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Hodgkin and Huxley Experiment

At a time when the mechanisms behind action potentials were debated between
competing theories, Alan Hodgkin and Andrew Huxley carried out experiments
which confirmed the ion channel model of action potentials. The key compo-
nent of the experiment was the giant squid axon which can be up to 1 mm in
diameter, very large for a neuron. The large girth of the squid axon facilitated
measurements of action potentials because the equipment did not need to be as
finely crafted. The technique employed by Hodgkin and Huxley is referred to
as voltage clamping [3]. The figure below shows a layout which is fairly similar
to the setup used in the experiment.

Figure 1: A diagram of the essential electrical components used in the patch-clamp

method for measuring action potentials. Two electrodes (silver wires) are inserted

axially into the axon. Then, a voltage amplifier and feedback amplifier are used to

create and maintain a constant voltage while the current is measured via the second

electrode.

The setup facilitated accurate measurements of membrane currents. Each of the
two electrodes, which were inserted along the axis of the axon, were insulated
except a region centered around the external electrodes. One of the internal
electrodes was set up measure internal voltage changes and the other internal
current changes of the axon. The system is driven by an external square-wave
potential feed which is maintained as constant via a feedback amplifier. Con-
stant potential minimizes any contribution the capacity current makes to the
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measured total current [5]. The current can be measured easily with this setup,
but experimental parameters must be altered to delve into the nature of the
current.

Hodgkin-Huxley Model

Components

The action potential measured by Hodgkin and Huxley displayed an odd be-
havior. From the resting potential, the voltage rose quickly, fell slowly, overshot
rest potential, and gradually rose back to equilibrium. The fact that the action
potential overshot rest potential convinced the researchers that more than one
single current was active in the axon. The external concentrations of Na+ were
lowered, and the resulting action potentials showed smaller magnitudes for the
initial voltage spike for decreased Na+ concentrations. The other prominent
current was deduced to be K+. Separate currents showed strong support for
the ion channel model of action potentials. The results given in their exper-

iments gave Hodgkin and Huxley reason to consider multiple components in
their model. The strong initial spike in the action potential necessitated a Na+

current component. The slow recovery response showed need for a K+ com-
ponent. Another leakage current which had no theoretical foundation was also
evidenced in the data, so it was included as a component in the overall model.

Figure 2: A graph from Hodgkin and Huxley’s original paper [4] which contains four

different labeled quantities: the membrane voltage, membrane conductance, Na+ ion

channel conductance, and K+ ion channel conductance. The data spans a single squid

action potential.

Formulation

Using all the data resulting from the patch-clamp experiment, Hodgkin and
Huxley created a heuristic model through which action potential can be ac-
curately reconstructed. The general formulation for the model is in terms of
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electrical current via
I = gV. (1)

The same basic equation retailored to incorporate multiple component currents
and the chemical potential of each ion across the membrane is

Ik = gk(V − Vk). (2)

One essential element for modeling the excitable membrane potential is to con-
sider the voltage-dependent of ions conductance. Rather than representing the
conductance as a single fitted equation from experimental data, Hodgkin and
Huxley postulated a set of membrane potential-influenced gating charges that
control the conductance. To each gating charge corresponds a variable ni. The
conductance can then be expressed as

gk = pk({ni})ḡk (3)

where ḡk is the maximum conductance and pk({ni}) is the fraction of the max-
imum conductance that the instantaneous conductance fulfills.

Each gating charge is assumed to behave independently of one another. Each
gating charge also participates in first-order transitions between two states, la-
beled ’permissive’ and ’non-permissive’. We will first examine the behavior of a
single gating charge. For a first-order reaction, one has the following differential

dn

dt
= αn(1− n)− βnn (4)

in which αn and βn are the forward and backward rate constants respectively,
and n is the probability of the gating charge being in the ’permissive’ state.
Alternatively using the voltage dependent time constant, τn = 1

αn+βn
, and the

steady-state gating variable n∞ = αn

αn+βn
the differential equation becomes

dn

dt
=
n∞ − n
τn

. (5)

This differential equation has a solution which is a simple exponential.

n(t) = n∞ − (n∞ − n0) exp(−t/τn) (6)

Now if we assume that there are P gating charges for the given current, and
that maximum conductance corresponds to every gating charge simultaneously
being in the ’permissive’ state, then we can interpret pk({ni}) as the probability
that every gating charge is in the ’permissive’ state. i.e.

pk({ni}) = ΠP
i=1ni (7)

The solution gives a strong foundation for fitting the gating variables to the
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data, in particular the value of P. Now, incorporating the gating variables with
equation 2 and empirical data [5], the final formulation for the Hodgkin-Huxley
Equation is

Itotal = n4ḡK(V − VK) +m3hḡNa(V − VNa) + ḡL(V − VL). (8)

One finds that the K+ current is controlled by 4 identical gating charges,
whereas theNa+ current is controlled by 3 identical and 1 distinct gating charge.
The leak current, labeled by subscript L, is not voltage-dependent, and hence
does not have any gating variables associated with its conductance.

