Phys550. Lecture Notes III - Module 2: Smoluchowski Equation
for Potentials

In this section we will consider the general properties of the solution p(7,t) of the Smoluchowski
equation in the case that the force field is derived from a potential, i.e., F(7) = —VU () and that
the potential is finite everywhere in the diffusion doamain 2. We will demonstrate first that the
solutions, in case of reaction-free boundary conditions, obey an extremum principle, namely, that
during the time evolution of p(7, t) the total free energy decreases until it reaches a minimum value
corresponding to the Boltzmann distribution.

We will then characterize the time-evolution through a so-called spectral expansion, i.e., an ex-
pansion in terms of eigenfunctions of the Smoluchowski operator £(). Since this operator is not
self-adjoint, expressed through the fact that, except for free diffusion, the adjoint operator L£T(7)
which is not equal to £(7), the existence of appropriate eigenvalues and eigenfunctions is not evi-
dent. However, in the present case [F(7) = —VU ()] the operators £(7) and LT (7) are similar to a
self-adjoint operator for which a complete set of orthonormal eigenfunctions exist. These functions
and their associated eigenvalues can be transferred to £(7) and L () and a spectral expansion can
be constructed. The expansion will be formulated in terms of projection operators and the so-called
propagator, which corresponds to the solutions p(7, |7, t0), will be stated in a general form.

A pointed out, we consider in this chapter specifically solutions of the Smoluchowski equation

Op(r,t) = L(7)p(7,1) (1)
in case of diffusion in a potential U(7), i.e., for a Smoluchowski operator of the form
L(F) = V-D(F) e PNy AU (2)

We assume the general initial condition

p(7ito) = f(7) (3)
and appropriate boundary conditions
(i) a( D(V — BF() h(@ = 0, 7 e 0Q (4)
(ii) hF) = 0, 7 e o0 (5)
(iii) @ D(V — BF()) h(®) = w(@) h(F), 7 e (6)

It is understood that the initial distribution is properly normalized

/de(F) =1. (7)
Q

The results of the present section are fundamental for many direct applications as well as for
a formal approach to the evaluation of observables, e.g., correlation functions, which serves to
formulate useful approximations. We have employed already, in Chapter , spectral expansions for
free diffusion, a casew in which the Smoluchowski operator £L(7) = DV? is self-adjoint (L(7) =
LT(7)). In the present chapter we consider spectral expansion for diffusion in arbitrary potentials
U(x) and demonstrate the expansion for a harmonic potential.



1 Minimum Principle for the Smoluchowski Equation

In case of diffusion in a domain ) with a ‘non-reactive’ boundary 0€) the total free energy of the
system develops toward a minimum value characterized through the Boltzmann distribution. This
property will be demonstrated now. The stated boundary condition is according to

a(r) - Jirit) = 0 (8)

where the flux 7(7,t) is
jiFt) = D(F) e PPV U p(it) (9)

The total free energy for a given distribution p(7,t), i.e., the quantity which develops towards a
minimum during the diffusion process, is a functional defined through

Glp(r,t)] = /Qdfg(ﬁt) (10)

where g(7,t) is the free energy density connected with p(7,t)

g(7,t) = U@ p(r,t) + kT p(7,t) lnp(F’t) ) (11)

Here p, is a constant which serves to make the argument of In(---) unitless. p, adds effectively
only a constant to G[p(7,t)] since, for the present boundary condition (8) [use (1, 2)],

o [arpn) = [ o) = [ arvp@) e OO i)
Q Q Q
= da - D(7) e PV UM (7 1) = 0. (12)
o0

From this follows that fQ dr'p(7,t) is constant and, hence, the contribution stemming from p,, i.e.,
—kpT p(7,t) Inp, contributes only a constant to G[p(7,t)] in (10). The first term on the r.h.s. of
(10) describes the local energy density

u(r,t) = U(r) p(7,1) (13)
and the second term, written as —7 s(7,t), the local entropy density!
7t
st = —kp(F )y m2 (14)
Po
We want to assume for some ¢
p(rit) >0  Vr, 7 e Q. (15)
This assumption can be made for the initial condition, i.e., at ¢ = t,, since a negative initial

distribution could not be reconciled with the interpretation of p(7,t) as a probability. We will see
below that if, at any moment, (15) does apply, p(7,t) cannot vanish anywhere in  at later times.
For the time derivative of G[p(,t)] can be stated

AGIp(it)] = /Q 07 Oy (7 1) (16)

