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MOSFET vs TFET: Injection Mechanism 
Problem with VDD Scaling: 
 

• Subthreshold Swing (SS) limited 
to 60 mV/dec 

•  Large ION/IOFF ratio => large VDD  
• High Power Consumption 
• VDD scaling not possible: 

•  either increase of IOFF  
•  or decreases of ION 

 
Solution: BTB Tunneling 
 

• No lower limit on the SS 
•  Low Power Consumption 
• Various designs and materials 
• Biggest Challenges:  

 High ION 
 Steep SS 
 Low IOFF 
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TFET: Open Questions 
Assumptions: 
• Any semiconductor material (Si, 

Ge, C, InAs, InSb, InAs/GaSb) 
equally viable  

• Aim for 8-10nm technology 
• Aim for CMOS augmentation 
• Aim for low power 

Open Questions 

• Which geometry: SG, DG, GAA? 
• Doping profiles? 
•  Lateral or Vertical Tunneling? 
• Phonons – energy loss 

Biggest Challenges:  
 High ION 
 Steep SS 
 Low IOFF 
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Last Year s Status 
Nonequilibrium systems and modeling/simulation

Task 3D quantum transport modeling in interband devices Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

1 2D coherent transport in thin slab - direct gap materials

A electrostatics from semiclassical tools imported into OMEN, I-
V curves in InAs - train student on OMEN

B Quantum charge selfconsistent simulation, I-V curves in 
InAs/GaAs/InSb and disordered systems InGaAs

C Heterostructures, InGaAs/InAs, enhance direct tunneling 

D Guide experiments

2 3D incoherent transport (nanowires) - indirect gap materials

A Implement phonon-assisted tunneling 
B Tranport in Si / Ge
C Doping grading effects
D Discrete impurity effects
E Guide Experiments
3 2D incoherent transport (slabs) - indirect gap materials
A Code prototypes
B Transport in Si / Ge
C Guide experiments
4 Deliver Reports

2008-2009 2009-2010 2010-2011

4 

Graphene 

Feedback from panel: Proceed to develop OMEN and connect further to experiments 
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Graphene 

Broken Gap Structures 

Comparison,  
InAs, Graphene, InSb, GaSb/InAs 
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Features: 
•  3D, Atomistic, and Full-Band Quantum Transport Simulator 
•  4 Levels of Parallelism (V, k, E, and DD) 

OMEN

(i)

(j)

(k)
(l)

Id-Vgs

Electron
DensityGAA NW

From NEMO 1-D to OMEN 
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Lateral TFETs: Influence of Body Thickness  

Body Thickness Variation (Lg=20nm) 
•  Poor electrostatic for tbody>4nm 
•  SS below 60 mV/dec for tbody<4nm 
•  Low ON-Current despite highly and 

abruptly doped source 

Gate Oxide 
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TFETs: InSb Devices  

• Maximum Current of 330 μA/μm for DG UTB @ VDD=0.5 V 
• SS below 60 mV/dec: GAA (9.2) < DG (20) < SG (34)  
• Band Gap increase due to quantization               
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Lateral TFETs: Influence of Source Doping  

• Assumption: abrupt 
doping at s-c interface 

• Assumption: high source 
doping concentration 

• Both conditions necessary      

• High Tunneling Current  
=> Large NA 

• Technology Limitation 
(hard to fabricate abrupt 
junction with high NA) 

BTBT 
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• Maximum Current of 320 μA/μm for SG GNR @ VDD=0.2 V 
• Excellent electrostatic control in all cases => steep SS  
• Strong influence of Gate-Fringing Field 

Gate-Fringing Field 

Eg 

Eg=0.25eV 

TFETs: Carbon-based Devices  
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TFETs: Limitations of Graphene Nanoribbons 
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TFETs: Limitations of Graphene Nanoribbons 
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TFETs: Broken-Gap Heterostructure Devices 

• Maximum Current of 900 μA/μm for DG UTB @ VDD=0.5 V 
• SS below 60 mV/dec: GAA (7) < DG (11) < SG (17)  
• Band Gap increase due to quantization (especially InAs)             
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Lateral TFETs: InSb vs GaSb-InAs BG 
• InSb: maximum current of 330 μA/μm @ VDD=0.5 V 
• GaSb-InAs: maximum current of 900 μA/μm @ VDD=0.5 V 
• Assumptions: large source doping (NA=4e19 cm-3) and 
abrupt source-channel interface                                   

InSb 

GaSb-InAs 
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Lateral vs Vertical TFETs: Influence of the Tunneling Area 

Gate Oxide 
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Source: Chenming Hu, Green Transistor as a solution  
                                     to the IC power crisis. 