Physical Interpretation of the Gating Variables

In fact, it is the gating charges lie in ion channels that control ion currents
through the membrane. When ion channels open, ions diffuse through them
down the concentration gradient across the membrane, giving rise to ion cur-
rents. There are different types of ion channels on the membrane, each selective
for a different types of ion.

Figure 3: A VMD figure showing two of the four tetramers which constitute the

Kv1.2 ion channel embeded in a lipid bilayer from Fatemeh Khalili’s Thesis [6]. The

box marker is indicative of the voltage sensing domain of the left monomer.

The conductivity for a particular current is then proportional to the fraction
of channels that are open. But this fraction is equivalent to the probability of
finding a given channel in the open state, namely pk({ni}).

What about the gating charges? In each channel lie several charged residues
that respond to changes in the membrane potential. These charged residues
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constitute the gating charges of the channel.

We consider, for example, the voltage-gated potassium channel Kv1.2. This
channel is a homotetramer. Each monomer contains a number of charged
residues that make up the gating charge. In particular, the dominant contribu-
tion comes from four Arg residues in the transmembrane region. [8][1] When
the gating charge switches between the ’permissive’ and ’non-permissive’ states,
the positional change of the charged residues is equivalent to the movement of
between 12 to 14 elementary charges across the transmembrane potential gra-
dient. [7][8]

As one would expect from the fact that the four monomers are identical, the
gating variable for this potassium channel is n4.

Fitzhugh-Nagumo Model

The Hodgkin-Huxley Model proved to be very accurate and useful in further
research into action potentials. However, the formula was rather complicated
and relied heavily on empirical equations fit from data. A simpler formulation
was needed to analyze such systems with mathematical rigor. Richard Fitzhugh
rose to the task and helped formulate an approximation of the Hodgkin-Huxley
Model which is now known as the Fitzhugh-Nagumo (FN) Model.

Derivation

The FN Model does not arrive directly from simplification of the HH Model,
but the first step in arriving at the FN Model is simplifying the HH Model.
Fitzhugh took the 4-dimensional HH Model and used approximate projections
to cast it into an approximate 2-dimensional manifold of the original system
[2]. One dimension contained both n and h. While the V and m variables are
accounted in a second projection. The approximated 2-dimensional manifold of
the HH Model shows strong similarity to a system with which Richard Fitzhugh
was familiar, namely the Van der Pol oscillator. He defined what is now known
as the FN Model by adding terms to a special case of the Van der Pol oscillator.

Formulation

The FN Model as a complete system is

ẋ = c(y + x− x3/3 + z) = F1(x, y) (9)

ẏ = −(x− a+ by)/c = F2(x, y) (10)

in which a = 0.7, b = 0.8, c = 3 are constant , and z = −0.4 , which represents
external excitation, for the standard representation.
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Figure 4: Two phase portraits which were included in one of Fitzhugh’s original

papers developing the FN Model. The limit cycle carved out by the FN Model is

shown on the left and the limit cycle carved out by the 2-dimensional projection of

the HH Model is shown on the right.

Figure 5: The graph includes both nullclines of the FN Model. The nullclines intersect

at a singular point as shown clearly in the figure.

Mathematical Analysis

In order to develop better understanding the FN Model, analyzing the nullclines
of the system is a good starting point. Nullclines are defined as lines on which
a differential is zero in the phase plane. For the FN Model then, one arrives at

y = x3/3− x− z (11)

y = (a− x)/b (12)

which are shown below.
As the graph depicting the nullclines clearly displays, the system has a singular
stationary point, xs ≈ 1.19, ys ≈ 0.59. In order to analyze the stability of this
stationary point, let x = xs + δx, y = ys + δy and take the first-order terms
from a Taylor expansion around the stationary point.[

˙δx

δ̇y

]
=

[
∂F1

∂x
∂F2

∂y
∂F1

∂x
∂F2

∂y

] [
δx
δy

]
(13)
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The coefficient matrix of Taylor expansion terms can be easily evaluated.

M =

[
(1− x2)c c
−1/c −b/c

]
(14)

In order to determine the stability of the stationary point, the eigenvalues of
the matrix need to be resolved. Using standard methods the eigenvalues can be
solved.

λ =

[
(1− x2)c− b/c

]
±
√

[(1− x2)c− b/c]2 − 4(1− b(1− x2))

2
(15)

Geometrically, we are looking at the dynamic of the system in the basis of its
eigenvectors. By simple calculus, the solution of the system, with eigenvectors
~v1and ~v2, can be written as[

δx
δy

]
= c1 ~v1e

λ1t + c2 ~v2e
λ2t (16)

Hence, for stability, the real parts of the both eigenvalues should be less than
zero so that the system will return to the stationary point upon small pertur-
bation. Assuming a stable point is the end goal, two conditions follow from the
eigenvalues defined above.