'For a definition and explanation of the entropy term, often referred to as mixing entropy, see a textbook on
Statistical Mechanics, e.g., “Course in Theoretical Physics, Vol. 5, Statistical Physics, Part 1, 3rd Edition”, L.D.
Landau and E.M. Lifshitz, Pergamon Press, Oxford)



where, according to the definition (11),
a0(r.0) = [U0) + ket 4 ] o). (17)
o
Using the definition of the local flux density one can write (17)
1)

o

Og(7yt) = [ () + kT 22 BT + k‘T} V- 77 t) (18)
or, employing V - w(7)v(7) = w(F)V - 0(F) + 0(F) - Vw(7F),

Big(Ft) = V-{[U( Y+ kP20 L T] j(F,t)}

o

o

—J(Ft) -V {U(F} + kBTlnp(F’t) + k?BT] . (19)

Using

v o@ + kprmPC k:BT]

Po

. kp
_F
(7) + 5
kpT
+—=
p(7,t)
kpT

= S )TT ) (20)

one can write (19)
kT
p(7t)

For the total free energy holds then, according to (16),

Pt + V-{[U(F) 4+ TP

Og(7,t) = — + k:BT} j(F,t)} . (21)

o

OG(F Y] = /Q dF kﬁ,Tt 7(7.1)
{[ TP TY k:BT] j(F,t)} .

o

(22)

Due to the boundary condition (8) the second term on the r.h.s. vanishes and one can conclude

oG 1) = — /Q de]z];Tt) P < 0. (23)

According to (23) the free energy, during the time course of Smoluchowski dynamics, develops
towards a state p,(7) which minimizes the total free energy G. This state is characterized through
the condition 0;G = 0, i.e., through

Jo(F) = D(R) e POV PO py(i) = 0. (24)

The Boltzmann distribution

(i) = Ne=BUD N1 / A7 po(7) (25)
Q



obeys this condition which we, in fact, enforced onto the Smoluchowski equation. Hence, the solu-
tion of (1-3, 8) will develop asymptotically , i.e., for ¢ — oo, towards the Boltzmann distribution.
We want to determine now the difference between the free energy density g(7,t) and the equilibrium
free energy density. For this purpose we note

U p(7,t) = —kgTp(7,t)In [e*BUW} (26)

and, hence, according to (11)

p(7t)

Choosing p,! = [, dF¥ exp[—BU ()] one obtains, from (25)
g(7.1) = kT p(F 62D (28)

Po(T)

For p(7,t) — po(7) this expression vanishes, i.e., g(7,t) is the difference between the free energy
density g(7,t) and the equilibrium free energy density.

We can demonstrate now that the solution p(7,t) of (1-3, 8) remains positive, as long as the initial
distribution (3) is positive. This follows from the observation that for positive distributions the
expression (28) is properly defined. In case that p(, t) would then become very small in some region
of ©, the free energy would become —oo, except if balanced by a large positive potential energy
U(7). However, since we assumed that U(7) is finite everywhere in €, the distribution cannot
vanish anywhere, lest the total free energy would fall below the zero equilibrium value of (28).
We conclude that p(7,t) cannot vanish anywhere, hence, once positive everywhere the distribution
p(7,t) can nowhere vanish or, as a result, become negative.

2 Similarity to Self-Adjoint Operator

In case of diffusion in a potential U (7) the respective Smoluchowski operator (2) is related, through
a similarity transformation, to a self-adjoint or Hermitean operator L. This has important rami-
fications for its eigenvalues and its eigenfunctions as we will demonstrate now.

The Smoluchowski operator £ acts in a function space with elements f,g,.... We consider the
following transformation in this space

F), 9@ = F@® = VD fi), §(7) = e3PV () .

Note that such transformation is accompanied by a change of boundary conditions.
A relationship

g = L(7) f(7) (29)
implies
g = Lu(7) f(7) (30)
where L,
Lu() = ez L0 (31)

is connected with £ through a similarity transformation. Using (2) one can write

Li(7) = e3PUD Y. D(7) e BUD ¢ 3PV (32)



We want to prove now that £ (7), as given by (32), is a self-adjoint operator for suitable boundary
conditions restricting the elements of the function space considered. Using, for some scalar test
function f, the property Vexp[%BU(F)] f= exp[%BU(F)]Vf — %BFf yields

—

Lu(®) = eV . D() e 38U [v - %F : (33)

Employing the property V - exp[—£8U(F)] 7 = exp[—38U(P)] (V- T + %ﬂﬁ - ¥), which holds for
some vector-valued function ¥, leads to

Ly(F) = V-DV — %BV-Dﬁ + %ﬂﬁ-(DV — %513). (34)

