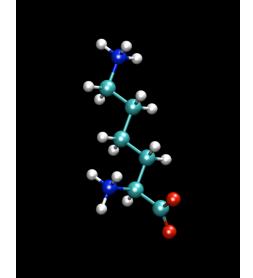
Glutamate

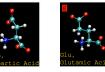


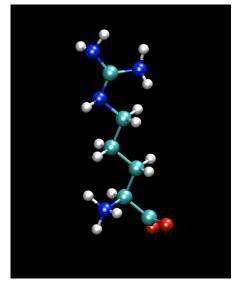




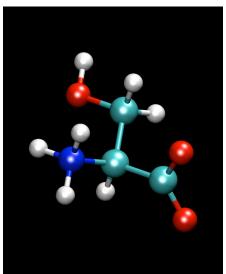






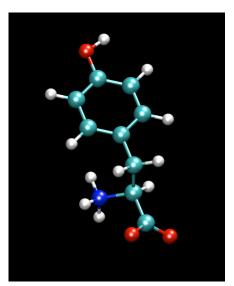


Serine

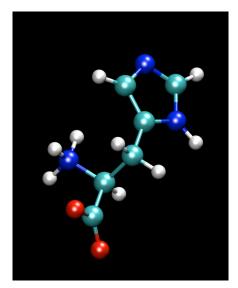


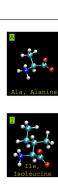
Threonine

Tyrosine

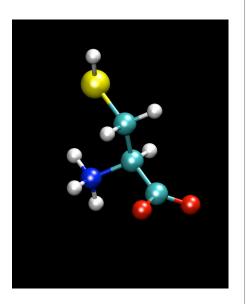


Histidine





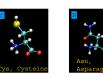
Cysteine



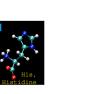
Asparagine

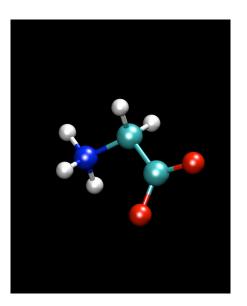


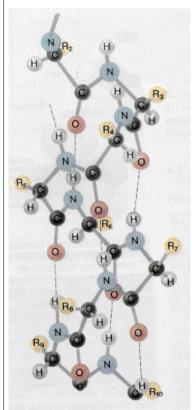
Tryptophane

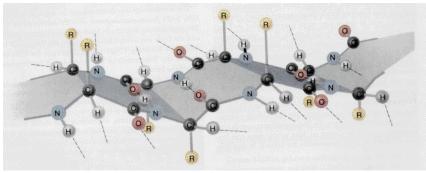


Glycine





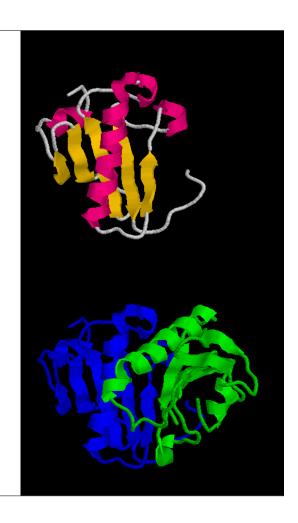




Protein Secondary Structure

An antiparallel beta sheet

Beta sheets are created, when atoms of beta strands are hydrogen bound. Beta-sheets may consist of parallel strands, antiparallel strands or out of a mixture of parallel and antiparallel strands.

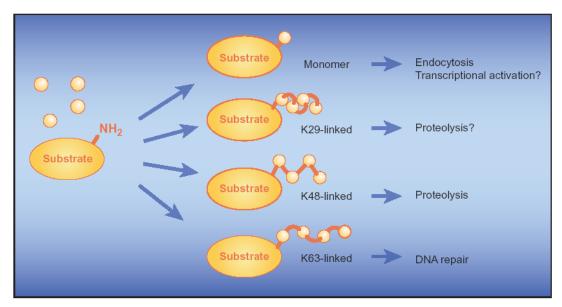

An alpha helix

The backbone is formed as a helix. An ideal alpha helix consists of 3.6 residues per complete turn. The side chains stick out. There are hydrogen bonds between the carboxy group of amino acid and the amino group of another amino acid n+4. The mean phi angle is -62 degrees and the mean psi angle is -41 degrees

Tertiary and Quarternary Structures of Proteins

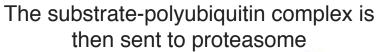
Tertiary structure describes the packing of alpha-helices, beta-sheets and random coils with respect to each other on the level of one whole polypeptide chain.

