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Continual technology innovations make it possible to fabricate electronic de-

vices on the order of 10nm. In this nanoscale regime, quantum physics be-

comes critically important, like energy quantization effects of the narrow

channel and the leakage currents due to tunneling. It has also been utilized

to build novel devices, such as the band-to-band tunneling field-effect transis-

tors (FETs). Therefore, it presages accurate quantum transport simulations,

which not only allow quantitative understanding of the device performances

but also provide physical insight and guidelines for device optimizations.

However, quantum transport simulations usually require solving repeat-

edly the Green’s function or the wave function of the whole device region with

open boundary treatment, which are computationally cumbersome. More-

over, to overcome the short-channel effects, modern devices usually employ

multi-gate structures that are three-dimensional, making the computation

very challenging. It is the major target of this thesis to enhance the simu-

lation efficiency by proposing several fast numerical algorithms. The other

target is to apply these algorithms to study the physics and performances of

some emerging electronic devices.

First, an efficient method is implemented for real space simulations with

the effective mass approximation. Based on the wave function approach,

asymptotic waveform evaluation combined with a complex frequency hop-

ping algorithm is successfully adopted to characterize electron conduction

over a wide energy range. Good accuracy and efficiency are demonstrated by



simulating several n-type multi-gate silicon FETs. This technique is valid for

arbitrary potential distribution and device geometry, making it a powerful

tool for studying n-type silicon nanowire (SiNW) FETs in the presence of

charged impurity and surface roughness scattering.

Second, a model order reduction (MOR) method is proposed for multi-

band simulation of nanowire structures. Employing three- or six-band k.p

Hamiltonian, the non-equilibrium Green’s function (NEGF) equations are

projected into a much smaller subspace constructed by sampling the Bloch

modes of each cross-section layer. Together with special sampling schemes

and Krylov subspace methods for solving the eigenmodes, large cross-section

p-type SiNW FETs can be simulated. A novel device, junctionless FET, is

then investigated. It is found that its doping density, channel orientation,

and channel size need to be carefully optimized in order to outperform the

classical inversion-mode FET.

With a spurious band elimination process, the MOR method is subse-

quently extended to the eight-band k.p model, allowing simulation of band-

to-band tunneling devices. In particular, tunneling FETs with indium ar-

senide (InAs) nanowire channel are studied, considering different channel

orientations and configurations with source pockets. Results suggest that

source pocket has no significant impact on the performances of the nanowire

device due to its good electrostatic integrity.

At last, improvements are made for open boundary treatment in atomistic

simulations. The trick is to condense the Hamiltonian matrix of the periodic

leads before calculating the surface Green’s function. It is very useful for

treating leads with long unit cells.
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ABSTRACT

Continual technology innovations make it possible to fabricate electronic de-

vices on the order of 10nm. In this nanoscale regime, quantum physics be-

comes critically important, like energy quantization effects of the narrow

channel and the leakage currents due to tunneling. It has also been utilized

to build novel devices, such as the band-to-band tunneling field-effect transis-

tors (FETs). Therefore, it presages accurate quantum transport simulations,

which not only allow quantitative understanding of the device performances

but also provide physical insight and guidelines for device optimizations.

However, quantum transport simulations usually require solving repeatedly

the Green’s function or the wave function of the whole device region with

open boundary treatment, which are computationally cumbersome. More-

over, to overcome the short-channel effects, modern devices usually employ

multi-gate structures that are three-dimensional, making the computation

very challenging. It is the major target of this thesis to enhance the simu-

lation efficiency by proposing several fast numerical algorithms. The other

target is to apply these algorithms to study the physics and performances of

some emerging electronic devices.

First, an efficient method is implemented for real space simulations with

the effective mass approximation. Based on the wave function approach,

asymptotic waveform evaluation combined with a complex frequency hop-

ping algorithm is successfully adopted to characterize electron conduction

over a wide energy range. Good accuracy and efficiency are demonstrated by

simulating several n-type multi-gate silicon FETs. This technique is valid for

arbitrary potential distribution and device geometry, making it a powerful

tool for studying n-type silicon nanowire (SiNW) FETs in the presence of

charged impurity and surface roughness scattering.
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Second, a model order reduction (MOR) method is proposed for multi-

band simulation of nanowire structures. Employing three- or six-band k.p

Hamiltonian, the non-equilibrium Green’s function (NEGF) equations are

projected into a much smaller subspace constructed by sampling the Bloch

modes of each cross-section layer. Together with special sampling schemes

and Krylov subspace methods for solving the eigenmodes, large cross-section

p-type SiNW FETs can be simulated. A novel device, junctionless FET, is

then investigated. It is found that its doping density, channel orientation,

and channel size need to be carefully optimized in order to outperform the

classical inversion-mode FET.

With a spurious band elimination process, the MOR method is subse-

quently extended to the eight-band k.p model, allowing simulation of band-

to-band tunneling devices. In particular, tunneling FETs with indium ar-

senide (InAs) nanowire channel are studied, considering different channel

orientations and configurations with source pockets. Results suggest that

source pocket has no significant impact on the performances of the nanowire

device due to its good electrostatic integrity.

At last, improvements are made for open boundary treatment in atomistic

simulations. The trick is to condense the Hamiltonian matrix of the periodic

leads before calculating the surface Green’s function. It is very useful for

treating leads with long unit cells.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

1.1.1 Emerging Electronics

The quest for high performance and low cost computers and consumer elec-

tronics like cell phones has been the driving force of the electronics industry.

Besides the enlargement of the chip and the optimization of the circuit (or

system), the major approach is to decrease the feature size as it allows more

transistors and functional units to be integrated into the same chip. The

scaling trend is summarized by Moore’s law [1], which is often stated as dou-

bling of transistor performance and quadrupling of the number of devices

on a chip every three years. Remarkably, the semiconductor industry has

followed this trend for almost half a century, and now the feature size of in-

tegrated circuits has already been scaled to only tens of nanometers (22nm in

year 2011). In this nanoelectronics era, the traditional CMOS devices suffer

from severe short channel effects leading to serious performance degradation,

including increased power consumption and larger performance variations. It

is generally accepted that novel device engineering by introducing new device

structures or new materials is needed to extend Moore’s law [2].

According to ITRS (International Technology Roadmap for Semiconduc-

tors) [3], alternative materials like carbon nanotube, graphene, and III-V

compound semiconductors are expected to replace or complement silicon as

channel materials; new structures like nanowires are also being utilized as

candidates for replacing traditional planar technologies. Due to its two-

dimensional monolayer structure, graphene exhibits outstanding transport

properties [4], such as light effective mass and long mean free path. III-V

compound materials such as gallium arsenide (GaAs), aluminium arsenide
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(AlAs), indium arsenide (InAs), indium phosphide (InP) and their ternary

and quaternary alloys draw much attention due to their much higher carrier

mobilities than silicon [5]. On the other hand, nanowires allow multi-gate

architectures which provide better electrostatic control over the channel [6].

1.1.2 Quantum Transport Simulation

Besides the fabrication issues, these emerging electronic devices also impose

a challenging task for the transport modeling and simulation. Modeling

and simulation methodologies are very helpful for understanding new device

working mechanisms [7]. They also constitute the key part of technology

computer aided design (TCAD) tools, which reduce the cost and expedite

the product cycle by replacing direct experiments.

Various kinds of transport models exist under different levels of approxi-

mations [8]. In the past, the mainstream models were based on semi-classical

Boltzmann transport equation and its simplified models, like hydrodynamic

equations and drift-diffusion equations. These models can be adequate when

the device size is large, but as the device size becomes smaller, quantum

mechanical effects start to emerge. Some of the quantum effects that are

important for MOSFET applications are the energy quantization due to the

small channel cross section, source-to-drain tunneling in ultra-short channel

devices, and gate leakage current [9]. To account for these quantum effects,

corrections have been made to the classical models, leading to the quantum

hydrodynamic equations and quantum Monte Carlo methods [8]. As the

device size is further shrunk to be comparable to the electron wavelength,

quantum physics dominates. Besides, there are also devices making use of

quantum mechanics, such as the resonant tunneling diodes [10] and band-

to-band tunneling devices [11]. This necessitates full quantum transport

modeling. Boltzmann equation is not compatible with quantum mechanics

as it specifies momentum and position at the same time. The Green’s func-

tion method, in particular the non-equilibrium Green’s function (NEGF)

approach, is suitable for this purpose due to its ability to capture both the

wave physics and the phase-breaking process [12]. It also has the potentiality

to treat large devices since it is based on single electron approximation. In

the coherent transport limit, it has been proven to be equivalent to the wave

2



function approach [13].

To model a device quantum mechanically, an appropriate representation

must be chosen for the electron Hamiltonian. This is difficult since the crystal

potential can be very complicated due to its non-periodicity and the presence

of disorders. In addition, there are many electrons interacting with each

other. Although ab initio methods [14] are preferred from the scientific point

of view, empirical models are usually adopted for practical efficiency. The

following are three of the most commonly used empirical electronic structure

models, each featuring its distinct ability and validity.

Effective Mass Approximation (EMA): It is well known that the conduc-

tion band bottom of many common semiconductor materials, such as silicon,

germanium, and GaAs, is approximately parabolic and can be described by

single band effective masses [15]. Although this is a drastic approximation, it

has been extensively used to evaluate the performance of traditional CMOS

devices. It has also been widely adopted to study quantum transport in

n-type devices due to its simplicity [16]. For ultra-small nanostructures,

however, the effective masses vary from the bulk ones [17]. By adjusting the

effective masses through mapping to more accurate band structure calcula-

tions, EMA still works well down to very small sizes [18].

