Structure and Mechanical Properties of sp²-bonded Nanotubes

B. G. Demczyk

Graphite Structure

B.L. =0.142 nm (diamond, 0.154nm)

Crystal structure of graphite. The in-plane C-C covalent bond strength is the highest found in nature, but the van der Waals layer to layer bonds are weak.

Carbon Fiber

Schematic idealized structure of a carbon fiber, where the strong C-C bonds lie along the length of the fiber.

Carbon Fibers

Defect Structure

Tensile Strength

Cohesive Strength (0.33 TPa) $\sigma_c = E\lambda/2\pi a_o (\approx E/\pi)$ E = Young's Modulus (1026 GPa) λ = interatomic force period (~a_o/2) a_o = interatomic separation (0.213 nm)

Fracture Strength (Orowan-Polanyi)(0.14-0.18 TPa) $\sigma_f = \sqrt{E\gamma}/a \ (\approx E/7-E/5)^*$ $\gamma = Surface energy \ (4.2 J/m^2)$ a = interplanar separation*Rep. Prog. Phys. 12 185 (1949).

Relative Strengths of Carbon Fibers

Stæl	1-2 GPa
Carbon Fiber	2-5 GPa
Carbon Wh isker	up to 20 GPa
Carbon Nano tube	~ 300 GPa
Theor etical (C-C bond) Streng th	>1000 GPa

=> structural defects limit U.T.S

Fine Fibers (Whiskers) and Nanotubes

The continuity of atomic planes along the tube axis enhance the mechanical strength.

Single Wall Carbon Tube

CVD grown(~600 °C): C₂H₄ -> (Fe(Mo))-> C(s) + H₂ -"nanoswitch" (Nantero); transister (Nanõmix)

Ia. Multi-Walled C Nanotube Structure (Historical-U. Mich.)

Nanotube Growth: Arc (110A, 30-45VDC) between graphite rods in He atm (320 Torr) (J. Cryst. Gwth. <u>141</u> 304 (1994)) Nanotube HRTEM Characterization JEOL 4000EX* LaB₆ (400 kV) 0.175 nm point resolution

*-commercial ARM

Nanotube HREM Images

"Amorphous" C forms first.

Graphene Structure

But in the Microscope...

... due to instrument resolution limit (0.175 nm)

Moire Patterns

=>Evidence of helicity variation $(\pm 3^{\circ})$ within tube.

Helicity (to maintain closure)

Initial cylinder circumference (OX_1) : $2\pi r_0 = n_0 a$ r_{0} - radius of inner cylinder \rightarrow n_o - # of edge sharing hexagons ► Next: $OY_1 = n_0 a + \pi c$ (O -> X_2) $\sim \alpha_1 = \tan^{-1}(X_2Y_1/OY_1) = \text{helicity}$ ► Then: $OY_2 = n_0 a + 2\pi c (O -> X_3)$

=> Get both nonhelical and helical tubes

2 Ways to "Roll-up" Graphene

- "Zig-Zag" $(10\overline{1}0)$
 - $n_z = \pi c/a ~(=8.43)$

"Armchair" $(11\overline{2}0)$

$$n_a = 2\pi c/a\sqrt{3} \ (=9.86)$$

J. Cryst. Gwth.<u>130</u> 368 (1993).

 $n_i = \#$ extra hexagon rows/tube

CNT Brillion Zone

Phys. Rev. Lett. <u>68</u>(10) 1579 (1992).

(Local) Diffraction Information from HREM

In-situ

Specimen, φ

Objective Lens, ϕ_s

Diffraction Pattern, f \approx F (φ_s)

Image, $\phi_m \approx F^{-1}(f)$

Diffraction-"Zig-Zag" Tubes

Diffraction-"Armchair" Tubes

Axially...

Radially...

