
NEEDS compact model release –
lessons learned from MVS 1.0.0

Shaloo Rakheja and Dimitri Antoniadis

November 22, 2013

Thanks to:
Dr. Geoffrey Coram, Ujwal Radhakrishnan, Xingshu Sun

shaloo@mit.edu

mailto:shaloo@mit.edu

This presentation focuses on:

shaloo@mit.edu
Page 2

I. MVS 1.0.1 package

II. Checklist & guidelines
for model release

III. Good
practices for
writing Verilog-
A models

This presentation also briefly talks about:

IV. Updates (MVS 1.0.1) and open issues

shaloo@mit.edu
Page 3

Discussions

I. MVS PACKAGE ON NANOHUB

shaloo@mit.edu
Page 4

What is the MVS model ?

MIT Virtual Source (MVS)
Transistor model gives
currents and charges as
functions of terminal
voltages.

shaloo@mit.edu
Page 5

Currents
Id = f(Vg,Vd,Vs,Vb)
Ig = Ib = 0

Charges
Qs = f1(Vg,Vd,Vs,Vb)
Qd = f2(Vg,Vd,Vs,Vb)
Qb = f3(Vg,Vd,Vs,Vb)
Qg = -(Qs+Qd+Qb)

Release package components- 1/2
1. MATLAB-related

i. Model implementation

ii. Model exerciser

iii. Numerical parameter extractor

2. Verilog-related

i. Model implementation

ii. Test-benches for simple circuits

3. Experimental data for model calibration
4. Model manual

shaloo@mit.edu
Page 6

4

Release package components- 2/2

5. Update log (when a new version is released)

6. License agreement

shaloo@mit.edu
Page 7

https://nanohub.org/resources/19684

Link to the model on nanohub:

Wiki for model-release checklist:
https://nanohub.org/groups/needs/wiki/SpecificInstructionsforN
EEDSCompatibleCompactModels

https://nanohub.org/resources/19684
https://nanohub.org/resources/19684
https://owa.exchange.mit.edu/owa/redir.aspx?C=1Ul32_r8oU2Hpwy43UohIrbTlv5Qt9AIhFeNGNLWtFdN_s3Gp3cn7kmyaOLe7xX8HpfCF6vjaEM.&URL=https://nanohub.org/groups/needs/wiki/SpecificInstructionsforNEEDSCompatibleCompactModels
https://owa.exchange.mit.edu/owa/redir.aspx?C=1Ul32_r8oU2Hpwy43UohIrbTlv5Qt9AIhFeNGNLWtFdN_s3Gp3cn7kmyaOLe7xX8HpfCF6vjaEM.&URL=https://nanohub.org/groups/needs/wiki/SpecificInstructionsforNEEDSCompatibleCompactModels

II. CHECKLIST/GUIDELINES FOR
MODEL RELEASE

shaloo@mit.edu
Page 8

Quick checklist for model release
Component Associated files and/or requirements

MATLAB • Model file
Model exerciser

• Parameter extraction (analytical/non-linear)
• Readme file

Verilog-A • Model file
• SPECTRE/HSPICE netlists for simple circuits

Readme file

Experimental data • Readme file for data format and references

Model manual • Explaining all of the model equations
• Simulation results
• Extraction methodology
• Proper references

shaloo@mit.edu
Page 9

CMC license
agreement

Update log
(if needed)

+

MATLAB
What must the model.m file contain?

1. Equations that describe the physics of the model.

2. A model header stating

a. What the model returns (currents, charges etc …)

b. Range of the model validity (limited bias etc …)

c. The date last updated and by whom

3. Adequate comments to help understand the code and
make debugging easier.

shaloo@mit.edu
Page 10

MATLAB
What must the model.m file contain?