Multi-Band k·pModels (KPMs): In contrast, the valence band top of above

mentioned semiconductor materials is not parabolic any more. It actually

involves three strongly coupled bands, namely the heavy hole, light hole, and

split-off hole band [15]. Still, the band structure in the vicinity of the Γ

point can be described by a relatively simple model, the multi-band effective

mass (k · p) model [19]. In three-band model, the three bands are treated

exactly whereas the remote bands are taken into account approximately.

The number of bands doubles when spin-orbit coupling is considered. For

narrow and direct band gap materials, like InAs, the two conduction bands

are usually included to make an eight-band model. It should be mentioned

that this approach is based on perturbation and thus is only valid for a

certain energy range. But it suffices for nanoelectronic transport modeling

and optoelectronic modeling, as only band structures near the band gap

are of interest [20]. Note that by including more bands, full zone band

structures can be accurately produced. For instance, 30-band model has

been developed recently [21]. Moreover, strain effects can easily be included

as a perturbation. The approach is flexible in the way that the number of

3



bands can be tailored for specific materials or applications.

Tight Binding Models (TBMs): For ultra-small nanostructures, one may

question the validity of EMA due to the non-parabolicity nature of the con-

duction band [15]. Tight binding models are better band structure models

and thus can provide more accurate quantization levels and masses [22]. Take

the sp3d5s∗ nearest neighbor TBM for example [23], it can reproduce the band

edges of the bulk silicon band structure over the entire Brillouin zone. Its

atomistic treatment is another advantage, since the device under study is so

small that it can hardly be treated as a continuum system. Furthermore, the

dopants and interfaces could be modeled in an atomic resolution.

1.1.3 Numerical Bottlenecks

Once the Hamiltonian is written down, the NEGF (or wave function) equa-

tions [24] can be solved routinely. However, this is computationally pro-

hibitive for realistic problems.

To identify the numerical bottlenecks, a typical simulation flow for coher-

ent transport is illustrated in Fig. 1.1. At the beginning, an initial guess

of the potential profile is needed to set up the initial Hamiltonian. Then,

it requires solving the open boundary Hamiltonian equation repeatedly in

an energy band to get the charge density (which is an integral over energy).

This consists of two steps, one is calculating self energy matrices of the

semi-infinite leads, and the other is solving for the Green’s function or wave

function of the device region. The charge density obtained is then fed into

Poisson equation to get a new potential distribution, which in turn updates

the Hamiltonian of the system. The iteration process continues until self

consistency is achieved. For transistors, this flow has to be repeated for each

gate (drain) bias to get the transfer (output) characteristics. The self energy

and Green’s function calculations constitute the most expensive parts of the

whole simulation since they require inversion of the lead and device Hamil-

tonian (note that direct inversion is O(N3) in computational complexity and

O(N2) in memory, where N is the dimension of the Hamiltonian). Therefore,

many quantum transport simulations are performed on small model systems

and for theoretical study only.

Unfortunately, emerging devices such as silicon nanowire transistors are
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three-dimensional. Moreover, devices fabricated recently are usually of size

(10nm)3 approximately [25]. Discretization of such big devices usually results

in a huge Hamiltonian matrix, even when the simplest EMA is used, not to

mention the more sophisticated KPMs and TBMs. In addition, the conver-

gence of the charge density integral is poor when singularities are involved.

This situation is commonly encountered when simulating low-dimensional

devices due to Van Hove singularities at the sub-band edges and possible

bound or resonant states [26].

Figure 1.1: Flowchart of device simulation with the NEGF or wave function
approach. The steps in the dash-line boxes are calculated once, while the
bold line boxes define the numerical bottlenecks.

To break through the above numerical bottlenecks will bridge the gap

between theory and experiment, thus to achieve the ultimate goal of inter-

preting and guiding experiments.

1.2 Outline of the Thesis

This thesis endeavors to break through the numerical bottlenecks by propos-

ing several efficient numerical algorithms. The description of the Hamilto-
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nian ranges from effective mass approximation, k · p models, to tight binding

models, since each can model a wide range of devices. With these methods,

several representative emerging devices are studied as well.

Chapter 2 introduces a method to speed up the simulations with the effec-

tive mass approximation. As the wave function needs to be calculated many

times in an energy band, the method improves the efficiency by computing

the wave function only at several sampled energy points and evaluates its

neighboring energy points by an approximated asymptotic form. The sam-

pling points are chosen automatically through a binary searching process.

The accuracy and efficiency is demonstrated by the analysis of several n-type

silicon transistors. By the implementation of this method, silicon nanowire

transistors with the presence of several kinds of imperfection are studied.

Chapter 3 dedicates to accelerating the simulations with the three- and

six-band k · p models. The proposed model order reduction (MOR) tech-

nique is aimed to reduce the dimension of the k · p Hamiltonian matrix by a

transformation of basis. The construction of the reduced basis is discussed in

detail. This method is particularly suitable for the simulation of p-type sili-

con nanowire FETs. The novel junctionless FETs are studied and compared

to classical inversion mode FETs.

Chapter 4 extends the MOR technique proposed in Chapter 3 to deal

with the eight-band k · p model. A spurious band elimination process is

found to be crucial for obtaining a useful reduced model. The method allows

simulation of band-to-band tunneling devices. In particular, tunneling FETs

with InAs nanowire channel is studied by varying channel orientations and

by introducing a source pocket.

Chapter 5 deals with the self-energy matrix calculation, a bottleneck in

atomistic simulations. The key step is to condense the Hamiltonian matrix

of the periodic atomic leads, after which the unit cell size becomes much

smaller and the conventional self-energy calculation methods can be applied

with some modifications. Nearest neighbor sp3d5s∗ tight binding scheme is

given as an example to show the validity and efficiency of the methods.

Chapter 6 concludes the thesis by a brief review of the numerical methods

proposed and the key device physics found. It also gives some viewpoints

about the continual improvement of the nanodevice modeling.
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CHAPTER 2

ASYMPTOTIC WAVEFORM EVALUATION

FOR SIMULATIONS WITH THE

EFFECTIVE MASS APPROXIMATION

Quantum mechanical modeling of ballistic transport in nanodevices usually

requires solving Schrödinger equation at multiple energy points within an

energy band. To speed up the simulation and analysis, the asymptotic wave-

form evaluation (AWE) is introduced in this chapter. Using this method,

the wave function is only rigorously solved at several sampled energy points,

while those at other energies are computed through Padé approximation.

This allows us to obtain the physical quantities over the whole energy band

with very little computational cost. In addition, the accuracy is control-

lable by a complex frequency hopping (CFH) algorithm. The validity and

efficiency of the proposed method are demonstrated by detailed study of

several multi-gate silicon nano-MOSFETs. The method is applied to study

silicon nanowire MOSFETs in the presence of charged impurity and surface

roughness scattering, it is found that these scattering events have significant

impacts on the device variabilities.

2.1 Introduction

Since the dimensions of nanodevices have shrunk to be comparable to electron

wavelength, quantum-mechanical modeling of electron transport through

these nanodevices is indispensable to capture their wave-physics features.

Several quantum transport models have been developed with different lev-

els of approximations [8]. To calculate ballistic current through ultra-small

nanostructures, a widely used scheme is to solve the coupled Schrödinger-

Poisson system self-consistently, either directly [27–29] or by using non equi-

librium Green’s function (NEGF) approach [30–32].

Both methods essentially generate the same results. In terms of computa-

tional burden, the former approach usually requires less computer time than
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the latter one, because the wavefunction is computed directly for each mode

coming from the contact and the number of modes with energy below Fermi

level is usually very small. However, NEGF approach is quite convenient

since all the modes in the contacts are automatically taken into account in

the Green’s function and all the physical quantities are expressed in very

compact forms.

Solving the self-consistent Schrödinger-Poisson system is computationally

intensive, as it requires solving the open boundary Schrödinger equation for

each energy point, each incoming mode, each iteration, and each bias. There

are several efficient methods developed over the past years to reduce the

complexity of the large matrix inversion, including the quantum transmit-

ting boundary methods [27], the coupled (and uncoupled) mode space ap-

proach [28, 30], scattering matrix method [33], recursive Green’s function

(RGF) method [34], contact block reduction (CBR) method [35, 36], and

R-matrix method [37–39]. In the mode space approaches and scattering ma-

trix method, the wave function is expanded in a basis set which is obtained

by solving an eigenvalue problem for each cross sectional layer. Due to the

strong confinement, few modes are usually sufficient and the matrix dimen-

sion is drastically reduced. However, in cases where there are sharp potential

or geometrical variations, a large number of modes are required which makes

this kind of methods even slower than the real space approaches. In RGF

approach, the Hamiltonian matrix is inverted layer by layer and the com-

plexity is reduced from O((NxN)3) to O(N3
xN), where Nx is the dimension

in one layer and N is the number of layers. This method is extremely use-

ful when inelastic scattering is included. However, it is still very expensive

when Nx is large. In CBR method, the matrix inversion is separated into

a large eigenvalue problem for the isolated device which only needs to be

solved once, and a small energy dependent part for the contact which needs

to be solved repeatedly. The disadvantage is that the eigenvalue problem is

very expensive, especially for devices with sharp variations of potential or

boundaries, as a large number of eigenmodes needs to be solved. For the

recently developed R-matrix method, the simulation domain is divided into

several sub-regions, which allows us to use different basis sets for different

sub-regions. This is a very powerful method and is flexible enough to treat

various device imperfections.