Spacing Variation

Over 300 pixels, c = 0.375<u>+</u>0.004 nm

=> gives overall nonhelical fiber every second tube has slight helicity

Tub e #	d (nm)	n (= π d/a)	$(=ta n^{-1}[\pi d/a])$
1	3.17	40.5	1.2
2	3.91	50	0
3	4.66	59.5	0.8

CNT Structure Summary

■ 10.0 (zig-zag) growth axis

0.375nm *c-axis* spacing
To maintain overall zero helicity

Helicity can vary not only in succesive nanotubes, but also locally within a single tube

1b. CNT Structure (NCEM)

- Nanotube Growth:
 - ➤ Arc (60A, 30-45VDC) between B-doped C anode N₂ atm (380 T)

■ (Chem. Phys. Lett. <u>260</u> 465 (1996))

- Nanotube HRTEM Characterization
 - ► Philips CM300 FEG (300 kV)
 - 0.17 nm point resolution
 - ► Philips CM200 FEG (120 kV)
 - 0.24+ nm point resolution

Defect Formation

CNT Growth Termination-Normal

V + f = e + 2 (Euler)

CNT Growth Termination-Early

CNT Growth Termination-Early

II.Tensile Testing of Multiwall C Nanotube

Nanotube Growth:

- ➤ Arc (60A, 30-45VDC) between B-doped C anode N₂ atm (380 T)
 - (Chem. Phys. Lett. <u>260</u> 465 (1996))
- Nanotube TEM Characterization
 - ≻ Topcon 002B (200kV)
 - Piezoelectric Manipulation Stage

CNT Thermal Vibration (TEM)

Sol. St. Comm. <u>105</u>(5) 297 (1998). J. Phys. Chem. Sol. <u>61</u> 1025 (2000).

CNT Bending (AFM)

Force applied with probetip =>strain (to failure) measured - But section not round

> Appl. Phys. Lett. <u>74</u> (25) 3803 (1999). Phys. Rev. Lett. <u>82</u> (5) 944 (1999).

CNT Pulling (AFM/SEM)

Microfabricated Tensile Stage

Experimental Setup

Force Calibration

CNT Fracture-Stone-Wales Transformation

- C-C bond ruptured in 4 hexagons =>2pentagon/heptagon pairs created then larger (octagon) rings formed Energetically favored for $\varepsilon \sim 5\%$

Chem. Phys. Lett. <u>382</u> 133 (2003).

CNT Fracture-Bond Breaking

Octagon ring bonds break => tube narrows

Chem. Phys. Lett. <u>382</u> 133 (2003).

CNT Fracture-Narrowing to Failure

Tube narrows to monatomic layer (in ~ 10⁻¹⁰ sec)

J. Chem. Phys. <u>99</u> 6923(1993)

NanotubeTensileTest

-for F = 18 μ Nt, A=123 nm² => σ = 0.15 TPa

> -consistent with predictions and Stone-Wales mechanism

"Healed" Endcap

Elongation (major section)

"Telescoping" Tubes

"Telescoping" Tubes (Grown-In)

CNT Bending Sequence

Note strain contrast at sharp bends (b-e) and the lack of the same in the straightened tube (i).

Young's Modulus

 $P = \sigma \tan \alpha$

 $E = PL^3 / 3I\delta_{max} \qquad I = \pi tr^3$

-for P=10.9 μNt, r=5.6 nm, t=333 nm (10 walls) =>E = 0.91 TPa

Bent Tube

Bent Tubes (Grown-In)

Multiwall CNT Mechanical Measurements

	E (TPa)	σ_{T}	ГРа)		Method	
	0.81 (50%)			AF	FM-2 end s clamp ed [33]	
	1.28 (40%)				FM-1 end clamped [21]	
	1.26 (20%)			TE	M- thermally v ibratingbea m [22]	
	0.1-1 (~1/R) (30%)			TE	M-electrostaticd eflection [15]	
	0.27-0.95	0.01	-0.06	Du	al AFM cantilevers [34]	
	0.91 (20%) 0.	15	(30%)	TEM	-direct tension [this work]	
$E = Y$ oung's Modulus, $\sigma_T = ten sile streng th, R = nano tube radius, () = unce rtain ty$						

Summary of *In-Situ* CNT Observations

Mechanical Properties: \succ σ_T = 0.15 TPa, E = 0.91 TPa Deformation Mechanisms: ► high strain rate - outer tubes fracture - partial pullout of inner tubes ► Low strain rate - Full "telescoping" ► Reversible (>90°) bending

But CNT....

