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Biological Structure

Theoretical models describing propagation of synaptic potentials have evolved
significantly over the past century. Synaptic potentials are the root of neural
activity, electrical potential differences caused by fluxes of biological ions across
the neural membrane. The first important breakthrough came through affirma-
tion of the “leaky cable” theory proposed by Hermann. His theory described the
way synaptic potentials propagate in lieu of excitatory membrane facilitation,
i.e., passively. Passive conduction is an important behavior associated with the
dendritic and terminal branches of the neuron. In the passive regime, the synap-
tic potential propagates with attenuation which prompted Hermann to ascribe
a correlation with theory which describes “lossy”transmission lines [1].

Figure 1: A neuron with basic components labeled. The dendrites are the region
most often associated with Cable Theory, thought the terminal branches are often
proponents of passive conduction as well.

Cable Theory

Cable Theory is based on a small number of principles. The first principle is
that local circuit currents, which are depicted below, are a medium for dif-
fusive propagation of synaptic potentials along the axon membrane. The ion
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fluxes, i.e., local currents, change local potentials which induce local currents in
neighboring locales with diminishing amplitudes.

Figure 2: An example of local ion channel currents flowing across the membrane of
a cylindrical section of neuron. Local denotes that the current loops exist on a small
scale compared to the radius of the cylindrical membrane.

The second tenet of Cable Theory models the cell membrane as discrete, com-
partmentalized electrical circuits. The cellular membrane necessarily exhibits a
capacitance due to the imbalance of ion concentrations in the extracellular and
intracellular fluids. The cell membrane also exhibits an intrinsic conductivity
depending on characteristics of embedded ion channels. The cytoplasm also
displays an axial conductance which depends primarily on the ion concentra-
tion throughout the fluid. A sample scheme for modeling passive conduction
membrane as a set of circuits is shown in figure 3 below.

Figure 3: A diagram of the electrical components which approximate the cellular
membrane and cytoplasm in Cable Theory. Using information in the diagram, one can
employ basic circuit physics and differential equations to derive the Cable Equation
which describes the electrical potential across the membrane.

Now, we venture into the mathematical derivation. Recall Kirchhoff’s Current
Law, Σj=nj=1 Ik = 0, as well as Ohm’s Law, V = IR and an equation for capacitive

current, I = dQ
dt = C dV

dt . Using the marked node in the diagram above, the
following equations fall out.
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I1 − I2 − I3 = 0 (1)

I1 = (Vi − Vi−1)/Rc (2)

I2 = (Vi+1 − Vi)/Rc (3)

I3 = −Cm
4V
4t

+ (Vrest − Vi)/Rm (4)

The resting potential outside the cell is relative, so it can be defined as zero and
removed from the equations. Substitute the subsequent equations back into (1)
and rearrange slightly to get

4V
4t

=
1

RcCm
[Vi−1 − 2Vi + Vi+1]− Vi

RmCm
(5)

The electrical constants appearing in the equations above are described in non-
standard units to neutralize their length dependence. For example, the mem-
brane capacitance is measured experimentally in Farads/cm2 because Cm ∝
Amembrane. It is best to redefine measurements per unit length as per the
model. The following table depicts the relevant unit conversions as well as ap-
proximate values of the constants relative to the model [3] [1]. The radius of
the axon (≈ 0.5 mm for giant squid) is denoted by a, and tildes denote the
experimentally measured value.

convenient units substitution experimental conversion
constant value

rc kΩ/cm rc · 4x = Rc 12.5 rc = r̃c/(πa
2)

rm kΩ · cm rm/4x = Rm 15.0 rm = r̃m(2aπ)
cm µF/cm cm · 4x = Cm 0.30 cm = c̃m/(2aπ)

When substitution are made for Rc, Rm, and Cm, the equation begins to look
like familiar differential equations.

4V
4t

=
1

rccm

[
Vi−1 − 2Vi + Vi+1

4x2

]
− Vi
rmcm

(6)

The differential form of the Cable Equation arrives in the limit that 4x and 4t
are taken to zero.