However, solving the Schrödinger equation repeatedly at every energy
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point is still time-consuming; and there is a need to find approximate solu-

tions that can efficiently simulate the energy response over a wide band. AWE

combined with CFH technique is a very popular frequency sweep method in

high speed circuit analysis and computational electromagnetics [40], which

has been verified to be able to reduce the computer time by over one order

of magnitude. In this chapter, this technique is employed for efficient simu-

lation and analysis of quantum electron transport in nanodevices. It will be

shown that this method considerably speeds up the simulation while good

accuracy can be maintained.

In Section 2.2, quantum ballistic transport equations will be reviewed first,

and then the idea of AWE and CFH will be presented and incorporated into

the simulation flow. In Section 2.3, the method is demonstrated by simulat-

ing several multi-gate silicon MOSFETs; the accuracy and simulation time

are compared with traditional approach. In Section 2.4, silicon nanowire

MOSFETs in the presence of charged impurity and surface roughness scat-

tering are then analyzed by performing 3D real space simulations. Some

conclusions are drawn at the end.

2.2 Method Description

2.2.1 Quantum Ballistic Transport Problem

A general 2D quantum device is illustrated in Fig. 2.1. The solution domain

we are interested in can be divided into two parts, the device region ΩD and

the contact regions Ωα (α=1, 2, and 3). ΩD is a finite region with boundary

denoted by ΓD; Ωα is a semi-infinite region with boundary denoted by Γα.

Denote the intersection of ΩD and Ωα by ΓD,α, then the rest of ΓD is ΓD,0

and the rest of Γα is Γα,0.

The device region is characterized by space varying potential VD (x, y)

and effective mass m∗
D (x, y). Since the potential and effective mass inside

the contact region should be independent of the position along the contact

although it may have complicated transverse structure [27], the potential

Vα (ξα, ηα) = Vα (ξα) and m
∗
α (ξα, ηα) = m∗

α (ξα), where ξα and ηα are respec-

tively the transverse position and the longitude position inside each contact.

Therefore, our major problem is [27]:
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Figure 2.1: Geometry of a generalized 2-dimensional quantum device with
three semi-infinite leads.

Given: (1) the potential and effective mass in every region: VD (x, y),

m∗
D (x, y), Vα (ξα), m

∗
α (ξα), (2) amplitude for each wave incoming from con-

tact α with mode n and energy E,

Find: ψα,nD (x, y, E) ∈ C2 (ΩD), which satisfies the following Schrödinger

equation,

− h̄2

2
∇ ·
[

1

m∗
D (x, y)

∇
]
ψα,nD (x, y) + VD (x, y)ψα,nD (x, y)

= Eψα,nD (x, y) , (x, y) ∈ ΩD, (2.1)

and boundary conditions,

ψα,nD =ψα on ΓD,α, (2.2)

1

m∗
D

∇ψα,nD · n
ΓD,α

=
1

m∗
α

∇ψα · nΓD,α
on ΓD,α, (2.3)

ψα,nD =0 on ΓD,0, (2.4)

ψα =0 on Γα,0, (2.5)

ψα bounded as ηα → ∞. (2.6)

Once the wave function is obtained by solving (2.1)-(2.6), all the physical

quantities can be obtained. For example, the electron density is given by

n (x, y) = 2
∑

α

∑

n

∫ +∞

0

|ψα,nD (x, y, E)|2fFD (E − µα)
dk

dE

dE

2π
, (2.7)

where k is the wavenumber, fFD is the Fermi-Dirac distribution function, µα

is the Fermi level associated to contact α. Note that incoming wave of differ-
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ent modes or contacts are uncorrelated, so they are calculated independently

and added up [41]. The terminal current can be obtained through trans-

mission function by Landauer-Büttiker formula (a derivation is provided in

Appendix A),

Iα =
2q

h

∑

α6=α′

∫ +∞

0

Tαα′ (E)
[
fFD (E − µα)− fFD

(
E − µα

′
)]
dE, (2.8)

Tαα′ (E) =
∑

n

∑

m

kαm
kα′

n

∣∣∣ψα
′,n

D (x, y, E)† · χαm (ξα)
∣∣∣
2

, (2.9)

where χαm (ξα) is the mth normalized eigenmode of the contact α, which will

be defined later on.

It should be mentioned that the potential distribution for (2.1) is usually

determined by a self-consistent procedure, which requires solving the Poisson

equation with the charge density obtained from (2.7),

∇ · [ε (x, y)∇VD (x, y)] = q [n (x, y)−Nd (x, y)] , (2.10)

where ε is the dielectric constant, Nd is the doping density, q is the electron

charge. The boundary conditions for Poisson equation will be specified later

for the specific device.

2.2.2 Numerical Solution

The problem can be solved with different methods, like the finite element

method (FEM) in Ref. [27, 31] and the finite difference method (FDM) in

the following. It can also be transformed to integral equations and solved by

method of moment (MoM), a formulation is provided in Appendix B.

To obtain the wave function in the device region, let us first write down

the solution in the contact regions, for one incoming mode, as the summation

of incident and scattered waves,

ψα (ξα, ηα) = aαnχ
α
n (ξα) exp (−ikαnηα) +

Nα∑

m=1

bαmχ
α
m (ξα) exp (ik

α
mηα), (2.11)

where aαn and bαm are the amplitudes of incident wave and scattered wave,

respectively. Here, χαm (ξα) is the mth normalized eigenmode of the contact
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that satisfies following eigenvalue problem (suppose m∗
α (ξα) is constant in

the contacts) and boundary condition (2.5),

− h̄2

2m∗
α

∂2

∂ξ2α
χαm (ξα) + Vα (ξα)χ

α
m (ξα) = Eα

mχ
α
m (ξα) , (2.12)

which can be numerically solved. Here, kαm is the longitudinal wave number,

and

kαm =
√

2m∗ (E − Eα
m)
/
h̄. (2.13)

It should be noted that kαm can be either real or imaginary, which corresponds

to traveling wave or evanescent wave in the contact. Here, Nα should be

truncated to include enough number of evanescent waves.

According to the orthogonality of the eigenmodes, bαm can be evaluated by

bαm =

∫
χαm (ξα)ψα (ξα, ηα = 0) dξα − aαnδmn. (2.14)

Substituting above expression back to (2.11) and using boundary condition

(2.2) lead to

ψα (ξα, ηα) = −2iaαnχ
α
n (ξα) sin(k

α
nηα)

+
Nα∑

m=1

(∫
χαm (ξα)ψ

α,n
D (ξα, 0) dξα

)
χαm (ξα) exp (ik

α
mηα). (2.15)

This is the solution in the contact region in terms of the unknowns at the

interface; it is subsequently utilized to express the boundary conditions for

the device region.

Next, applying FDM to discretize the 2D Schrödinger equation (2.1), we

can obtain the following matrix equation (see Appendix C for details),

[
EI−H−

∑

α

S
α
(E)

]
ψ
α,n
D (E) = vαn (E) , (2.16)

where I is the identity matrix, H is the isolated device Hamiltonian ma-

trix, S
α
(E) is the energy dependent self energy matrix that represents the

boundary condition, vαn (E) is the vector represents the incident wave from

the contact. S
α
(E) and vαn (E) only have non-zero elements in the parts that

have coupling to the contacts.
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Equation (2.16) can then be solved by various matrix solvers. It must be

pointed out that, for multiple incoming modes from multiple contacts which

share the same energy, they have the same Hamiltonian matrix that only

needs to be inverted once.

2.2.3 Asymptotic Waveform Evaluation

It is obvious from (2.7) and (2.8) that (2.16) need to be solved repeatedly

within the energy range of interest so as to obtain the integral. In particular,

when the wave function changes rapidly with energy, the energy grid must be

very fine so as to achieve convergence. In addition, sometimes the spectrum

of the electron density or the transmission coefficients over some energy range

are needed to analyze the device physics and guide the design process. These

can be very time consuming for large problems.

To obtain the solution of (2.16) over a wide energy band, following the

steps in Ref. [40], let’s rewrite (2.16) as

A(E)ψ (E) = v (E) , (2.17)

and expand ψ (E) in terms of Taylor series at E0

ψ (E) ≈
Q∑

n=0

mn(E − E0)
n. (2.18)

Similarly, A (E) and v (E) can also be expanded in terms of Taylor series at

E0 with coefficients A
(n)

and v(n). Matching the coefficients of equal powers

on both sides of (2.17) leads to following recursive algorithm for mn

m0 = A
−1

(E0)v (E0) , (2.19)

mn = A
−1

(E0)

[
v(n) (E0)

n!
−

n∑

i=1

A
(i)

(E0)mn−i

i!

]
, n ≥ 1. (2.20)

A wider bandwidth can be obtained by approximate ψ (E) with a rational

Padé approximant of order [L/M ]

ψ (E) ≈
∑L

i=0 ai(E − E0)
i

1+
∑M

j=1 bj(E − E0)
j
, (2.21)
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where L+M = Q. The elements of unknown coefficient vectors ai (0 ≤ i ≤ L)

and bj (1 ≤ j ≤ M) can be calculated by equating the right hand sides of

(2.18) and (2.21), multiplying both sides with the denominator of the Padé

approximant, and matching the coefficients of equal powers of E−E0, which

results in




mL mL−1 mL−2 · · · mL−M+1

mL+1 mL mL−1 · · · mL−M+2

mL+2 mL+1 mL · · · mL−M+3

...
...

...
. . .