The identity VDF f= DF -V f+rfrv. DF allows one to express finally

1 - 1 5=
Lyp() = V-DV + 55((V'F)) - ZﬁQFQ (35)
where ((---)) indicates a multiplicative operator, i.e., indicates that the operator inside the double
brackets acts solely on functions within the bracket. One can write the operator (35) also in the
form

Lu(™) = Lon(r) + U (36)

Lop(7) = V-DV (37)
- 1 al L 270

U = 8V F) - {B°F (39)

where it should be noted that U(7) is a multiplicative operator.
One can show now, using (40-43), that Eqs. (36-38) define a self-adjoint operator. For this purpose
we note that the term (38) of £y, is self-adjoint for any pair of functions f, g, i.e.,

[ aram v i) = | arfe v o . (39)
Q Q
Applying
[dra@) £ ne = [ ar ) £10) o) + [ dd Pg.n) (40)
Q Q o0
(7) = VDV — BV DF(7) (41)
LI = VDV + BDF()V (42)
Plg,h) = g(7) DV () — h(i) DV g(7)
— BD F(7) g(7) h(7) (43)
for the operator L,;(7), i.e., in the case F = 0, implies
| arae o ) = [ i el + [ B p (44)
Q Q onN
L = V-DAV (45)
P(g,f) = g@®D@VIF) — f(F)DEVH() . (46)



In the present case holds L,,(7) = Eih(F), i.e., in the space of functions which obey
() - PG, f) = 0  for 7 e 00 (47)

the operator L, is self-adjoint. The boundary condition (47) implies

(2) () - DAV [(7) = 0, 7€ 00 (48)
(@) fr) =0, Teon (49)
(i) A - DAV (7)) = w@) f(F), 7 e o (50)

and the same for §(7), i.e., (i) must hold for both f and §, or (%) must hold for both f and g, or
(41) must hold for both f and §.

In the function space characterized through the boundary conditions (48-50) the operator Lj, is
then also self-adjoint. This property implies that eigenfunctions @, (7) with real eigenvalues exists,
ie.,

Lr() in(F) = Miin(@),n = 0,1,2,...,  An € (51)

a property, which is discussed at length in textbooks of quantum mechanics regrading the eigen-
functions and eigenvalues of the Hamiltonian operator?. The eigenfunctions and eigenvalues in (51)
can form a discrete set, as indicated here, but may also form a continuous set or a mixture of both;
continuous eigenvalues arise for diffusion in a space §2, an infinite subspace of which is accessible.
We want to assume in the following a discrete set of eigenfunctions.

The volume integral defines a scalar product in the function space

o = [ dr 179 (52
With respect to this scalar product the eigenfunctions for different eigenvalues are orthogonal, i.e.,
(Up|tUm)o = 0 for A, # A (53)

This property follows from the identity

(tn| L tim)e = (Lp Tn|im)o (54)
which can be written, using (51),

(An = Am) (Upliim)o = 0. (55)
For A\, # A, follows (uy|@m)o = 0. A normalization condition (uy|@,)q = 1 can be satisfied

for the present case of a finite diffusion domain {2 or a confining potential in which case discrete
spectra arise. The eigenfunctions for identical eigenvalues can also be chosen orthogonal, possibly
requiring a linear transformation®, and the functions can be normalized such that the following
orthonormality property holds

2See also textbooks on Linear Alegebra, e.g., “Introduction to Linear Algebra”, G. Strang (Wellesley-Cambridge

Press, Wellesley, MA, 1993)
3A method to obtain orthogonal eigenfunctions is the Schmitt orthogonalization.




Finally, the eigenfunctions form a complete basis, i.e., any function f in the respective function
space, observing boundary conditions (48-50), can be expanded in terms of the eigenfunctions

F7) = anin(7) (57)
n=0

an = (in|f)a - (58)

The mathematical theory of such eigenfunctions is not trivial and has been carried out in connection
with quantum mechanics for which the operator of the type L, in case of constant D, plays the
role of the extensively studied Hamiltonian operator. We will assume, without further comments,
that the operator L gives rise to a set of eigenfunctions with properties (51, 56-58).

3 Eigenfunctions and Eigenvalues of the Smoluchowski Operator

The eigenfunctions @, () allow one to obtain the eigenfunctions v, () of the Smoluchowski operator
L. It holds, inverting the transformation (29),

() = e U2 @y (7) (59)

For this function follows from (2, 31, 51)

Lv, = e PUR2LU2y. D(7) e~ BU) v BUM/2
B_BU/Z ['han = e_BU/2 )‘n {Ln P (60)

ie.,
L(T) vp(7) = Apon(7F) . (61)

The eigenfunctions w,, of the adjoint Smoluchowski operator £ (64) are given by
wn(F) = V24, (7) (62)

and can be expressed equivalently, comparing (62) and (59),

wn(F) = AV, (7). (63)
In fact, using . B
£ = VIV De UMY | (64)
and(2, 61), one obtains
Llw, = UV -De UV v, = PV Lo, = AU N, vy (65)
or
LI7) wa(7) = A wn(7) (66)

which proves the eigenfunction property.