(1− x2)c− b/c < 0 (17)

1− b(1− x2) > 0 (18)

In the standard FN Model, b = 0.8, which guarantees that (18) will always
be true. The real boundary is then imposed by (17). The stability of the
critical point depends on the value of xs which in turn depends on z. As
it happens z = −0.4 renders the stationary point unstable and induces limit
cycles in the system. However, if z > −0.34 then the system contains a stable,
stationary point. The stationary point of the system has been determined to

be unstable, so the system is unlikely to come to rest on that point. The rest
of the differential system carves out a stable limit cycle in phase space. The
limit cycle depicted in figure 4 can be understood intuitively when compared to
the nullclines in figure 5. Observe that each differential component will change
signs when crossing its respective nullcline and consider that, generally, the ẋ
component is larger in magnitude than the ẏ component. In the FN Model,

the x variable is representative of the voltage across the membrane. If the most
intuitive connection between the FN Model and HH Model is desired, one needs
only to observe a plot of the voltage variable against time. Two cases should be
considered, and are shown below. The first case is a single excitory voltage spike
in the FN system with a stable stationary point, i.e. z = 0. The second case is a
train of voltage impulses give by limit cycle behavior presented when z = −0.4.
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Figure 6: Phase trajectories in the neighborhood of the following types of singular

points: (a) a stable node, (b) an unstable node, (c) a stable focus, (d) an unstable

focus, (e) a saddle point, (f) a center for limit cycle

Both cases show strong similarity to the action potential give computations with
the HH Model.

Linear stability analysis

The followings are all possible cases for the dynamics around a stationary point
in 2-D. The nature of the stationary point is determined by the value of eigen-
values evaluated at the point, as shown in figure 6:
Forλ’s are real,
i) λ1, λ2 < 0: stable node
ii) λ1 > 0, λ2 < 0 or vice versa: saddle node
iii) λ1, λ2 > 0: unstable node
For λ is a pair of complex conjugate,
i) Re(λ1), Re(λ2) < 0, stable focus
ii) Re(λ1), Re(λ2) < 0, unstable focus

Numerical solution

There is usually no analytic solution for nonlinear system like Fitzhugh-Nagumo
model. One can apply the technique of numerical solution for those system.
The simplest method is the Euler’s method. Discretizing time into small inter-

val gives ~x(t+∆t)−~x(t)
∆t ≈ ~F [~x(t)], hence one can solve forwards in time for the
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Figure 7: Action potentials simulated using the FN Model. The top figure represents

are short-lived stimulus in the system producing a single action potential. The bottom

figure corresponds to the system under a maintained external stimulus yielding a

continuous train of impulses.

numerical solution for the dynamical system. For eq. (9) and (10),

x(t+ ∆t) = x(t) + c(y(t) + x(t)− x3/3 + z)∆t
y(t+ ∆t) = y(t)− (x(t)− a+ by(t))∆t/c

(19)

This method has a global error of order ∆t, which means reducing ∆t by half
will reduce the error in the solution by half.

Singular lines

Following the discussion in [9], one can understand the global dynamics of non-
linear system like Fitzhugh-Nagumo equation by looking at ‘singular lines’ on

the phase plane. Define the lines with slope m = F2(x,y)
F1(x,y) , solving it yields

y = I(m,x). The condition for a line to be local attractors (all neighboring
flows converge) or local separatrices is ∂

∂xI(m,x) = m. In other words, on a
‘singular line’ the direction of force field coincides with the slope of the line. By
implicit function theorem, one can write

m = −
∂
∂x (F2/F1)
∂
∂y (F2/F1)

= −
∂F2

∂x −m
∂F1

∂x
∂F2

∂y −m
∂F1

∂y

(20)

this results in a quadratic equation in m

m2 ∂F1

∂y
+m

(
∂F1

∂x
− ∂F2

∂y

)
− ∂F2

∂x
= 0 (21)

So there can be two solutions m1,2(x, y) which corresponds to ‘singular lines’.
In order for the lines with slope m1,2(x, y) indeed correspond to ’singular lines’,
the consistency condition must be matched

∂I

∂m

∂m

∂x
= 0 , (22)
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Figure 8: ‘Singular lines’ in Fitzhugh-Nagumo equation. The left and right parts of

the x-nullcline serve as local attractors while the central part is a local separatrix, as

indicated by the neighboring trajectories. Figure credit [9]

Figure 9: Noisy Fitzhugh-Nagumo equation. Once the system crosses the separatrix,

a large negative response is initiated, corresponding to the thresholding behavior in

neurons.
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see [9] for more details. The resulting ‘singular lines’ are shown in figure 8.
This geometrical feature allows the system to capture the thresholding be-
havior of neurons. For instance, when z=0, the stationary point is (x, y) ≈
(1.199,−0.624), represented by the cross in figure 8. Now consider a noisy sys-

tem ~̇x = ~F (~x) + σ~ξ, where ~ξ is white Gaussian noise, and σ is the amplitude of
the noise. The case for σ = 1 is shown in figure 9, once noise drives the system
across the separatrix, a large detour is initiated.
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