...

mL+M−1 mL+M−2 mL+M−3 · · · mL







b1

b2

b3
...

bM




= −
[
mL+1 mL+2 mL+3 · · · mL+M

]T
, (2.22)

and

ai =
∑i

j=0
bjmi−j , 0 ≤ i ≤ L. (2.23)

(2.22) is first solved to obtain bj , which is then substituted into (2.23) to

calculate ai.

Once the coefficient vectors ai and bj are evaluated, the wave function

at any energy (within the bandwidth of accuracy) can be found by (2.21).

Note that if LU decomposition of the sparse matrix A is done, then (2.19)

and (2.20) can be solved efficiently with forward and backward substitutions.

The implementation is simple, since the derivatives of A only have non-zero

elements in the self-energy parts, which have very simple analytical forms

for the effective mass approximation as can be derived from equations (C-5)

and (2.13). Similarly, the derivatives of v only have non-zero elements in the

layer that couples to the contact and they are also analytical.

In addition, for multiple incoming modes frommultiple contacts, the asymp-

totic form (2.21) for each mode needs to be evaluated. Note that the LU

decomposition of A can be reused, and the computational cost is slightly

increased since more forward and backwards substitutions are needed.

2.2.4 Complex Frequency (Energy) Hopping

Since the bandwidth of Padé approximation is limited, multiple points’ ex-

pansion is necessary to obtain an accurate solution over the whole energy
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band. The locations of the energy points can be selected by CFH technique

as described in the following.

Given an energy band [E1, µ+mkBT ] and a maximum error tolerance ε for

the wave function ψ, where E1 is the first eigen energy of the incoming wave,

µ is the Fermi level, kB is the Boltzmann constant, T is the temperature in

Kelvin, and m is a value large enough that the Fermi function is close to 0

at µ+mkBT ,

1. Let Emin = E1 and Emax = µ+mkBT ;

2. Do AWE at Emin and Emax, obtain ψ1 (E) and ψ2 (E);

3. Calculate ψ1 (Emid) and ψ2 (Emid) respectively at middle energy Emid =

(Emin + Emax)/2;

4. If max|ψ1 (Emid) − ψ2 (Emid) | < ε, stop. Otherwise, do AWE at Emid

and repeat the above steps for subregions [Emin, Emid] and [Emid, Emax].

However, a numerical difficulty arises in the above process because the

derivatives reach singularities at subband edges E = Eα
m as can be seen from

(2.13). In order to avoid the singularities, several small intervals should be

skipped from the expansion region.

Suppose there are N subbands within region [E1, µ+mkBT ], the subband

edge energies of which are

E1 < E2 < · · · < EN < µ+mkBT. (2.24)

Then we divide the whole region into several sub-regions:

(E1 + σ, E2 − σ) , (E2 + σ, E3 − σ) , · · · , (EN + σ, µ+mkBT ) , (2.25)

where σ is a small value, e.g., 5 × 10−4eV. In each sub-region, the CFH

algorithm is employed as described above.

2.3 Numerical Examples and Discussion

The above proposed method is applied to simulate several 2D and 3D multi-

gate silicon MOSFETs, as shown in Fig. 2.2 and Fig. 2.3. They are very

promising candidates for the next generation nano-transistors [42].

For the Poisson equation, Dirichlet boundary condition is enforced at the

gate region, while the floating boundary condition, i.e. the normal derivative
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Figure 2.2: 2-D view of the N-type double gate silicon MOSFET. The struc-
ture is infinite in Z direction. Gate length is denoted by Lg, source and drain
extension length is denoted by Ls and Ld, silicon channel thickness is Wch,
oxide thickness is Wox.

Figure 2.3: 3-D view (left), Y Z cross section view (middle) and XY cross
section view (right) of the N-type triple gate silicon MOSFET. Gate length
is denoted by Lg, source and drain extension length is denoted by Ls and Ld,
silicon channel thickness is Tx and Ty, oxide thickness is To.

is zero, is applied at the remaining boundary. This can be used to maintain

the charge neutrality at the source and drain extensions [16]. In addition,

Gummel iterative scheme is adopted to speed up the convergence of the

coupled Schrödinger Poisson system [28].

2.3.1 2D Double Gate MOSFET

As shown in Fig. 2.2, the device parameters are: Lg = 10nm, Ls = Ld =

4nm, Wch = 5nm, Wox = 1nm, doping density N+ = 1026/m3, longitudinal

and transverse effective mass are m∗
l = 0.91me, m

∗
t = 0.19me, work function

of gate metal is 4.25eV, affinity of silicon is 4.05eV, permittivity of silicon is

11.9, permittivity of SiO2 is 3.8. Temperature T = 300K. The grid spacing

is 0.1nm in both x and y directions. The source Fermi level is set to be 0eV.

In the following simulation, Padé approximant of order [4/4] is used and the

error tolerance of CFH is set to be 2× 10−2 ×max|χαn |.
At first, the code is verified by comparing the I-V curve to that generated

by NanoMOS tool [43], which is a program using mode space NEGF formal-
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ism. It can be seen from Fig. 2.4 that good agreement is obtained at every

bias point.
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Figure 2.4: Currents of the double gated MOSFET as a function of drain
bias for different gate voltages (VG = 0.3, 0.4, 0.5V): comparison between
results calcualted by AWE and the results of NanoMOS.

(a) (b)

Figure 2.5: 2D plot of the potential (a) and electron density (b) distributions
at VG = VD = 0.3V.

The self-consistent potential and electron density distribution are plotted

in Fig. 2.5. It can be seen that the electron density is very high at the

source and drain extensions; and thus charge neutrality should be achieved

because of the heavy positive doping density. Homogeneous Neumann bound-

ary condition makes the potential constant along the transport direction at

the source and drain ends.

The local density of states (LDOS) along the center of the silicon layer is

depicted in Fig. 2.6(a). It is observed that the interference of incoming wave

and reflected wave leads to standing-wave like phenomenon. In addition,

some high energy electrons coming from the source side may go into the

channel and eventually escape to the drain side, but the electrons coming
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from the drain can hardly go to the source side due to large potential barrier.

Therefore, current is formed with direction from right to left.
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Figure 2.6: (a) Local density of states along the center of the silicon layer.
VG = VD = 0.3V. Conduction band edge is also shown in white line. (b)
Transmission and reflection coefficients defined in Landauer formula for the
electrons coming from the source. VG = VD = 0.3V.

Transmission and reflection coefficients are plotted in Fig. 2.6(b). it is

noticed that the transmission coefficient is continuous whereas the reflection

coefficient jumps when a new mode starts to propagate. This is because

when an electron mode starts to propagate, most of it will be reflected back.

However, the summation of transmission and reflection coefficients is always

equal to the number of propagating modes of that energy, which is an integer.

The jumps of coefficient from 0 to 2, 2 to 4, and 8 to 10 correspond to the

increase of propagating modes of the electrons with heavy effective mass in

the confinement direction; their valley degeneracy is 2. Conversely, the jump

of coefficient from 4 to 8 corresponds to the propagating mode of electrons

with light effective mass in the confinement direction; their valley degeneracy

is 4.

To investigate the accuracy of the proposed method, the results of direct

method (calculating the values at each energy point) with very fine energy

grid (energy step: 0.001eV) is taken as the reference. Fig. 2.7(a) gives the

LDOS in the middle of the drain end; it is shown that this method can

produce almost the same results as the reference one. Fig. 2.7(b) plots the

absolute error of the potential along the center of the silicon layer; it is shown

that the error can be controlled below 10−4V, which is very accurate.
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Figure 2.7: (a) Local density of states at the center of the drain end; both
reference results and AWE results are plotted. VG = VD = 0.3V. (b) Ab-
solute error of the potential energy along the center of silicon layer with
VG = VD = 0.3V.

Table 2.1: List of The Energy Points, CPU Time, and Current (2D Case)

@VG = VD = 0.3V Energy
Points

Current
(A/m)

CPU Time
(seconds)

Speed
Up

Direct method 951 1075.1 1413 1.0×
ε = 2× 10−2, Order [3/3] 73 1075.0 196 7.2×
ε = 2× 10−2, Order [4/4] 65 1075.1 200 7.1×
ε = 2× 10−2, Order [5/5] 55 1075.0 204 6.9×
ε = 4× 10−2, Order [3/3] 67 1074.9 185 7.6×
ε = 4× 10−2, Order [4/4] 62 1075.1 196 7.2×
ε = 4× 10−2, Order [5/5] 53 1075.0 203 7.0×

The performances of various orders of Padé approximant with different

CFH tolerances are then investigated, in comparison with the direct method

(energy grid: 0.001eV). The number of energy points (for AWE, it should be

understood as the expansion points) of the last Poisson Schrödinger iteration,

total CPU time and drain current for one bias point (VG = VD = 0.3V)

are summarized in Table 2.1 (matrix solver: sparse LU decomposition with

permutation matrices P and Q using UMFPACK routines). Compared with

the direct method, the method reduces the inversion points by over one order

of magnitude. More accurate results can be obtained by reducing the CFH

tolerance but at the cost of more computer time since more expansion points
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are needed. To achieve the same accuracy, higher order Padé approximant

takes more computational cost although the number of expansion points

decreases with increasing order. This is because higher order needs more

forward and backward substitutions. When ε = 4× 10−2, the drain currents

obtained are still accurate enough and it is over 7 times faster.

2.3.2 2D Double Gate (Underlapped) MOSFET

To further demonstrate the advantage of AWE, a similar structure as Fig.