Not chemically inert ► React with metals (carbides) Cannot withstand shock loading ► Form nanodiamonds Unstable at high T EXPENSIVE ► \$1500./gm (gold \$450./gm)

Inorganic tubes attractve

III.Structure Imaging of BN Nanotubes

Nanotube Growth:

 Arc (60A, 30-45VDC) synthesis in "dynamically stabilized" N₂ atm (380 T)
 (Chem. Phys. Lett. 316 211 (2000))

Nanotube HRTEM Characterization

► Philips CM300 FEG (300 kV)

- 0.17 nm point resolution

Motivation

Two (different size)atom tube structure

Two walled (predominantly) nanotubes

BN Nanotube Growth

adapted from "Fullerines: Chemistry, Physics and Technology", Ch. 17 (2000).

Chem. Phys. Lett. <u>382</u> 133 (2003).

BN Structure

a = 0.246 nmc=0.669 nm

Atomic Basis: B:(0,0,0) & (.5,.5,0) N:(.5, .1588,0) & (0,.6588,0)

BN Basal Plane

Two Wall BN Tube

Results - 2 Wall BN Tube

"bilayer" = 0.22 nm

■ Tube 1

Tube 2

< (00.2),(01.0) = 64°; < (00.2),(11.0) = 57°
Maxima at <u>+</u> 4°
<11.0> (armchair) tube axis
~4° chirality

Deconvolution of 2W BN FHT Pattern

Geometrical Arguments

■ for axis along <10.0> (zig-zag)

- ➤ Unit cell "width" = a (= 0.254 nm);
- ► Wall spacing = c (= 0.34 nm)
 - Circumference/width = $2\pi c/a = 8.4$ (high strain)
 - get defect regions leading to polygonization
- ► But if **c** = 0.37,
 - Circumference/width = $2\pi c/a = 9.15$ (low strain)
 - less defects
- for axis along <11.0> (armchair)
 - Unit cell "width" = $\sqrt{3}$ a
 - Circumference/w = $2\pi c/a\sqrt{3}$ = 4.15 (low strain)

BN Four Wall Tube

Results-4 Wall BN Tube

"bilayer" = 0.22 nm sidewall" = 0.34 nm

all tubes

no orthogonal reflections tube axis <11.0> (armchair)

small spot splitting
 ~ 4° chirality

Core Diameter Effects - 2W

Core Diameter Effects - 4W

BN NT Growth (d~ 2 nm)

First tube

<10.0> (zig-zag) due to lower energy of Nterminated planes
N [1010] [1120]

В

- Subsequent tubes
 - ► Readjust to give c>0.34 nm
 - Align along <11.0> (armchair) to minimize tube closure strain

BN NT Growth (d~ 3 nm)

Alignment along <11.0> (armchair) to minimize tube closure strain

 Tubes (2W & 4W) nearly defect-free
 near predicted mechanical properties possible

Multiwall BN Tubes

Results-Multiwall BN Tubes

"bilayer" = 0.22 nm "sidewall" = 0.34 nm

■ tube axis <11.0>

tilt & chirality evident from FHT

growth termination in outer walls

6W BN Image Simulation

Simulated Image $\Delta f = -280 \text{ nm}$

Projected Potential

6W BN Reconstructed Image

Single Image

Reconstructed Image

6W BN Image Reconstruction

Line Intensity Scan (along basal plane)

Reconstructed Image

Acknowledgements

- Faculty: Michael Bretz UM Physics Robert Ritchie - UCB MSE Alex Zettl - UCB Physics
- Staff: Christian Kisielowski NCEM Chris Nelson - NCEM Tony Freeman - LBNL
- Students: John Cumings UCB Physics Aileen Wang - UCB Physics