4see also ” Advanced Calculus for Applications, 2nd Ed.” F.B.. Hildebrand, Prentice Hall 1976, ISBN 0-13-011189-
9, which contains e.g., the proof of the orthogonality of eigenfunctions of the Smoluchowski operator.



The orthonormality conditions (56) can be written
Onm = (Up|im)o = / AT Ty, (T) Uy (T)
Q
- / dFe U2 g (7) SV G (7). (67)
Q

or, using (59, 62),

Accordingly, the set of eigenfunctions {w,,n =0,1,...} and {v,,n =0,1,...}, defined in (62) and
(59), form a so-called bi-orthonormal system, i.e., the elements of the sets {w,,n = 0,1,...} and
{vn,n =0,1,...} are mutually orthonormal.

We want to investigate now the boundary conditions obeyed by the functions ~eﬁU /2 f and e AU/2 g
when f, § obey conditions (48-50). According to (29) holds, in case of efU/2 f,

PUF = PV (69)

According to (48-50), the function f obeys then

(i) a(7) - DAV LY f(7) = 0, 7 e 0N (70)
(ii) FAUFF) = 0, 7 e o0 (71)
(iif) (@) - DAV LY f(7) = w() PV f(F), 7 e 9Q (72)

which is equivalent to the conditions for the solutions of the Smoluchowski equation. We have
established, therefore, that the boundary conditions assumed for the function space connected with
the self-adjoint Smoluchowski operator £ are consistent with the boundary conditions assumed
previously for the Smoluchowski equation.

Projection Operators

We consider now the following operators defined through the pairs of eigenfunctions v, w, of the
Smoluchowski operators £, £

jnf = Un <wn’f>§2 (73)

where f is some test function. For these operators holds
jnjm [ = jnvm <wm’f>Q = Un <wn|vm>ﬂ <wm’f>ﬂ . (74)

Using (68) one can write this o
and, hence, using the definition (73)

Jndim = Gpmm - (76)
This property identifies the operators jn, n = 0,1,2,... as mutually complementary projection
operators, i.e., each J, is a projection operator (J2 = J,) and two different .J,, and J,,, project

onto orthogonal subspaces of the function space.
The completeness property (57, 58) of the set of eigenfunctions #,, can be expressed in terms of the
operators J,,. For this purpose we consider

on = (inlfla = / 0 @y (77)

Q



Using @, = exp(BU/2)v, and f = exp(BU/2) f [see (59, 29)] as well as (63) one can express this
o = [ 47 esp(5U/2) v, exp(BU/D ] = [ dF exp(BU) v ] = (wilf)o
Q Q

Equations (57, 58) read then for f = exp(BU/2) f

f=">e""uy (wy| f)a (78)
n=0
and, using again (59) and (73)
[ = Z jn f (79)
n=0

Since this holds for any f in the function space with proper boundary conditions we can conclude
that within the function space considered holds

ijn = . (80)
n=0

The projection operators Jn obey, furthermore, the property
L7 Jp = Am I - (81)

This follows from the definition (73) together with (61).

The Propagator

The solution of (1-3) can be written formally

p(rt) = [ S| p(). (82)
C

The brackets [- - - ]pc indicate that the operator is defined in the space of functons which obey the

chosen spatial boundary conditions. The exponential operator exp[L(7)(t — t,)] in (82) is defined

through the Taylor expansion

[e.e]

1 v
(e = D 1 (Al - (83)
v=0
The operator [exp[L(7)(t — to)] Jbe Plays a central role for the Smoluchowski equation; it is referred

to as the propagator. One can write, dropping the argument 7,

o
L(t—to)] _ L L(t—to) 7
[e = Z JIn (84)
n=0
since the projection operators project out the functions with proper boundary conditions. For any
function Q(z), which has a convergent Taylor series for all z = A,, n =0,1,..., holds
Q(E) Unp = Q(An) Un (85)

and, hence, according to (81)



This property, which can be proven by Taylor expansion of Q(L), states that if a function of £
”sees” an eigenfunction v,, the operator £ turns itself into the scalar A,,. Since the Taylor expansion
of the exponential operator converges everywhere on the real axis, it holds

eﬁ(t—to) vy = e)\n(t—to) Up (87)
The expansion can then be written
(0.9}
L(t—to) } _ An(t—to) 88
[ € bc 712—:0 c " ( )

We assume here and in the following the ordering of eigenvalues
Ao = A1 > A (89)

which can be achieved by choosing the labels n, n =0, 1,... in the appropriate manner.