2.2 is analyzed, but this time the gate length is reduced to 4nm (note that the

channel length is 10nm), which means it is underlapped. The other device

parameters are the same as those in the last Section except that Wch = 3nm.

(a) (b)

Figure 2.8: 2D plot of the potential (a) and electron density (b) distributions
at VG = 1.5V and VD = 0V.

The self-consistent potential and electron density distributions are plotted

in Fig. 2.8. It can be seen that the potential in the middle part of the channel

is significantly lowered by the large gate bias, whereas the potential at the

end parts of the channel is less affected by the gate bias; and correspondingly,

the electron density only concentrates at the middle part of the channel.

The LDOS and conduction band edge along the center of the silicon layer

are further plotted in Fig. 2.9(a); it is obvious that the wave can penetrate

through the potential barriers. In addition, because of the two potential

barriers formed at the channel ends, there exist some resonant states inside

the channel. The transmission and reflection coefficients are plotted in Fig.

2.9(b). It shows several sharp peaks corresponding to the resonant tunneling

behavior. These sharp peaks are well captured by this method, which is hard

to obtain by the direct method because it requires very fine energy grids.
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(b)

Figure 2.9: (a) Local density of states along the center of the silicon layer.
VG = 1.5V, VD = 0V. Conduction band edge is also shown in white line. (b)
Transmission and reflection coefficients defined in Landauer formula for the
electrons coming from the source. VG = 1.5V, VD = 0V.

2.3.3 3D Triple Gate MOSFET

A triple gate silicon MOSFET is simulated in this example, as shown in Fig.

2.3. The device parameters are: Lg = 10nm, Ls = Ld = 4nm, To = 1nm,

Ty = Tz = 3nm. Due to the small cross-section of the silicon nanowire, the

effective masses are chosen as those in [44], which are extracted from sp3d5s∗

tight binding calculation of the E-k dispersion. The other parameters are

the same as those in Section A. The grid spacing is 0.2nm in all x, y, and z

directions.

Figure 2.10: 2D plot of the potential distribution in XY plane (top left),
XZ plane (top right) and YZ plane at the source end (bottom left), channel
center (bottom middle) and drain end (bottom right). VG = VD = 0.3V.

The potential and electron density distributions are plotted in Fig. 2.10

and Fig. 2.11, respectively. It is shown that the potential in the XY plane

is asymmetrical whereas the potential in the XZ plane is symmetrical due to
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the tri-gate structure. It is also observed that the electron density is mainly

confined in the center of the silicon channel due to the ultra small channel

thickness.

Figure 2.11: 2D plot of the electron distribution in XY plane (top left), XZ
plane (top right) and YZ plane at the source end (bottom left), channel
center (bottom middle) and drain end (bottom right). VG = VD = 0.3V.

The LDOS and conduction band edge along the center of the silicon layer

are illustrated in Fig. 2.12(a). The wave phenomenon is evident. In addition,

compared with Fig. 2.6(a), the conduction band edge in the channel part

is relatively flat. This suggests that the potential in the channel is mainly

modulated by the gates; and short channel effect due to drain-induced barrier

lowering is effectively suppressed.
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(b)

Figure 2.12: (a) Local density of states along the center of the silicon layer.
VG = VD = 0.3V. Conduction band edge is also shown in white line. (b)
Transmission and reflection coefficients defined in Landauer formula for the
electrons coming from the source. VG = VD = 0.3V.

Transmission and reflection coefficients are plotted in Fig. 2.12(b). Again,

the approach produces very accurate results (note that the summation of
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Table 2.2: List of The Energy Points, CPU Time, and Current (3D Case)

@VG = VD = 0.3V Energy
Points

Current
(nA)

CPU Time
(seconds)

Speed
Up

Direct method 566 253.24 9122 1.0×
ε = 2× 10−2, Order [3/3] 61 253.24 1277 7.1×
ε = 2× 10−2, Order [4/4] 56 253.23 1270 7.2×
ε = 2× 10−2, Order [5/5] 48 253.24 1163 7.8×
ε = 4× 10−2, Order [3/3] 58 253.22 1166 7.8×
ε = 4× 10−2, Order [4/4] 52 253.25 1141 8.0×
ε = 4× 10−2, Order [5/5] 44 253.24 1076 8.5×

transmission and reflection is an integer) over the entire energy band inter-

ested.

The comparison of various orders of Padé approximant with different CFH

tolerances for this 3D case is summarized in Table 2.2 (matrix solver is the

same as the 2D case). The reference is the direct method with energy grid

0.001eV. The bias is VG = VD = 0.3V. It is observed that the number of

inversion points is reduced by over one order of magnitude with our method.

The accuracy is mainly determined by the CFH tolerance. More accurate

results can be obtained by minimizing the CFH tolerance but at the cost of

more computer time since more expansion points are needed. To achieve the

same accuracy, higher order Padé approximant takes less computational cost

as it requires less expansion points. When ε = 4 × 10−2, the drain currents

obtained are still very accurate and it can be over 8 times faster.

2.4 Applications: Silicon Nanowire Transistors with

Charged Impurity and Surface Roughness

Scattering

Real world devices always have lots of imperfections that can significantly

alter the device performances. These can be random impurities in the chan-

nel and in the source/drain extension, spatial fluctuations due to surface

roughness at the silicon-oxide interfaces, and remote Coulomb scattering due
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to trapped charges at silicon oxide/high-k material interfaces. Some quan-

tum studied have been carried out based on the mode space approaches or

real space approach [39, 45–48]. It is found that full 3D real space quantum

simulations are needed to treat these imperfections accurately. The above

developed AWE algorithm is suitable for this purpose since it is valid for

arbitrary device geometry and potential profile.

2.4.1 Charged Impurity and Surface Roughness Modeling

The geometry of the silicon nanowire MOSFET considered is shown in Fig.

2.3. The parameters in the following simulation are Lg = 10nm, Ls = Ld =

4nm, To = 1nm, Ty = Tz = 3nm, doping density N+ = 1026/m3. The order

of the Padé approximant is chosen to be [5/5] and the error tolerance of CFH

is set to be 2× 10−2 ×max|χαn |.
The charged impurity sitting in the silicon channel is modeled by a δ source

in the Poisson equation. The screening effect is automatically included when

self-consistency is achieved between Poisson and Schrödinger equations.

Figure 2.13: The generated random roughness pattern in one XY layer (left),
YZ layer (middle), and XZ layer (right). The white color stands for silicon
while the black stands for SiO2. Only the portion in the channel is assumed
to have roughness.

The roughness at the four Si/SiO2 surfaces is generated by an exponential

auto-covariance function [49],

C (r) = 〈∆(r′)∆ (r′ − r)〉 = ∆2
m · exp

(
−
√
2 · |r|/Lm

)
, (2.26)

where ∆m is the root mean square of the fluctuation ∆ (r), |r| is the distance
between two positions at the Si/SiO2 interface, and Lm is the correlation

length. Typical values are used with ∆m = 0.14nm and Lm = 0.7nm. The

generated random patterns are shown in Fig. 2.13.

24



2.4.2 Results and Discussion

Transistors with four situations are simulated, they are of the same dimen-

sions but with a (a) perfect channel; (b) positively charged impurity sitting

in the middle of the channel; (c) channel with rough surfaces; (d) channel

with both a positively charged impurity and rough surfaces.

With bias Vg = 0.5V and Vd = 0.3V, the electron density distribution, local

density of states (LDOS), and transmission characteristics are compared in

Fig. 2.14, Fig. 2.15, and Fig. 2.16, respectively.

Figure 2.14: The electron density distributions in the XY plane for the four
cases. Top left: (a), top right: (b), bottom left: (c), and bottom right: (d).

Figure 2.15: The averaged LDOS and conduction band bottom in the center
of the channel (white line) for the four cases. From left to right: (a), (b),
(c), and (d).

By comparing case (b) with case (a), it is observed that, the positive charge

lowers the potential barrier in the channel, so that more electrons from the
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source can jump to the channel and reach the drain. Also, the potential

barrier becomes thinner, electrons from the source can tunnel to the drain

more easily. As a result, the transmission is increased, although some weak

scattering is induced at high energy. It also creates some resonant states

inside the channel. In this case, there is one which can be filled by the drain

lead, leading to strong distortion of the electron density distribution.

By comparing case (c) with case (a), it is seen that the surface roughness

causes strong scattering, which blocks the transmission and decreases the

electron density in the channel. The potential in the channel is also lowered

due to the lower electron density.

Case (d) shows a mixing effect of case (b) and case (c). In addition, the

position of the resonant state is shifted comparing with case (b).

As a check of the accuracy, the summation of transmission and reflection

coefficient is an integer over the whole energy range for all four cases, as

shown in Fig. 2.16.
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Figure 2.16: The transmission and reflection coefficients for the four cases.
From left to right: (a), (b), (c), and (d).

Finally, Table 2.3 gives the currents of the four cases. It clearly indi-

cates that surface roughness and charged impurity scattering cause drastic

changes of the drain current. Such large effect is due to the small nanowire

used, where a small change of the cross section size can drastically shift the

quantization levels and single charged impurity can significantly alter the

potential of a large portion. Note that only one configuration is analyzed
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Table 2.3: Comparison of the Currents for the Four Cases

@Vg=0.5V and Vd=0.3V Current Changes

(a) Perfect Channel 3.75µA NA

(b) Charged Impurity 5.38µA 43.5% ⇑
(c) Rough Surfaces 1.06µA 71.7% ⇓
(d) Charged Impurity & Rough Surfaces 1.98µA 47.2% ⇓

here for demonstration purpose. To get quantitative prediction of the device

variabilities, it is required to perform statistical analysis by averaging the

results of many configurations.