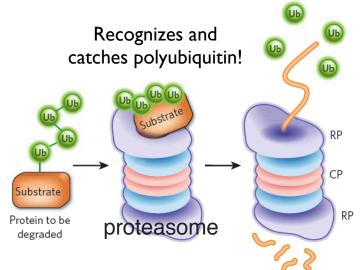
Quaternary structure only exists, if there is more than one polypeptide chain present in a complex protein. Then quaternary structure describes the spatial organization of the chains


Focus on one protein

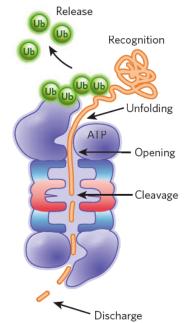
Ubiquitin

- 76 amino acids
- highly conserved
- covalently attaches to proteins and tags them for degradation
- other cell traficking

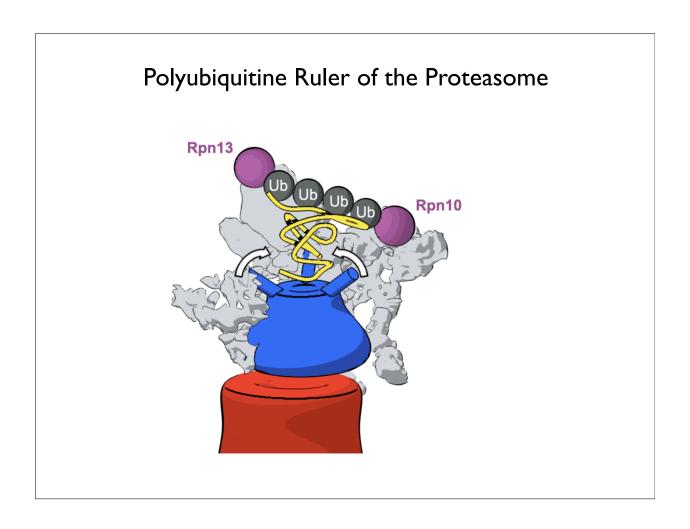

Mono-ubiquitylation versus multi-ubiquitylation

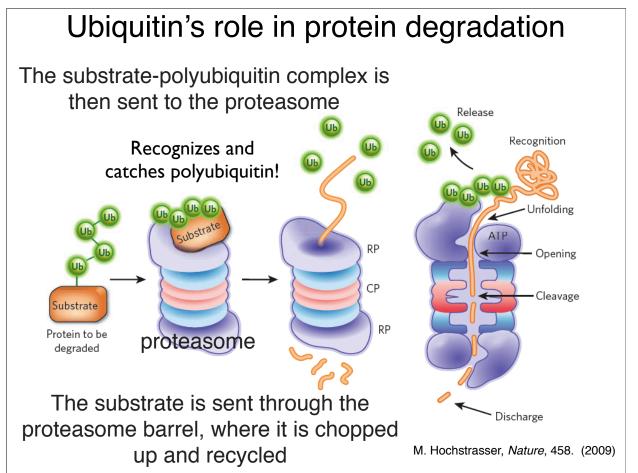


Multifaceted. Ubiquitin can attach to its various substrate proteins, either singly or in chains, and that in turn might determine what effect the ubiquitination has. (K29, K48, and K63 refer to the particular lysine amino acid used to link the ubiquitins to each other.)

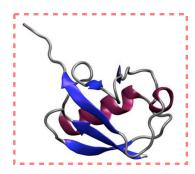

Marx, J., Ubiquitin lives up its name, Science 297, 1792-1794 (2002)

Ubiquitin's role in protein degradation





The substrate is sent through the proteasome barrel, where it is chopped up and recycled


M. Hochstrasser, *Nature*, 458. (2009)

Highly conserved ubiquitin chain

- The sequence of ubiquitin is highly conserved, in particular the seven lysine residues
- A lysine residue in a ubiquitin can be linked to the Cterminus of another ubiquitin
- By using different lysine for such linkage, ubiquitin is used for different cellular purposes