4. A parameter for model version.

a. For MVS 1.0.0, version = 1.00

b. For MVS 1.0.1, version = 1.01

5. Follow the CMC convention for assigning version to a
model and its subsequent updates.

6. Model file name must match the module name.

shaloo@mit.edu
Page 11

Example from MVS 1.0.1

shaloo@mit.edu
Page 12

Model file is named as mvs_si_1_0_1.m to match with the module name.

Model header with appropriate information.

CMC convention for model
versioning

<version#>.<subversion#>.<revision#>, where the numbers in angle
brackets (< >) are integers.

a. Model version number: major model formulation change (i.e.
not backward compatible with the previous release.)

b. Subversion number: minor model formulation change (i.e. no
new parameters introduced, improve run-time efficiency, reset
when model version is update.)

c. Revision number: identify different implementations of the
same set of equations (numerical measures to improve
convergence, restructuring code, smoothing functions, bug fixes
that do not change model formulation.)

shaloo@mit.edu
Page 13

MATLAB
What is the purpose of model exerciser?

1. Plots currents, charges, and capacitances as functions of
terminal voltages.

2. Also computes and plots 1st and 2nd derivatives of currents.

3. Values of various parameters in the model are either (i) obtained
through parameter extractor or (ii) reasonable values must be
used.

4. File must be properly commented.

shaloo@mit.edu
Page 14

Model exerciser can be tweaked to plot various other quantities as
well (for example, derivatives of capacitances)

MATLAB
What does the parameter extractor file do?

1. Extracts selected parameters in the model upon
calibration with experimental data (MVS 1.0.0 has 32
nm and 45 nm data on NFETs from Intel).

2. Uses MATLAB’s built-in least square curve fit
(lsqcurvefit) routine to extract parameters.

3. Specify an ‘educated’ initial guess (mostly from some
analytical method).

4. Important to specify lower and upper constraints on
parameters to achieve “physically realistic” results.

shaloo@mit.edu
Page 15

This is how the crux of the parameter
extraction script in MVS looks like:

shaloo@mit.edu
Page 16

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
starts at x0 and finds coefficients x to best fit the nonlinear function fun(x,xdata) to the
data ydata (in the least-squares sense). ydata must be the same size as the vector (or
matrix) F returned by fun. lb stands for the lower bound, while ub stands for the upper
bound on the parameter set.

Bounds for
params

Verilog-A
What must the model.va file contain?

1. Equations describing model physics

2. Real parameter for model version

3. Header (changes/license agreement)

4. Variable names must be consistent with what is
implemented in MATLAB.

5. Adequate comments to make understanding and
debugging easier.

shaloo@mit.edu
Page 17

Verilog-A
Simulation Decks

shaloo@mit.edu
Page 18

HSPICE/SPECTRE
netlist for simulating
simple circuits
(inverter, RO etc.)

1. Circuit netlist must note (i) loading scenario, (ii) type of run
(DC/AC/TRAN….), (iii) choice of input parameters, (iv) choice of
simulator options (noting simulator version).

2. Readme file must list simulator version for queer simulator version
dependencies.

3. Simulation results must be properly documented (*.pdf).

Verilog-A Simulation deck for inverter transient simulation example from MVS 1.0.1

shaloo@mit.edu
Page 19

{More code ….}

Header

Simulator
dependencies

Other info.

cmin adds a small cap from a node
to ground (avoids infinitely fast
transitions)

SPECTRE version

Experimental data
Some guidelines for presenting the
data:

1. Experimental data sets are used for parameter
extraction.

2. Format experimental data in a manner that is easily
read by the software.

3. Include a readme file that explains that format of the
experimental data (what different columns represent …)

4. Properly cite the source of the experimental data both in
the readme file and the model manual.

shaloo@mit.edu
Page 20

Experimental Data
Example from parameter extractor in MVS

shaloo@mit.edu
Page 21

VGS (V) ID (A)
(VDS = 50 mV)

ID (A)
(VDS = 1V)

0.0 -- --

0.1 -- --

-- -- --

-- -- --

-- -- --

-- -- --

VDS (V) VGS (V) ID (A)

0.0 -- --

0.05 -- --

-- -- --

-- -- --

-- -- --

-- -- --

Transfer curve data Output curve data

The model manual must contain all of
the following:

1. Model physics

2. All equations used in the model with an explanation of
all variables and their units

i. Variable names must be consistent throughout.