∂V (x, t)

∂t
=

1

rccm

∂2V (x, t)

∂x2
− V (x, t)

rmcm
(7)

Substituting D = 1
rccm

and τ = rmcm to get the Cable Equation an elegant
form.

V̇ = D
∂2V

∂x2
− 1

τ
V (8)
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Unlike many partial differential equations, fortunately, the Cable Equation can
be solved explicitly with a bit of work. The first order of business is simplifying
the system through some initial guesswork. The last term looks very much like
the time derivative of an exponential, so let’s see what happens if we substitute
V (x, t) = e−t/τW (x, t). Equation (8) simplifies to

∂W

∂t
= D

∂2W

∂x2
. (9)

After this useful transformation, the partial differential equation appears much
more tractable. A variable substitution will reduce the equation to an ordinary
differential equation; let φ = x2/t. The resulting ordinary differential equation

−dW
dφ

= 4D
d2W

dφ2
. (10)

With minimal effort W (x, t) can be solved explicitly then normalized over all
spatial coordinates. Reverse the variable substitution to attain the solution in
terms of x and t.

W (x, t) =
1√

4πD(t− t0)
exp

[
−(x− x0)2

4D(t− t0)

]
(11)

Combine (11) with the term which was exponential in time to arrive at V (x, t),
the solution to the Cable Equation.

V (x, t) =
1√

4πD(t− t0)
exp

[
−(x− x0)2

4D(t− t0)
− t− t0

τ

]
(12)

Applications of the Cable Equations

Example 1

Suppose we have two dendritic branches coming to a union as a model system.
We want to investigate the outcome of two different synaptic pulses coming
together. The pulse on the top branch inititiates at a point which is an arc
length of a from the union while the bottom branch’s pulse begins at an arc
length of b from the union. Let’s use the union to define the origin of both of
our coordinate systems, so that the stimulus point of each pulse is xa = −a and
xb = −b. The stimulus voltages are defined as:

Va(t = 0) = αδ(xa + a)

Vb(t = 0) = −βδ(xb + b).

The diffusion constant, D, and the time constant, τ , can be assumed to be
constant in all regions of the system although this is not necessarily true in a
realistic case.
The first step in solving the problem is simply realizing that the differential form
of the Cable Equation is linear. Solutions to linear differential equations can be
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Figure 4: The setup for the problem below: two synaptic pulses initialized on different
dendritic branches which come to a union.

superimposed solutions for each of the stimuli can be solved separately. Each
solution evolves from a delta-function stimulus, so the solution derived earlier,
equation 12, is applicable. The solutions for the two branches are then:

Va(xa, t) =
α√

4πD(t− t0)
exp

[
−(xa + a)2

4D(t− t0)
− t− t0

τ

]

Vb(xb, t) =
−β√

4πD(t− t0)
exp

[
−(xb + b)2

4D(t− t0)
− t− t0

τ

]
.

The combined solutions at the union of the two branches is then simply

V (x, t) = Va(xa, t) + Vb(xb, t) (13)

Now, the behavior of interest in this problem is the time evolution of the voltage
at xa = xb = 0. For instance, what type of initial parameters allow the pulses
to exactly cancel one another at any point in time. Using equation 13 solve for
the time at which the synaptic pulses exactly cancel each other. Set V (0, t) = 0,
x = 0 and t0 = 0, and one arrives at

α√
4πDt

exp

[
−a2

4Dt
− t

τ

]
=

β√
4πDt

exp

[
−b2

4Dt
− t

τ

]
.

Simplify.
α exp

[
−a2/4Dt

]
= β exp

[
−b2/4Dt

]
Take the natural logarithm of both sides.

lnα− a2/4Dt = lnβ − b2/4Dt

Now we can solve for values of t which yield zero voltage at the point of union.

t =

(
a2 − b2

4D

)
lnα/β (14)
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Seeing as t > 0 is a necessasry condition, total interference can occur only if
(a > b) and (β > α), (b > a) and (α > β) or (a = b) and (α = β). This make
sense intuitively and affirms that we have arrived at a reasonable solution.