4 Brownian Oscillator

We want to demonstrate the spectral expansion method, introduced in this chapter, to the case of
a Brownian oscillator governed by the Smoluchowski equation for a harmonic potential

1
U) = 5 fa?, (90)
namely, bydyp(x, txo, to) = D(0; + B Oxx) p(x, tlxo, o) (91)
with the boundary condition
xggloo " p(z, t|xg,to) =0, Vne N (92)
and the initial condition
p(z, to|zo, to) = d(z — o) . (93)

In order to simplify the analysis we introduce dimensionless variables
¢ =x/V25, T =t/F, (94)

where
§=+kgT/f, 7 = 28%/D. (95)

The Smoluchowski equation for the normalized distribution in £, given by

Q(§7T‘§0a7—0) = \/i(sp(x7t’x07t0) ) (96)
is then
9-q(&, 7|€0,70) = (9F + 20 &) 4(&, 7|, 70) (97)
with the initial condition
q(&,10/€0,70) = 0(§ — &o) (98)
and the boundary condition
lim &"q(&, 7|0, 70) =0, VnelN. (99)
§—+oo

10



This equation describes diffusion in thepotential U(€) = €2 Using (94, 94, 90) one can show
U(§) = BU(x).

We seek to expand ¢(&, 19|&o, 70) in terms of the eigenfunctions of the operator
L(§) = 0F +20:€, (100)
restricting the functions to the space

{A(©)] lim £ h(E) =0} . (101)

E—+oo

The eigenfunctions f,,(§) of £(§) are defined through

Corresponding functions, which also obey (99), are

Fal€) = cne™s Hy(€). (103)

where H,(z) is the n-th Hermite polynomials and where ¢, is a normalization constant chosen

below. The eigenvalues are
An = —2n, (104)

As demonstrated above, the eigenfunctions of the Smoluchowski operator do not form an orthonor-
mal basis with the scalar product and neither do the functions f,,(§) in (103). Instead, they obey
the orthogonality property

/ T e e HA(E)Hn(€) = 2'mTb | (105)

which allows one to identify a bi-orthonormal system of functions. For this purpose we choose for
fn(€) the normalization

1 2
- = ¢
Ful€) = gmrm e Hu(© (106)
and define
gn(§) = Hn(§)- (107)
One can readily recognize then from (105) the biorthonormality property
<gn|fn> = 5nm . (108)

The functions g, (§) can be identified with the eigenfunctions of the adjoint operator
L&) = 9 — 260 (109)

obeying
£+(£)gn(£) = Angn(f) . (110)
Comparing (103) and (107) one can, in fact, discern
() ~ € gn(§). (111)

and, since €2 = fa?/2kgT [c.f. (94, 96)], the functions g, (&), according to (63), are the eigenfunc-
tions of LT (¢).

11



The eigenfunctions f,,(£) form a complete basis for all functions with the property (99). Hence, we
can expand q(&, 7(€o, 70)

§7T|£057-0 Zan fn . (112)

Inserting this into the Smoluchowski equation (97, 100) results in

Zdn(T) n Z)\ an fn ) (113)
n=0

Exploiting the bi-orthogonality property (108) one derives
am(T) = A (7). (114)
The general solution of of this differential equation is
U (T) = B 7 . (115)

Upon substitution into (112), the initial condition (98) reads

3 B ful(€) = 5(E — &) . (116)
n=0
Taking again the scalar product with g,,(£) and using (108) results in
B €7 = g (&) (117)
or
B = e g (o) - (118)
Hence, we obtain finally
g6 7l€0,m0) = D M) g (&) £u(6) (119)
n=0
or, explicitly,
> 1 on(r—m _
a7, ) = D oz T Hy(€o) e Hal6) (120)

[
= 2nnly/m

Expression (120) can be simplified using the generating function of a product of two Hermit poly-
nomials

1

1 _1
i O T2 )

Hy(y) e V"% Hy(yo) e %0/ . (121)

o 3”
- Z r
= 2 nly/m

Using
s =e 2=m0) (122)

one can show

q(&; 7|€0, 70)

12



1

— o exp|—=(&
= =5 ('f +§0)

We denote the exponent on the r.h.s. by E and evaluate

Lt bogto 2y — e 4 ogd| (123)