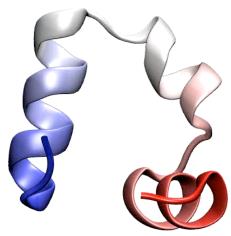
Organism		Sequence Alignment Swis										
Amoeba	MQIF	K"LTCK	'ITLEVESSDTIEN'	K K QI KI	GIPPDQQRLIFACK	ILEDGRTLADYNICK	STLHLVLRLRGG P49634					
Green alga							STLHLVLRLRGG P42739					
Chlamyd. reinhardtii	MQIF	K"LTCK1	ITLEVESSOTIEN	K K QI KI	GIPPDQQRLIFACK	LEDGRTLADYNICK	STLHLVLRLRGG P14624					
Mouse							STLHLVLRLRGG P62991					
Human (*)	MQIF	K"LTCK	ITLEVEPSDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P62988					
Slime mold	MQIF	K"LTCK1	ITLEVEGSONIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P08618					
Purple sea urchin	MQIF	K"LTCK1	ITLEVEPSDS I EN	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P23398					
Eimeria bovis	MQIF	K"LTCK	'ITLDVEPSDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P46574					
T. pyriformis	MQIF	K"LTCK	ITLDVEASDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P20685					
C. elegans	MQIF	K"LTCK	ITLEVEASDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P14792					
Red alga	MQIF	K"LTOK	ITLEVESSDTIEN'	K K QI KI	G I PPDQQRL I FACK	ILEDGRTLSDYNICK	STLHLVLRLRGG P42740					
Neurospora crassa	MQIF	K"LTCK	ITLEVESSDTIDN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P13117					
Baker's yeast	MQIF	K"LTCK1	ITLEVESSOTION	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P61864					
Inky cap fungus	MQIF	K"LTCK	ITLEVESSOTION	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P19848					
Garden pea (**)	MQIF	K"LTCK	ITLEVESSOTION	K K QI KI	GIPPDQQRLIFACK	LEDGRTLADYNICK	STLHLVLRLRGG P03993					
Euplotes eurystomus	MQIF	K"LTCK1	ITLDVEQSDTIDN	K K QI KI	GIPPDQQRLIFACK	LEDGRTLADYNICK	STLHLVLRLRGG P23324					
Potato late blight fungus	MQIF	K"LTCK	ITLDVEPSDSIDN	K K QI KI	GIPPDQQRLIFACK	LEDGRTLSDYNICK	STLHLVLRLRGG P22589					
Leishmania major	MQIF	K"LTCK	'IALEVEPSDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEEGRTLSDYNICK	STLHLVLRLRGG Q05550					
Sauroleish. tarentolae	MQIF	KTLTOT	IALEVEPSDTIEN'	K K QI KI	GIPPDQQRLIFAIK	ILEEGRTLSDYNICK	STLHLVLRLRGG P49635					
T. brucei brucei	MQIF	KTLTCK	IALEVEASDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEEGRTLADYNICK	STLHLVLRLRGG P15174					
Trypanosoma cruzi	MQIF	KTLTOKI	IALEVESSDTIEN'	K K QI KI	GIPPDQQRLIFACK	LEDGRTLADYNICK	STLHLVLRLRGG P08565					
	1	10	20	30	40	50 60	70 76					

VMD Demo 1

Some readings

http://en.wikipedia.org/wiki/Ubiquitin

- J. Marx, "Ubiquitin lives up to its name." Science, 297. (2002)
- M. Hochstrasser, "Origin and function of ubiquitin-like proteins." Nature, 458. (2009)
- A. Varshavsky, "The early history of the ubiquitin field." *Protein Science*, 15. (2006)
- C. M. Pickart, "Back to the future with ubiquitin." *Cell*, 116. (2004)
- M. Carrion-Vazquez et al., "The mechanical stability of ubiquitin is linkage dependent." *Nature Structure Biology*, 10. (2003)


http://nobelprize.org/nobel_prizes/chemistry/laureates/2004/

If you need to get a quick lesson on VMD, here is a short tutorial:

http://www.ks.uiuc.edu/~jhsin/papers/HSIN2008.pdf

Protein Folding

- Folding of the Protein called Villin Headpiece
- First protein folded in computer simulation
- Visualization of the "trajectory" of the folding protein reveales how this protein finds it native conformation from an initially stretched-out conformation

villin headpiece

Observe folding process in unprecedented detail

VMD Demo 2