Example 2

Now for an example modeled to be more relevant to physical systems, take a
system which includes a dendrite and connecting soma at the far end of the
cable. The other end of the dendrite can be only be excited by a -70 mV pulse
once every 5 ms. To make the example even a little more concrete, employ
the measured experimental values of squid axons given in the table previously
for electrical constants and let the model dendrite have a length L = 2 cm.
The connecting soma needs to reach a voltage of -5 mV to exceed its threshold
and fire. Will the train of synaptic pulses in system described above excite the
connecting soma? If so, how many excitations must occur before the soma fires?

Figure 5: The setup for the problem above: a train of synaptic impulses is incident
on a single, 5 cm dendritic branch. The diagram is very roughly consistent with giant
squid neurons.

The solution for a single excitation has been well established. This solution
suits the purpose of this example as well. Therefore, for a single excitation one
attains

V (x, t) =
−70mV√

4πDt
exp

[
−(x)2

4Dt
− t

τ

]
. (15)

First order of business, plug the experimental values back into the equation.

V (5, t) = −38.24t−1/2 exp

[
−0.9375

t
− t

4.5

]
mV (16)
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Now, find the time at which the voltage on the soma is highest from a single ex-
citation. The task is best accomplished using a mathemtical modeling program
such as Mathematica or Matlab as the differential solution cannot be solved
explicitly. One finds that the voltage on the soma peaks at about -3.253 mV
after around 3.12 ms; the solution then decays exponentially. Therefore, the
soma does not fire from the first pulse at any rate.

To resolve whether the incoming excitations can excite the soma, the fact that
solutions are additive needs to be employed once again; this instance in the
time domain. The solution with two pulses at 5 ms offsets is now considered
for t > 5ms.

V (5, t) = −38.24t−1/2 exp

[
−0.9375

t
− t

4.5

]
−38.24(t− 5)−1/2 exp

[
−0.9375

(t− 5)
− t− 5

4.5

]
(17)

The peak voltage at the soma is assumed to be very near 8.12 ms, so the system
can simply be evaluated at this point. The soma voltage still falls short of
the firing threshold, so proceeding in a similar manner, three pulses are now
included at 5 ms spacing.

V (5, t) = −38.24t−1/2 exp

[
−0.9375

t
− t

4.5

]
−38.24(t− 5)−1/2 exp

[
−0.9375

(t− 5)
− t− 5

4.5

]
−38.24(t− 10)−1/2 exp

[
−0.9375

(t− 10)
− t− 10

4.5

]
(18)

This time the solution yields -5.07 mV at , therefore the soma is indeed excited
two subsequent excitatory pulses after the first.

Further Experimental Development

The majority of experiments involving Cable Theory center around measuring
the electrical constants of the dendrites. The first measurements were made
some time after equivalent experiments were carried out on squid axons. The
dendrites are much smaller in stature; therefore, more refined measurement
techniques were necessary. Eventually measurements of rc, rm, and cm were
performed using simple, fine electrodes. Years later, patch-clamp methods were
developed to make the same measurements [3]. The patch-clamp measurements
results assert that the previous measure were underestimates by a factor of 2-4
for different values. Though the constants differ, the experiments do observe
attenuation of the synaptic signal in very good agreement with expections from
Cable Theory.

Another more recent method of observing synaptic potentials involves the ap-
plication of voltage sensitive dyes [4] [2]. A fluorescent dye which binds to the
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cellular membrane is injected into the axon and allowed to diffuse throughout
the neuron. The neuron is then electrically excited and the observed changes
in light intensity are proportional to voltage changes. The method shows great
promise, as it allows observation of the entire neuron at once rather than a
relatively small number of seperate points. However, it is not without flaw.
Calibration between voltage and fluorescence intensity has proven difficult, be-
cause of a number of factors involving nonlinearity as well as fluorescent dye
placement and numbers.
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