1

E = —§2ﬁ fol 5 T ffo
= (@ - 2bos + 8
e )2
_ _(fl _ﬁzi) (124)
We obtain then . )
q(§,7[€0,70) = Vo) exp [—(fl_&;‘;)} : (125)

where s is given by (122).
Let us now consider the solution for an initial distribution f(&p). The corresponding distribution

G(&;7) is (70 = 0)

q&,m) = /d&)ﬂ(lie—‘”) exp[ (51_&):7)} f(&o) - (126)

It is interesting to consider the asymptotic behaviour of this solution. For 7 — oo the distribution
q(&, ) relaxes to

3 = j% e ¢ / dco 1 (&) (127)

If one carries out a corresponding analysis using (119) one obtains

o0

d6n) = Y0 [ dogalé) o) (128)
n=0
~ I©) [ daguléo) F&0) a0 (129)
Using (106) and (107), this becomes
i6m) ~ =€ to(©) [ dto Hol&o) 1(6) (130)
’ VT —— ——

=1 =1

in agreement with (127). One can recognize from this result that the expansion (128), despite
its appearance, conserves total probability [ d& f(§). One can also recoginze that, in general,
the relaxation of an initial distribution f(§y) to the Boltzmann distribution involves numerous
relaxation times 7, = —1/\,, even though the original Smoluchowski equation contains only a
single rate constant, the friction coefficient ~.

5 Rates of Diffusion-Controlled Reactions

The metabolism of the biological cell, the control of its development and its communication with
other cells in the organism or with its environment involves a complex web of biochemical reactions.
The efficient functioning of this web relies on the availability of suitable reaction rates. Biological

13



functions are often controlled through inhibition of these reaction rates, so the base rates must be
as fast as possible to allow for a wide range of control. The maximal rates have been increased
throughout the long evolution of life, often surpassing by a wide margin rates of comparable test
tube reactions. In this respect it is important to realize that the rates of biochemical reactions
involving two molecular partners, e.g., an enzyme and its substrate, at their optimal values are
actually determined by the diffusive process which leads to the necessary encounter of the reactants.
Since many biochemical reactions are proceeding close to their optimal speed, i.e., each encounter
of the two reactants leads to a chemical transformation, it is essential for an understanding of
biochemical reactions to characterize the diffusive encounters of biomolecules.

In this section we want to apply the methods for solving the Smoluchowski Equation in order to
describe first the relative motion of two diffusing biomolecules subject to an interaction between
the partners. We then determine the rates of reactions as determined by the diffusion process.

Relative Diffusion of two Free Particles

We consider first the relative motion in the case that two particles are diffusing freely. One can
assume that the motion of one particle is independent of that of the other particle. In this case
the diffusion is described by a distribution function p(7, 72, t|7™10, 720, to) which is governed by the
diffusion equation

Oy p(F1, 7, t|710, a0, to) = (D1VT 4+ DaV3) p(Fi, 7, |10, 20, to) (131)

where V; = 0/07, j = 1,2. The additive diffusion operators DjVJQ» in (131) are a signature of the
statistical independence of the Brownian motions of each of the particles.

Our goal is to obtain from the aforementioned diffusion equation an equation which governs the
distribution p(7, t|rg, tg) for the relative position

7 = Ty — T1 (132)

of the particles. For this purpose we express the diffusion equation in terms of the coordinates
and
R = am + by (133)

which, for suitable constants a, b, are linearly independent. One can express
Vi = aVé -V, V3 = bVR' + V (134)

where V. = 0/07. One obtains, furthermore,

Vi = d’Vi 4+ V2 - 20V,V (135)
Vi = 0V + V2 4 2VsV (136)

The diffusion operator R
D = D1Vi + DyV3 (137)

can then be written

=V (138)

D = (Dia* + Dob*) V% + (D1 + Dy) V2 + 2(Dyb — Dya) Vy

If one defines

a = \/DQ/Dl, b = \/Dl/DQ (139)
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one obtains

D = (D1 + Dy)V% + (D1 + Dy) V2. (140)

This operator can be considered as describing two independent diffusion processes, one in the coordi-
nate R and one in the coordinate 7. Thus, the distribution function may be written p(R, t| Ro, to)p(7, t|7, to).
If one disregards the diffusion along the coordinate R the relevant remaining relative motion is gov-

erned by
atp(ﬁt‘ﬁ),to) = (D1 + Dy) VZp(F,ﬂ??o,to) . (141)

This equation implies that the relative motion of the two particles is also governed by a diffusion
equation, albeit for a diffusion coefficient

D = Dy + Dy. (142)