2.5 Summary

In this chapter, quantum ballistic transport of multi-terminal devices has

been modeled by the self-consistent Schrödinger Poisson system. The AWE

integrated with CFH technique is proposed to accelerate the solution of

Schrödinger equation in a wide energy range. Numerical results show that

this method can reduce by over 8 times the computer time; and the precision

can be controlled to an acceptable level. The characteristic parameters of

the device, such as the spectral density, LDOS and transmission (reflection)

coefficients at any energy are readily accessed by this method.

With this method, full 3D real space simulations have been performed for

silicon nanowire transistors in the presence of surface roughness and charged

impurity scattering. The results suggest that these scattering events should

be seriously taken into account considering the device variability.

As a general method for wide band simulation, this algorithm can be incor-

porated to FEM [27,31] in the similar way. In addition, it can be combined

with coupled (uncoupled) mode space approach [28, 30] to further improve

the efficiency. To extend this work to include inelastic scattering, however, is

non-trivial, since a full NEGF simulation is required. The implementation of

AWE to the Green’s function is obviously more expensive and the scattering

self energy is not analytical in most cases. Extension to tight-binding model

and first principle model can be realized if the derivatives of the contact self

energy can be obtained.
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CHAPTER 3

MODEL ORDER REDUCTION FOR

MULTI-BAND SIMULATION OF

NANOWIRE DEVICES

In this chapter, an efficient method is developed for multi-band simulation

of quantum transport in nanowire electronic devices within non-equilibrium

Green’s function formalism. The efficiency relies on a model order reduction

technique, which projects the k · p Hamiltonian into a much smaller sub-

space constructed by sampling the Bloch modes of each cross-section layer.

Several sampling approaches are discussed to obtain a minimum and accu-

rate basis with reduced computational overhead. The technique is verified

by calculating the valence bands of silicon nanowires (SiNWs) and by solv-

ing I-V curves of p-type SiNW transistors. It is then applied to study for

the first time the performances of large cross-section p-type junctionless (JL)

transistors in the quantum ballistic transport limit. The influences of doping

density, transport direction, channel length, and cross-section size are exam-

ined. It is found that, larger doping densities may lead to worse sub-threshold

slopes due to the enhanced source-to-drain tunneling. Compared with their

counterparts, i.e., classical inversion-mode (IM) transistors, they have better

sub-threshold behaviors, but they do not necessarily provide better “on/off”

ratio except when the channel is short or thin. In addition, unlike IM tran-

sistors, [110] and [111] channel directions in JL transistors are very robust

against channel thickness scaling.

3.1 Introduction

One-dimensional nanowire structures, such as carbon nanotubes (CNTs),

graphene nanoribbons (GNRs), and silicon (germanium or III-V material)

nanowires (SiNWs), have attracted much attention during the past two

decades. Due to their excellent physical properties, they are believed to

have great potential in many applications, including the building blocks of
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future electronic devices.

To understand the electrical properties of nanodevices built upon these

small structures, a quantum-mechanical method, non-equilibrium Green’s

function (NEGF) approach [41], has been widely used to simulate their carrier

transport. As the computational cost of the real space (RS) NEGF approach

is huge, mode space (MS) approaches have been successfully developed for

simulating nanostructures with strong confinement in the lateral directions

such as the nanowires mentioned above [28,30,50]. These approaches expand

the device Hamiltonian in the space spanned by the eigenmodes of the cross

sections. Making use of the fact that usually a few modes participate in the

transport process, the dimension of the Hamiltonian matrix in the MS can

be greatly reduced and thus the Green’s function in the MS can be easily

solved. This is true for single-band effective mass approximation, since the

eigenmodes for each cross section are wave vector k-independent. For more

accurate multi-band models, such as the tight-binding and k · p models, as

pointed out in [50–52], the modes are generally k-dependent and thus the

transformation from the RS to MS does not exist. It is recently shown that

the k-dependent modes also make the contact block reduction (CBR) method

troublesome when it is combined with tight-binding model [53].

The exception is the tight-binding model of gate-all-around (GAA) CNT

transistors, which has a rigorous MS approach [54]. However, to simulate

general CNT transistors which do not possess GAA feature [55] and GNR

transistors [56], some crude approximations have been made so that the MS

approach can still be applied. As a result, the accuracy is compromised. To

improve the accuracy, a criterion of mode selection for GNR transistors has

been suggested [52], which works pretty well near the conduction band min-

ima (and valence band maxima). Quite recently, low-dimensional equivalent

transport models have been constructed for tight-binding Hamiltonians of

SiNWs [57], thanks to a spurious mode elimination process. Another low

rank approximation method has been tried [58], but it involves large eigen-

value problems requiring much computational cost.

A MS approach has also been proposed for multi-band k · p models [51],

which demonstrates great success to simulation of p-type SiNW transistors

and InAs nanowire tunneling transistors. Unfortunately, the modes adopted

can only accurately expand the wave function near the Γ point. Away from

the Γ point, many modes are actually needed which limits its performance.
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Generally, to capture the feature of k-dependent modes in multi-band sim-

ulations, as is commonly done in MOR methods in electromagnetics [59]

and asymptotic waveform evaluation (AWE) in the previous Chapter [60],

it is better to adopt multi-point expansion. This is adopted in this chap-

ter. This approach will be demonstrated by simulation of hole transport in

p-type SiNW field effect transistors using the three-band and six-band k · p
Hamiltonian.

Recently, JL transistors have been proposed [61] and experimentally demon-

strated [62], which show extraordinarily promising performance but with sim-

pler fabrication. To characterize the performance and illustrate the physics,

much simulations have been carried out, either semi-classically [61–68] or

quantum mechanically [69–72]. For quantum mechanical study, only n-type

ones with large cross sections have been carried out [70–72]. This is because

the single-band effective mass model is enough for the description of conduc-

tion band and it can be done in the mode space. Since the description of

the valence band requires computationally more intensive multi-band model,

simulation of p-type ones has been limited to only 1.15nm diameter [69] and

performances of large cross-section ones remain unexamined. This gap can

be filled with the MOR technique in this chapter. As a step towards more

sophisticated full NEGF simulation, coherent transport will be assumed in

this work.

In Section 3.2, the multi-band model is first described and the NEGF ap-

proach is outlined, then the MOR technique is presented in detail and its

accuracy is checked with caution. In Section 3.3, the method is applied to

simulate p-type JL transistors with different channel materials and geome-

tries. Various device figures of merit are extracted and compared with those

of classical IM transistors. Conclusions are drawn in Section 3.4.

3.2 Method Description

3.2.1 Multiband Effective Mass Equation

According to multi-band effective mass theory [20], the wavefunction inside

the nanostructures can be found by solving the following coupled differential
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equation for envelop function Fm (m = 1, 2, · · · , N),

N∑

n=1

[
H
kp

mn (−i∇) + V (r) δmn

]
Fn (r) = EFm (r) (3.1)

where N is the number of bands considered, V (r) is the slowly varying

perturbed potential distribution, and operator H
kp

mn (−i∇) is the element of

the k · p Hamiltonian with k replaced by differential operator −i∇.

The six-band k · p Hamiltonian can be written as (if the basis is arranged

in this order, three spin up p atomic orbital-like states and three spin down

ones) [73]

H
kp

=

(
EV B,0 +

h̄2k2

2m0

)
I+

(
H
dkk

0

0 H
dkk

)
+H

so
, (3.2)

where EV B,0 is the valence band edge, I is the identity matrix. The DKK

(Dresselhaus-Kip-Kittel) Hamiltonian H
dkk

is

H
dkk

=




LMk
2
x +Mk2 Nkxky Nkxkz

Nkxky LMk
2
y +Mk2 Nkykz

Nkxkz Nkykz LMk
2
z +Mk2


 , (3.3)

where LM = L−M , and the parameters L, M , N are related to the effective

masses which can be found in [74]. The spin-orbit interaction H
so

can be

written as

H
so
=

(
A B

−B
∗

A
∗

)
, (3.4)

with

A =
∆

3




0 −i 0

i 0 0

0 0 0


 , B =

∆

3




0 0 1

0 0 −i
−1 i 0


 , (3.5)

where ∆ is the spin-orbit splitting parameter, which can be set to zero to re-

duce to three-band model. A derivation of the above Hamiltonian is provided

in Appendix D.

To numerically solve equation (3.1), it is needed to discretize the differ-

ential operator, which can be done using finite difference method (FDM)

provided in [75]. Note that for nanowire directions other than [100], coordi-
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nate transformation for (3.2) should be performed before the discretization.

Figure 3.1: P-type GAA SiNW transistor. If the channel is N-type doping,
the device is a classical IM transistor. If the channel has the same doping
type and doping density with the source (or drain) extension region, it is a
JL transistor.

3.2.2 NEGF Solution

For transport problems, it is required to solve (3.1) with open boundary

conditions and then get the physical quantities of interest such as charge

density and current. This can be nicely formulated with NEGF approach [41].

In this formalism, it is required to solve the retarded Green’s function G

of the device region (in real space) defined as

[
EI−H0 −Σ (E)

]
G (E) = I, (3.6)

where H0 is the discretized k · p Hamiltonian of the isolated device (with

potential term included), and Σ is the self-energy matrix due to the semi-

infinite leads [76]. For nanowire structure like Fig. 3.1, H0 can take a block

tridiagonal form, the diagonal block Hi,i (with size Nt × Nt) is the on-site

Hamiltonian for the ith layer; the off-diagonal block Hi,i±1 (with size Nt×Nt)

is the coupling Hamiltonian between the ith and the (i± 1)th layer. Thus,

H0 is of size (NtNl)×(NtNl) with Nl being the number of layers. In coherent

transport limit, Σ just has two non-zero blocks, which are the first one Σ1,1

and the last one ΣNl,Nl
.