 

 

 

 

 

      

Lg=40nm 

 C. Hu et al, 2008 VLSI-TSA, p. 14 (2008) 

InAs Vertical TFET Simulation @ UCB 
•  Drift-Diffusion and WKB approximation 
•  Tunneling only in pre-defined regions, 

along mesh lines, generally no angle 
•  High ION and low IOFF predicted 

ION 
IOFF ION 

IOFF 
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Lateral vs Vertical TFETs: Influence of the Tunneling Area 
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Lateral vs Vertical TFETs: Influence of the Tunneling Area 

Gate Oxide 
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Source: Chenming Hu, Green Transistor as a solution  
                                     to the IC power crisis. 

InAs Vertical TFET Sim. with OMEN 
•  Non-equilibrium FB quantum transport 
•  Tunneling present everywhere: vertical, 

horizontal, diagonal,  
•  High ION, but high IOFF too 

ION 
IOFF ION 

IOFF 
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Vertical TFET: Spatial Current Distributions 

Vertical TFET OFF-Current 
•  Quasi-lateral tunneling between p+ 

Source and n+ Drain close to the 
Buried Oxide 

•  No electrostatic control over the 
tunneling region 

Vertical TFFET ON-Current 
•  Quasi-vertical tunneling between the n

++ Pocket and the p+ Source close to 
the Gate 

•  Non-homogeneous tunneling, 2 main 
tunneling channels 

p+ Source 
p+ Source 

n+ Pocket n+ Pocket n+ Drain 
n+ Drain 
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Vertical TFET: OFF-State Current 

• Region below the Pocket & 
p-i-n lateral TFET similar 

• No electrostatic control 
away from the gate 

• Source-to-drain tunneling 
leakage path 
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Improved Design 

Results: 
 

•  decrease of the OFF-current by 
several orders of magnitude 

•  further optimizations required to 
obtain high performance device (not 
included in this patent form) 

IOFF 

ION 
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US Patent App. 12/858,465 
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Improved Design 
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Technical Solution: 
 

•  push up the buried oxide below the 
drain contact to block the lateral 
source-to-drain tunneling path 

•  alternative: use of a large band gap 
material on the drain side to obtain 
the same blocking effect 

Results: 
 

•  decrease of the OFF-current by 
several orders of magnitude 

•  further optimizations required to 
obtain high performance device (not 
included in this patent form) 

US Patent App. 12/858,465 



Gerhard Klimeck / Mathieu Luisier 23 

Improved Design 

 
 
 
 
 
 
 
Buried Oxide 

 
 
P+ Source 

N+ Drain 

Gate 

 
N+ Pocket 
 

N 

Gate Oxide 

Push up 
the oxide 

IOFF 

Technical Solution: 
 

•  push up the buried oxide below the 
drain contact to block the lateral 
source-to-drain tunneling path 

•  alternative: use of a large band gap 
material on the drain side to obtain 
the same blocking effect 

Results: 
 

•  decrease of the OFF-current by 
several orders of magnitude 

•  further optimizations required to 
obtain high performance device (not 
included in this patent form) 

US Patent App. 12/858,465 

Vertical TFET Conclusions 
 

• Vertical TFET with structural problem 
=> lateral tunneling leakage 

 

• Commercial TCAD unable to predict 
internal deficiency                                             
=> misleading consequences 

 

• OMEN with global tunneling model as 
a more  accurate solution                                            
=> save time and money 
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TFETs: Phonon-Assisted Tunneling 
Objective:�
• Simulation of Phonon-Assisted 
Tunneling (PAT) in TFETs 

• Design Si-Ge heterostructure 
devices for high ON-currents  
Approach:�
• Atomistic and full-band model 
• NEGF up to self-consistent 
Born approximation 

• Confined phonon dispersion 
Result/Impact:
• First demonstration of PAT in 
3-D nanowires with global 
tunneling model 

• Si, Ge, and InAs nanowire 
TFETs simulated 

Ongoing Work 
• Same capability for UTB 

Simulation of Si Nanowire TFETs:  
Effects of Electron-Phonon Scattering 
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Objective: 
• Electron-Phonon in Si NW FETs, 
extract vinj, μPH, and B factor 

Approach: 
• Accurate description of the 
semiconductor material properties 

• Atomistic Representation of the NWs 
• Quantized phonon dispersion 
• Quantum transport with NEGF 
Results and Impacts: 
• Reduction of the drain current and 
injection velocity, modification of the 
electrostatics 

• First demonstration of FB + El-Ph 
Ongoing Work: 
• Mobility extraction in n/p NW FET 
• Experimental data to verify the model 

Ballisticity of Si NW FETs 

Lg=15nm 
d=3nm 

x=<100> 

Phonon Dispersion Si Bandstructure 

m*=0.29m0 

Acoustic  
Branches 
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Objective: 
• Electron-Phonon in Si NW FETs, 
extract vinj, μPH, and B factor 