Relative Motion of two Diffusing Particles with Interaction

We seek to describe now the relative motion of two molecules which diffuse while interacting ac-
cording to a potential U(7) where 7 = 7 — 7. The force acting on particle 2 is —V,U(F) = F;
the force acting on particle 1 is —F. The distribution function p(71, T2, t|T10, 720, to) obeys the
Smoluchowski equation

Op = [(D1V] + DyV3) (143)
— DuBVy-F(7) + Digvy-F| p.
The first two terms on the r.h.s. can be expressed in terms of the coordinates R and 7. For the

remaining terms holds,
DyVy — D1V = (Dl + DQ)V (144)

Hence, one can write the Smoluchowski equation
Oip = [(D1+ D2) V% +(Di+D2) V- (V = 8F) | p. (145)

This equation describes two independent random processes, free diffusion in the R coordinate and
a diffusion with drift in the 7 coordinate. Since we are only interested in the relative motion of the
two molecules, i.e., the motion which governs their reactive encounters, we describe the relative
motion by the Smoluchowski equation

8, (7, t|Fo,to) = DV -(V — BF)p(F,t|Fo, to) - (146)

6 Mean First Passage Time

The mean first passage time (MFPT) can be interpreted as the characteristic time for particles at a
given initial position to diffuse to a given final position. Let £ denote the Smoluchowski operator:

L(r)=V-D(r)V -5V -D(r)F(r). (147)

In addition, we assume three possible boundary conditions on a solution u(r) of the Smoluchowski
equation:

(i) a(r) - D(r)(V — BF(r))u(r) =0, r € 9Q (148)
(i) u(r) =0, r € 99 (149)
(iii) a(r) - D(r)(V — BF(r))u(r) = w(r)u(r), r € 09, (150)
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where w(r) describes the rate of reaction as a function of space.

The first step to calculating the MFPT is to determine the adjoint Smoluchowski operator £f. For
this purpose, we prove the Lagrange identity for £ (a good introduction to Lagrange identities can
be found in Mathematics for Physics by Mike Stone and Paul Goldbart):

ro(r)L(r)u(r) — ru(r) LT (r)u(r) = a-P(u,v
[ st — [ deut)£iwee) = [ da ). (151)
where u and v are elements of the function space, defined on domain €2, that £ acts on, and
Li(r) =V -D(r)V + BD(r)F(r) - V (152)
P(u,v) =v(r)D(r)Vu(r) — u(r)D(r)Vu(r) — 8D(r)F(r)u(r)v(r) . (153)

Using the product rule, we can write

V - (vDVu — uDVv) =(Vv) - DVu+ vV - DVu — (Vu) - DVv —uV - DVv (154)
=vV - DVu —uV - DVw. (155)

We will also make use of the fact that

V - BDFvu = vV - BDFu+ uBDF - Vu. (156)
On the RHS of Eq. (151), Gauss’ Law gives
/ da - P(u,v) :/ drV - P(u,v) (157)
9 Q
:/ drV - (vDVu —uDVv) — / drV - fDFvu. (158)
Q Q

Putting in Eq. (155, 156) gives then

/ da - P(u,v) :/ dr (vV - DVu —uV - DVv) — / dr (vV - BDFu + ufDF - Vo) (159)
onN Q Q

:/ drv(V'DV—V-BDF)u—/ dru(V - DV + SDF - V)v (160)

Q Q

:/ drv(r)L(r)u(r) — / dr u(r)ﬁ*(r)v(r) , (161)
Q Q

which proves Eq. (151). By definition of an adjoint operator, for Eq. (152) to give the correct
adjoint Smoluchowski operator, we further impose the condition

a(r) - P(u,v) = 0Vr € 90, (162)
or

u(r)a(r) - D(r)Vo(r) = v(r)a(r) - [D(r)Vu(r) — BD(r)F(r)u(r)] . (163)

Thus, the boundary conditions (), (i), (i77) of the forward equation respectively imply the following
boundary conditions (i), (i’), (i) for the backward equation:

(i"Ya(r) - D(r)Vu(r) =0, r € 99 (164)
(it )v(r) =0, r € 9N (165)
(ii7') a(r) - D(r)Vo(r) —w(r)v(r) =0, r € 09Q. (166)
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We are now ready to write down the backward Smoluchowski equation. For that purpose, we state
the definition of the Green’s function:

p(x,t|ro, to) =€~ 6(r — ro) (167)