The charge density n (r) and the current Ji→i+1 flowing between layer i

and layer i+ 1, can both be expressed in terms of G (E) [24, 41],

n (r) = 2

∫
dE

2π
G
n
(r, r, E) , (3.7)
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Ji→i+1 = 2
ie

h̄

∫
dE

2π
Trace[Hi,i+1G

n

i+1,i (E)−Hi+1,iG
n

i,i+1 (E)], (3.8)

where correlation function G
n
= GΣ

in
G

†
. Here, Σ

in
takes the same format

as Σ, but with the first and last diagonal blocks replaced by −2=m
(
Σ1,1

)

f (E − µL) and −2=m
(
ΣNl,Nl

)
f (E − µR), where f (E) is the Fermi-Dirac

distribution function, µL and µR are the chemical potentials of the left and

right leads.

The problem is that solving (3.6) for realistic systems is very difficult in

terms of both CPU and memory requirements. Furthermore, solving (3.6)

for different E is required by (3.7) and (3.8), and it needs to recalculate (3.7)

once a new potential is generated by Poisson equation until self-consistency is

achieved. In spite of the popular recursive Green’s function (RGF) algorithm

[24], its CPU and memory cost is O (N3
t Nl) and O (N2

t Nl), respectively, and

therefore is only feasible for small cross-section size.

3.2.3 Model Order Reduction

Similar to the mode space approach, the first step is to construct a unitary

transformation matrix U of size (NtNl)× (NmNl) in the following format,

U = diag
(
V1,V2, · · · ,Vi, · · · ,VNl

)
, (3.9)

where Vi (i = 1, 2, · · · , Nl) is a Nt×Nm (Nm < Nt) sub-matrix that contains

reduced basis for layer i.

Then, equation (3.6) can be transformed into this reduced basis,

[
EĨ− H̃0 − Σ̃ (E)

]
G̃ (E) = Ĩ, (3.10)

where,

H̃0 = U
†
H0U, Σ̃ (E) = U

†
Σ (E)U, G̃ (E) = U

†
G (E)U. (3.11)

Note that H̃0 is still block tridiagonal and Σ̃ (E) can be directly calculated

from lead Hamiltonian in the reduced space.

Solving (3.10) instead of (3.6) presents numerical advantages since the

matrix involved is of reduced size (NmNl) × (NmNl), and this can be done
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efficiently by the standard RGF algorithm with CPU cost O (N3
mNl) and

memory cost O (N2
mNl). With G̃ (E), the physical quantities in the reduced

space are calculated with similar expressions as (3.7) and (3.8). After that,

the physical quantities in the real space can be recovered with inverse trans-

formation. The accuracy and efficiency of this method are very much depen-

dent on how we the reduced basis set (3.9) is constructed.

3.2.4 Construction of the Reduced Basis

It is known that the E-k relation of layer i repeating along the transport di-

rection x can be obtained by solving the following eigenvalue problem (EVP),

(
Hi,i +Hi,i+1e

ikx∆x +H
†

i,i+1e
−ikx∆x

)
Ψi = EΨi, (3.12)

where kx is the wave number in the transport direction, ∆x is the layer

thickness, and Ψi is the eigenmode.

The criteria for constructing Vi is that, while Nm is kept as small as

possible, when Vi is applied to (3.12), the reduced EVP should produce the

original E-k relation as accurately as possible. The reduced EVP is,

(
H̃i,i + H̃i,i+1e

ikx∆x + H̃
†

i,i+1e
−ikx∆x

)
Ψ̃i = ẼΨ̃i, (3.13)

where,

H̃i,i = V
†

iHi,iVi, H̃i,i+1 = V
†

iHi,i+1Vi+1, Ψi = ViΨ̃i. (3.14)

3.2.4.1 K space sampling

The reduced basis can be constructed by solving (3.12) for each layer i at

n judiciously sampled kx points (instead of solving (3.12) only at kx = 0,

as in [51]). Suppose mj eigenmodes are obtained at kx = kj (1 ≤ j ≤ n)

with eigenvalues inside the window Em ≤ E ≤ 0, where Em is the minimum

energy of interest (usually several hundred meV below the top of the valence
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band), from which a matrix Wi is constructed,

Wi = {Ψ1
i (k1) , · · · ,Ψm1

i (k1) ,Ψ
1
i (k2) , · · · ,Ψm2

i (k2) , · · · ,
Ψ1
i (kj) , · · · ,Ψ

mj

i (kj) , · · · ,Ψ1
i (kn) , · · · ,Ψmn

i (kn)}, (3.15)

which is then QR factorized. The unitary matrix Q then serves as the sub-

matrix Vi in (3.9).

Solving (3.12) for several lowest eigenmodes can be done efficiently with

iterative solvers since the matrix is highly sparse as a result of FDM. More-

over, it just needs to be solved at positive kx (or negative kx) saving half

the cost. Suppose we already have Ψi and E as the eigenpairs of (3.12) at

kx. When spin-orbit coupling is not considered, Hi,i and Hi,i+1 are both real

matrices. In this case, it is easy to prove that Ψ′
i = (Ψi)

∗ and E are the

eigenpairs of (3.12) at −kx. When spin-orbit coupling is taken into account,

instead, the following transformation is performed to obtain those at −kx
(which can be verified through (3.4)),

Ψi =

(
Ψi ↑
Ψi ↓

)
⇒ Ψ′

i =

(
Ψ′
i ↑

Ψ′
i ↓

)
, (3.16)

whereΨi ↑ andΨi ↓ are the spin up and spin down components, respectively;

Ψ′
i ↑= (Ψi ↓)∗ and Ψ′

i ↓= − (Ψi ↑)∗.

3.2.4.2 E space sampling

Alternatively, to obtain the eigenmode Ψi for each layer i, one can solve

the following generalized eigenvalue problem (GEVP) (see Chapter 5) at n

judiciously sampled E points,

(
0 I

H
†

i,i+1 Hi,i − EI

)(
Ψi

Ψi+1

)
= λ

(
I 0

0 −Hi,i+1

)(
Ψi

Ψi+1

)
, (3.17)

where λ = eikx∆x. It is well known that the eigenpairs with |λ| = 1 correspond

to the propagating modes; whereas the eigenpairs with |λ| < 1 (|λ| > 1)

correspond to the decaying (growing) modes. Here, only the propagating

modes are used to construct Wi as in (3.15), which is then orthonormalized

to form Vi.
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To selectively solve the eigenpairs with |λ| = 1, one can adopt the Krylov

subspace method with some shift-and-invert strategies [77]. As these eigen-

values distribute in a circle in the complex plane and for low energy range

they tend to cluster around 1 (since kx is small), the shift σ = eiθ with

θ = 0 is chosen. For the two cases mentioned before, the cost can be further

reduced by choosing θ = θ̂ (where θ̂ is a value slightly larger than 0) and

solving the eigenmodes having eigenvalues in the upper half plane; then the

corresponding transformation of these eigenmodes are those in the lower half

plane.

3.2.4.3 Hybrid sampling

Both of the above sampling schemes work well but each has its advantages

and disadvantages. Sampling in the k space is fast since we only need to solve

EVP (3.12) several times, the drawback is that it is not easy to determine

the sampling points. While sampling in the E space has the advantage that

it is easy to establish the energy window to sample, it is slow as it is required

to solve interior GEVPs (3.17) with matrix dimension twice the layer size.

Therefore, it is better to hybridize the above two methods to construct Vi.

It turns out that, as will be shown later, sampling at one particular kx

point (kx = 0) and at one E point (E = Em) can approximate very well the

E-k dispersion for energy range Em ≤ E ≤ 0. The reason is that the modes

at kx = 0 can well produce the band structure near the Brillouin zone center,

while the modes at E = Em are excellent for correcting the band structure

far away from the center. In this simple scheme, for each layer it only needs

to solve (3.12) once and solve (3.17) once. In addition, the only parameter

needs to obtain is Em. It is expected that a lower Em may improve the

accuracy since a wider energy range is approximated, but it also slows down

the simulation as Nm becomes larger.

3.2.5 Validation of the Method

To validate this MOR method, which is essentially a new method of con-

structing the reduced basis, let’s follow two steps: First, let’s check if the

reduced EVP can accurately capture the E-k diagram. SiNWs with cross-

section size 5nm×5nm in the [100], [110], and [111] directions are examined.
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Six-band k · p model is used and the parameters are chosen to tuned to

tight-binding model provided in [78]. Em = Et − 0.3eV is chosen, where Et

is the top of the valence band, which results in Nm equal to 96, 102, and

126 respectively. Here, θ̂ = π/12 is used as the eigenvalues fall within a very

narrow region with −π/6 < θ < π/6. As can be seen from Fig. 3.2, the E-k

diagrams obtained by this MOR method are very close to the exact solutions

in all three cases. The reduction is tremendous, compared with the original

matrix size Nt = 9126 as a result of 0.125nm mesh size.
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Figure 3.2: E-k relations for 5nm × 5nm SiNWs in the [100], [110], and
[111] directions. The potential is assumed to be zero everywhere inside the
nanowire. Red lines: exact solution, blue lines: MOR solution.

Then, one may wonder if the NEGF results are also correctly produced.