Approach: 
• Accurate description of the 
semiconductor material properties 

• Atomistic Representation of the NWs 
• Quantized phonon dispersion 
• Quantum transport with NEGF 
Results and Impacts: 
• Reduction of the drain current and 
injection velocity, modification of the 
electrostatics 

• First demonstration of FB + El-Ph 
Ongoing Work: 
• Mobility extraction in n/p NW FET 
• Experimental data to verify the model 

Ballisticity of Si NW FETs 

vinj=1.3e7 cm/s 

vinj=0.9e7 cm/s 

B=70% 

vinj 

vinj 
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Computational Load 
Ballistic vs. Electron-Phonon Scattering  

Transport with Scattering: 
>100-1,000x more intensive! 
Much more communication! 
1 bias point (20 for 222,720 cores) 
•  58% parallel efficiency on 95k cores 
•  142 TFlop/s on 95k cores 

Ballistic Transport: 
Ideal Scaling 222,720 cores 
•  >90% parallel efficiency on 95k cores 
•  >860 TFlop/s on 222k cores 
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U.S. Science and Engineering 
Computational Resources 

Ranger@TACC 
~64,000 cores 

SUN / AMD cores 

Kraken@NICS 
~95,000 cores 

Cray XT4 / AMD cores Jaguar@ORNL 
~225,000 cores 

Cray XT5 / AMD cores 
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Objective: 
• Calibrate against the standard band-
to-band tunneling model: WKB 

Approach: 
• Select simple nanowire geometry 

• Adjust WKB (bandgap 
quantization) 

• Select 2 material systems: 
• Expect agreement: direct gap InAs 
• Expect disagreement: indirect gap Results and Impacts: 

• Direct gap InAs – agreement! 
• But how does one get the right 
gap in WKB? 

• Indirect gap Si: 
• WKB overestimates current 
• Lateral BTBT show that one 
needs a non-local tunneling model 

Calibration and Validation against WKB 

Lg=15nm
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Status of Experimental Comparisons 

  Existing experimental 2D and 3D geometries  
too large for OMEN 
  2D devices up to 15nm body (5nm with scattering) 
  3D devices up to 10nm diameter (4nm w/ scattering) 
  compare OMEN against traditional methods and  
 understand their limitations 
  guide the design concepts at the ultimate limit 

  Existing experimental 1D geometries / diodes 
require incoherent scattering 
  OMEN cannot handle scattering in layered diodes 
  Bandgap narrowing appears to be important 
  Explore with OMEN 

31 
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Atomistic Nanoelectronic Transport Modeling  
Objective: 
 Creation of a new switch operating at low voltage with a low sub-
threshold swing with enough on-current 

OMEN Capabilities: 
 Can perform coherent simulations on large  devices (1D, 2D, 3D) 
 Can perform incoherent/scattering transport over small  devices (2D/3D) 

Some Insights / Opinions: 
 The electrostatic gate control is a key element to switch a critical device 
domain as abruptly as possible 
 Lateral homojunction BTBT cannot achieve this  

  Problems in regrowth of etched surfaces + high doping 
 Standard vertical BTBT (mesa structure) cannot achieve this either 

  Gate control is too remote – cannot get a reliable steep SS 
 Heterojunction BTBT with staggered band edges may help 

  Gate control and regrowth of new material system remain challenges 
Where OMEN Modeling can help today: 
 Exploration of novel 2D and 3D geometry configurations to see if they can 
deliver strong gate control and large currents.  
 Guide experiments in nano-scale device structures 
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Conclusion  
OMEN is a New Physics-Based TCAD 

OMEN Simulation Approach             

•  3D, full-band, atomistic, quantum transport  
•  UTB, NW, or HEMT structures  BTBT 
•  Electron-phonon scattering 
•  8 journal articles, 5 proceedings articles 
Outlook and Near Term Challenges                             
•  explore design space for nano-scaled FETs 

sizes/materials/doping 
•  Explore doping effects, explicit impurities,  

bandgap narrowing 
•  Aid experiments 

OMEN/NEMO on  
nanoHUB.org 

Over 5,000 users 
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Long Term Vision and Needs 

2.5nm 

Boundary (new material / new device) is blurred 
• Need an atomistic representation 
• Can measure and model individual impurities! 
• Need atomistic process models coupled to transport  
Contacts – begin to dominate intrinsic device 
• Many electrons, many materials, scattering 
Non-local Interactions: Phonon-electron-spin-photons 
•  Full matrix unfeasible => approximations 
•  Time dependence => noise, fluctuations, interactions 
• Spin is in the basis! Not an afterthought! 
Thermoelectric cooling 
Impurity channels – ultimate limit of electronics 
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