3. Functionality of extraction routine

4. Sample experimental data sets and their formatting

5. Simulation results

6. Proper references (model physics & experiments)
shaloo@mit.edu
Page 22

License agreement

1. NEEDS-modified Compact Model Council (CMC)
standard license for compact models

2. https://nanohub.org/groups/needs/users_developers

3. For MVS model, the copyright is owned by MIT.

4. All package components are under the license agreement.

5. For your model, you may have to check with your
institute if the copyright can/must be owned by model
developers, i.e. you.

shaloo@mit.edu
Page 23

https://nanohub.org/groups/needs/users_developers

shaloo@mit.edu
Page 24

III. GOOD PRACTICES FOR
WRITING VERILOG-A MODELS

Good practices for writing models in Verilog-A

Good Verilog-A practices

shaloo@mit.edu
Page 25

Look and feel Variables Built-in
functions

Performance
limits &
debugging

Look and feel; debugging easier
• Write code legibly

– Indentation
– Align code at (<+ or =)
– Meaningful variable names

• Partition code logically

– Initialization
– Static quantities
– Dynamic quantities
– Noise

shaloo@mit.edu
Page 26

Makes
debugging the
code a lot
easier

Example from MVS 1.0.0

shaloo@mit.edu
Page 27

1. If-else statements aligned
2. Voltages are named appropriately/meaningful

3. Code aligned at =
4. Block comment added

1

1

2

3

4

Example from MVS 1.0.0

shaloo@mit.edu
Page 28

2. Static quantities

3. Dynamic
quantities

1. Initialization

Variables in Verilog-A
1. Avoid unused variables in the code.

2. Avoid superfluous assignments.

3. Be careful of “memory states”.

4. Assign parameter range.

5. Verilog-A is case-sensitive. Be aware whether or not your
simulator is case sensitive (provide variable aliases).

6. Make sure variable names are identical in MATLAB
script and Verilog-A code.

shaloo@mit.edu
Page 29

✗

Superfluous assignments

Consider:

shaloo@mit.edu
Page 30

x = V(a,b)/R;
if (type == 1)
 x = V(a,b)/R1;
else
 x = V(b,a)/R2;

Diagnostic message from compiler:
Warning: Assignment to ‘x’ may be superfluous.
 [filename.va, line 1]

(1)
(2)
(3)

(4)
(5)

Superfluous

Parameter range – example from MVS 1.0.0

shaloo@mit.edu
Page 31

Avoids garbage in garbage out.

Memory states

1. Also known as hidden states.

2. Variables are initialized to zero on first call to module.

3. Simulator will retain the value of the previous iteration
if the variable is not assigned before it is used.

4. Memory states cause unexpected behavior.

5. These states are not typically identified in DC/TRAN
simulations.

shaloo@mit.edu
Page 32

Example of a memory state in MVS 1.0.0 – 1/2

shaloo@mit.edu
Page 33

The variable psis must always be assigned a value.

Example of a memory state in MVS 1.0.0 – 2/2

shaloo@mit.edu
Page 34

Error found by spectre during periodic steady state analysis
`pss1'.
ERROR (SPCRTRF-15177): PSS analysis doesn't support
behavioral module components with hidden states found in
component
'daa_mosfet'. Skipped.

mvs_si.va, declared in line 64: Hidden state variable: psis

Analysis `pss1' was terminated prematurely due to an error.