:/ dr' §(r' — r)ef 5 (x! — rg), (168)
Q

where rg lies in the interior of Q, e£(")t is the propagator and is evaluated by expanding in a Taylor

expansion and applying £ as many times as its powers in the resulting polynomial to the expression
on the right. In practice, one expands the expression on the right in terms of eigenfunctions of £
so that the £ in the exponential can be replaced by the respective eigenvalues. Identifying now
§(r' —r) and 6(r' —rg) with u(r’) and v(r’) respectively in Eq. (151), we have [, da-P(u,v) =0,
implying

/ dr' 5(r' — 1) L(r")6(r' —rg) = / dr’ 5(r' — ro)LT(x)o(r' —r). (169)
Q

Q
By linearity, it follows that

/ dr' 6(r' — )X 5 (' — o) = / dr' 6(r' — ro)eﬁ(r/)t 5(r' —r). (170)
Q Q

Putting Eq. (170) into Eq. (168) gives us

p(r, tlro,to) = / dr' 5(x' — ro)e N 5(x' — 1) (171)
Q
—eLT 0t §(pg — 1) (172)

Differentiating with respect to ¢t then gives us the backward Smoluchowski equation:
p(r, tlro, to) = LT (ro)p(r, tlro, to) . (173)

The solutions p(r, t|rg,tp) must obey boundary conditions (i’), (i7') or (i#) in the ry variable
depending on which boundary conditions (z), (i7) or (iii) were applied to the forward equation.
Before proceeding, we note that in case the deterministic force F(r) can be expressed in terms of
a potential such that F(r) = VU(r), £(r) and L£'(ry) can be written respectively as

L(r) =V - D(r)e PUEyAUE) (174)
L (rg) = VTV, D(rg)e PV, (175)

where V,, denotes the gradient taken with respect to coordinates in ro. From now on, we will use
the above definitions of the operators.

With the adjoint Smoluchowski equation in hand, we now assume an absorptive or radiative sink
in the system (particle number is hence not conserved) and calculate the characteristic time taken
by a particle at a given initial position r( to leave the system. We begin by integrating Eq. (173)
over {2, obtaining

2(1‘0, t) = ET(I'())E(I'(], t) y (176)

where Y(ro,t) = [, drp(r,t|ro, o). Next, we approximate the time evolution of ¥ as a decreasing
exponential:

S (rg, t) Az e t/7(x0) (177)
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Under this approximation, we have

T(I'()) = /Ooo dt E(I'Q,t). (178)

Hence, we obtain an equation in 7(rg) by integrating Eq. (176) from ¢ = 0 to t — oo:

—1= ﬁT(I‘())T(I‘()) 5 (179)
with corresponding boundary conditions
(i")T(rg) =0, rg € ON (180)
(ii") Vyo7(rg) = 0, r9 € O (181)
(i11") Vo 7(r0) = w(ro)7(10) , T € ON. (182)

For the simple case in 1D of a radiative boundary at r; and a reflective boundary at ro and the
particle initially at o, with r < rg < ro, we restate Eq. (179) explicitly as

eBU(rO)GTOD(TO)G_BU(TO)Z?TOT(TO) =-1. (183)
Rearranging and integrating the equation from r to ry gives

) ,
D(r2)e U2 9, 7 (r)|y, — D(r)e PV 8, 7 (ro)], = — / dr' e BV (184)

The first term of the LHS vanishes after applying the reflective boundary condition at ro. Then,
another rearrangement and an integration from 71 to rg with respect to r gives

T0 T2 ,
7(ro) — 7(r1) = / dr D_l(r)eBU(T)/ dr’ e PUC) (185)
1 r
Now we have to find 7(r1). To do so, we go back to Eq. (183) and integrate from r1 to r2 to get
T1

’ "2 /
D(")e PV gur(r!) |12 = —/ dr' =AU (186)
T1

Imposing again the boundary condition at ro and rearranging gives

. 1 VN 1
Ot (1), = SR T =
D(ry) frl dr! e=BU(r") D(r1)peqg(r1)

(187)

where we have introduced peq(71) to denote the equilibrium probability of the particle to be found
at r1. Substituting then the above expression into the radiative boundary condition at ry gives

1 3 1

T(r :—&47 r! T TN . 188
( 1) w ( )‘ ! D(Tl)wpeq(rl) ( )
Finally, substituting the above result into Eq. (185) gives
o) = [ e [T e g (159)
T(rg) = re .
r1 D(Tl)wpeq(rl)

In case of an absorptive boundary at r1, w — 00, causing the second term on the RHS to vanish.
The MFPT for a particle initially at r¢ to reach r; is then

70 1 T2 ,
— BU(r) 1 e—BU) 1
7(ro) /m dr D(r)e /T dr'e . (190)
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