Simulation error due to hidden state in MVS 1.0.0 (fixed in 1.0.1)
Discovered through periodic steady state (PSS) analysis

Built-in functions
1. Check compatibility of built-in functions in Verilog-A

with various versions of simulators.
2. Be careful of derivatives ($abs(x),

$ddx(sqrt(x))) around x=0.
3. Watch for expensive functions ($exp(), $pow())
4. Avoid language constructs not required (or desired) for

compact modeling (Harmonic balance, Shooting,
Envelope).

5. Avoid Verilog-A block level modeling features
(transition, slew, last_crossing, absdelay)

shaloo@mit.edu
Page 35

Example from MVS 1.0.0

shaloo@mit.edu
Page 36

• Function $exp() versus $limexp()

– $limexp()provides better convergence than $exp()to model
semiconductor junctions although at the cost of extra memory.

– Compatibility with various versions of SPECTRE must be tested.

– $limexp() worked with SPECTRE version 10.1.1.374.isr21
but failed to run with SPECTRE version 5.10.41.121508.

– Current implementation of MVS 1.0.0 uses $exp()everywhere.

Example from MVS 1.0.0

shaloo@mit.edu
Page 37

Explicitly linearize $exp()above a break-point

Recommended practice

Example from MVS 1.0.0
Evaluating function $ln()

shaloo@mit.edu
Page 38

psis = (1.0 + ln(ln(1.0 +exp(eta0))));

eta0  large negative, exp(eta0) = 0  ln(0) can’t be evaluated

Adding a small correction `SMALL_VALUE fixed the problem

psis = (1.0 + ln(ln(1.0 +`SMALL_VALUE+ exp(eta0))));

Defined as 1e-10

Performance limits – 1/3

Extra state variables impact model efficiency

1. Be mindful of performance limiting assignments

– Voltage contributions on LHS; voltage sources add an
extra state variable for the branch current
• V(a,b) <+ ….

– Implementing a non-linear capacitance [f(I), g(V)] as
• I(a,b) <+ g(V(a,b));✔
• V(a,b) <+ f(I(a,b));✗

– Implementing an inductor
• V(a,b) <+ L*ddt(I(a,b))

shaloo@mit.edu
Page 39

Performance limits – 2/3
Extra state variables impact model efficiency

2. Branch ddt(.) lead to extra state variables
– Do not place the function ddt(.) within conditionals
– Place the arguments to ddt(.) within conditionals

3. Formulate contributions as currents
– I(a,b) <+ ….

4. Consider alternate, simplified expressions
5. Only truly voltage-controlled elements must be

implemented with voltage contributions.

shaloo@mit.edu
Page 40

Performance limits – 3/3
Collapse nodes to improve efficiency

• Collapse nodes when possible

• What happens when Ra is too small ?

shaloo@mit.edu
Page 41

 if (Ra > 0.0)
 I(bi,si) <+ V(bi,si)/Ra;
else
 V(bi,si) <+ 0;

 if (Ra >`SMALL_Ra)
 I(p,m) <+ V(p,m)/Ra;
 else
 V(p,m) <+ I(p,m)*Ra;

Does not work when:
a. Ra varies dynamically

with bias
b. Some model interfaces

for some simulators
c. Other instances ?

Debugging

• Watch for compile time warnings.

• Developer must provide floating point exceptions,
overflows, underflows etc.

• Get your code checked by peers and experts.

• Use source-code control and set up regression tests to
test out each new model feature.

shaloo@mit.edu
Page 42

Following Verilog-A resources are extremely helpful:

shaloo@mit.edu
Page 43

[1] http://www.mos-
ak.org/baltimore/talks/11_Mierzwinski_MOS-
AK_Baltimore.pdf
[2] www.mos-
ak.org/sanfrancisco/.../01_McAndrew_MOS-AK_SF08.ppt
[3] www.mos-ak.org/montreux/papers/06_Coram_MOS-
AK06.ppt
[4] G. Coram, “How to (and how not not) write a compact
model in Verilog-A”, BMAS 2004.
[5] Tianshi Wang; Jaijeet Roychowdhury (2013),
"Guidelines for Writing NEEDS-certified Verilog-A
Compact Models," https://nanohub.org/resources/18621

shaloo@mit.edu
Page 44

IV. UPDATES AND OPEN ISSUES

Updates in MVS 1.0.1
• Verilog-A related

– Indentation and alignment fixed
– Surface potential psis initialized properly
– Unused parameters Qx, Qy, S, Vsatq, dibl, Vgd, Vgdi, qe are removed

• MATLAB-related
– Model file name changed to match with the module name

– UNCOMMENT flag added in files: model_exercise.m, extract_main.m,
optimize_transfer.m, optimize_output.m

• General
– Parameter tipe changed to type

– External parameter phit has been eliminated. Instead junction temperature Tjun
has been added.

– LICENSE.txt file added.

shaloo@mit.edu
Page 45

Open issues
This is what we hope to address in a future release

shaloo@mit.edu
Page 46

1. Automation in parameter extractor and model exerciser
implemented in MATLAB needs to be improved.

32 nm

45 nm

Open issues
This is what we hope to address in a future release

shaloo@mit.edu
Page 47

2. Couple MATLAB optimization with Verilog-A model. Write

a script that calls Verilog-A routine and uses that instead of
MATLAB model file.

3. Charge/dynamic model may be improved to yield continuous

derivatives of certain capacitances with voltage (update of
version #).

Summary

• Checklist/Guidelines wiki

https://nanohub.org/groups/needs/wiki/SpecificInstructionsf
orNEEDSCompatibleCompactModels

 &

 This presentation

• Verilog-A resources available online (some through
NEEDS)

shaloo@mit.edu
Page 48

https://nanohub.org/groups/needs/wiki/SpecificInstructionsforNEEDSCompatibleCompactModels
https://nanohub.org/groups/needs/wiki/SpecificInstructionsforNEEDSCompatibleCompactModels

	NEEDS compact model release – lessons learned from MVS 1.0.0
	This presentation focuses on:
	This presentation also briefly talks about:
	I. MVS package on nanohub
	What is the MVS model ?
	Release package components- 1/2
	Release package components- 2/2
	II. Checklist/guidelines for model release
	Quick checklist for model release
	MATLAB�What must the model.m file contain?
	MATLAB�What must the model.m file contain?
	Example from MVS 1.0.1
	CMC convention for model versioning
	MATLAB�What is the purpose of model exerciser?
	MATLAB�What does the parameter extractor file do?
	This is how the crux of the parameter extraction script in MVS looks like:
	Verilog-A�What must the model.va file contain?
	Verilog-A�Simulation Decks
	Verilog-A���Simulation deck for inverter transient simulation��example from MVS 1.0.1
	Experimental data�Some guidelines for presenting the data:
	Experimental Data�Example from parameter extractor in MVS
	The model manual must contain all of the following:
	License agreement
	Slide Number 24
	Good practices for writing models in Verilog-A
	Look and feel; debugging easier
	Example from MVS 1.0.0
	Example from MVS 1.0.0
	Variables in Verilog-A
	Superfluous assignments
	Parameter range – example from MVS 1.0.0
	Memory states
	Example of a memory state in MVS 1.0.0 – 1/2
	Example of a memory state in MVS 1.0.0 – 2/2
	Built-in functions
	Example from MVS 1.0.0
	Example from MVS 1.0.0
	Example from MVS 1.0.0
	Performance limits – 1/3�Extra state variables impact model efficiency
	Performance limits – 2/3�Extra state variables impact model efficiency
	Performance limits – 3/3�Collapse nodes to improve efficiency
	Debugging
	Following Verilog-A resources are extremely helpful:
	IV. Updates and open issues
	Updates in MVS 1.0.1
	Open issues�This is what we hope to address in a future release
	Open issues�This is what we hope to address in a future release
	Summary