A p-type IM SiNW transistor as shown in Fig. 3.1 is simulated, with NEGF

and Poisson equations solved self-consistently. Again, Em = Et − 0.3eV

is chosen and the drain currents are compared to those obtained by setting

Em = Et−0.5eV, which can be regarded as a more accurate solution. Three-

band k · p model is used as spin-orbit coupling plays negligible role [78],

which leads to Nm values that are roughly half of the values in six-band

model. For simplicity, hard-wall boundary condition at the silicon-oxide

interface is implemented, which is valid for large cross-section nanowires. The
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Poisson equation is solved with the same method and boundary conditions

as in Chapter 2. The integration (3.7) is done by using adaptive Simpson’s

method. As can be seen in Fig. 3.3(a), the two solutions almost overlap with

each other. The relative errors of the two solutions are further manifested

in Fig. 3.3(b), which shows that errors of [110] and [111] directions for the

whole bias range are within 0.5%, whereas the errors of [100] direction below

threshold are larger, but still within 2.5%. Therefore, to be consistent with

the E-k calculation, Em = Et−0.3eV is justified. The relatively larger errors

of [100] direction below threshold are due to the larger errors of the band

structure approximation, as can be observed from Fig. 3.2(a). In particular,

the subband edges near the middle of the energy window are not aligned,

which may induce a small threshold voltage shift. To improve the accuracy,

one can sample one more energy point at (Et + Em) /2. Note that for SiNWs

with large cross sections (≥ 4nm× 4nm), 0.2nm mesh size has been adopted

as this leads to negligible errors in the I-V curves (compared with 0.125nm

mesh size).
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Figure 3.3: (a) IDS-VGS characteristics obtained by setting Em = Et− 0.3eV
(lines) and Em = Et − 0.5eV (symbols). IM SiNW transistors in the [100],
[110], and [111] directions are considered. Doping density Nd in the source
and drain is 1 × 1020cm−3, while in the channel it is 1 × 1015cm−3. Ty =
Tz = 5nm, Lg = 10nm, To = 1nm. Drain bias is set to be VDS = −0.5V. (b)
Relative error of the two sets of currents.

Although not shown here, the nanowires with different cross sections are

also examined. It is found that for nanowires larger than 5nm×5nm, choosing

Em = Et−0.3eV is enough, while for cross sections smaller than 5nm×5nm,

a slightly lower Em is recommended to ensure that enough basis functions
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are included (for example, Em = Et − 0.35eV for 4nm × 4nm nanowires).

It should be mentioned that, to achieve the same accuracy, Nm required

in this MOR is expected to be less than that reported in [51] as the band

structures here are better approximated. In addition, thanks to the sparse

solvers, construction of the reduced basis and the basis transformations do

not occupy much CPU time, and most of the CPU time is spent on solving

the reduced transport problem. As a result, simulation of an IDS-VGS curve

with 10 bias points for a SiNW transistor with 5nm × 5nm channel cross-

section size and 30nm device length is within 10 hours using single PC (Intel

i5-2400 CPU @ 3.10GHz).

3.3 Application to p-Type Junctionless Transistors

The MOR method above is applied to study hole transport in p-type JL

SiNW FETs, which are then compared with similar IM ones. The impacts

of various device structures and parameters on their performances will be

examined. The gate oxide layer is assumed to be 1nm, the channel length is

varied from 15nm to 5nm, and the channel cross-section size is varied from

6nm × 6nm to 4nm × 4nm. Channel orientations [100], [110], and [111] are

considered. For IM FETs, the source and drain junctions are assumed to be

abrupt, with Nd in the source/drain equal to 1×1020cm−3 and in the channel

it is 1× 1015cm−3. The temperature is set to 300K.

To characterize the device, the device metrics such as sub-threshold slope

(SS), doping density or geometry induced threshold voltage change (∆Vth),

and drain-induced-barrier-lowering (DIBL) will be extracted from the I-V

curves. SS is expressed as millivolts of gate voltage needed for a decade

change of drain current. Threshold voltage Vth is extracted using constant

current method at 100nA. DIBL is expressed as millivolts of ∆Vth induced

by one volt change of drain voltage.

3.3.1 The Role of Doping Densities

For JL transistors, the first thing needs to be ascertained is the doping density

to use. Unlike the IM devices (which is lightly doped in the channel), the

doping density actually affects the device performance greatly. In Fig. 3.4(a),

39



(a)

−0.5 0 0.5

10
−4

10
−2

10
0

V
GS

 (V)

I D
S
 (

µA
)

IM

Increasing
doping

(b)

2 4 6 8 10
0

0.5

1

Doping Density (x1019cm−3)

∆V
th

 (
V

)

2 4 6 8 10
50

100

150

S
S

 (
m

V
/d

ec
)

SS of IM

Figure 3.4: (a) IDS-VGS curves for JL transistors with different doping den-
sities Nd. The curve for IM device is also plotted. The dimensions of the
devices are all fixed to Ty = Tz = Lg = 5nm. The Nd for JL devices is
linearly varied from 2× 1019cm−3 to 1× 1020cm−3. Transport direction [100]
is considered here and VDS = −0.5V. (b) The extracted ∆Vth and SS with
respect to doping density. Also shown is the SS for IM device.

the I-V curves of some short-channel JL devices is plotted, it is seen that

SS increases as Nd increases. The SS values have been extracted and plotted

in Fig. 3.4(b), which shows that for Nd = 1 × 1020cm−3, the SS can exceed

100mV/dec. On the other hand, as seen from Fig. 3.4(a), the ON current

for low Nd is very limited and it increases as Nd increases, as expected. Note

that here we define the ON current as the current at flat band condition,

which means no further increase of current is observed if the gate voltage

is further increased. Therefore, one may suggest an Nd value based on a

compromise between SS and ON current. It is also seen from Fig. 3.4(a)

that, as Nd increases, the I-V curve shifts towards the positive direction,

which means that more positive gate voltage is needed to turn the device

off. In other words, Vth is shifted and ∆Vth is positive. As shown in Fig.

3.4(b), ∆Vth is almost linearly proportional to the change of Nd, say around

0.2V per 2× 1019cm−3 change of Nd, indicating that JL transistors are very

sensitive to doping density variations.

To explain why SS degrades as doping density increases, Fig. 3.5 plots the

potential distributions along the transport direction and their corresponding

current spectra for three different doping densities. Those of IM transistor

are also plotted in the same figure for comparison. The current spectrum

is then roughly divided into two parts based on the peak of the potential
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barrier, the part below it can be attributed to thermionic current, while the

part above it is largely due to tunneling contribution. It is clearly seen that,

as the doping density increases, the width of the potential barrier decreases,

which results in larger source-to-drain tunneling current contribution that is

known to degrade the SS. As this is due to electrostatics, similar behavior

should be observed in n-type JL transistors as well. It is also obvious that

the IM transistor has the thinnest potential barrier and the largest tunneling

current, and thus the worst SS as shown in Fig. 3.4(b).
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Figure 3.5: Potential distributions (a) and current spectra (b) of JL tran-
sistors with different doping density Nd. The case of IM transistor is also
shown. The potentials are sampled at the center of the silicon layer. All
device parameters are the same as those in Fig. 3.4, with the gate voltages
of all cases tuned to achieve the same current at IDS = 1× 10−5µA.

3.3.2 Channel Orientations and Scaling

In order to study the impacts of channel orientations and channel sizes, Nd

of JL transistors is fixed to be 8× 1019cm−3. Note that different results may

be obtained by choosing a different doping density, but the trends can be

inferred based on the above analysis.

3.3.2.1 SS and DIBL

The SS as functions of channel aspect ratio and channel thickness are plot-

ted in Fig. 3.6. From Fig. 3.6(a), it is observed that when channel length is
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long, the SS is very close to the 60mV/dec limit. As the channel length is

scaled down (with fixed channel thickness), the SS degrades as anticipated,

for all nanowire directions and for both IM and JL cases. However, the JL

devices degrade much slower than IM ones, which makes them very attrac-

tive for ultra-scaled applications. The excellent SSs of JL devices are very

much related to the effective gate length (EGL) concept that has been used

to explain n-type JL transistors [72]. In fact, the EGL of JL device in the

sub-threshold range is longer than that of IM device, which results in wider

potential barrier that greatly helps the suppression of source-to-drain tun-

neling current. The plots (for example, as shown in Fig. 3.5) confirm that

this is also true for p-type devices. It is also observed that direction [100] has

better SS although directions [110] and [111] do not differ too much, and this

is more obvious when the channel becomes very short, indicating that [100]

direction is more immune to short channel effect. The [100] direction’s supe-

rior short channel performances can be explained by the fact that its larger

effective mass of the first subband (as can be seen from Fig. 3.2) reduces the

tunneling current contribution, as was first discovered in p-type double-gate

transistors [79].
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Figure 3.6: (a): SS for different channel aspect ratio, the channel thickness is
fixed to T=5nm. (b): SS for different channel thickness, the channel aspect
ratio is fixed to L/T=2.

From Fig. 3.6(b), it is seen that, for IM devices, the SSs of [110] and [111]

directions degrade when the channel is narrowed (with fixed aspect ratio), al-

though SS of [100] direction does not degrade much. This is because the light

hole effective mass of [100] direction grows much faster as the cross section
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becomes smaller, which suppresses the tunneling current and consequently

compensates the otherwise faster increase of SS [78]. What should be em-

phasized and is observed from Fig. 3.6(b) is that, unlike IM devices, SSs of

JL ones change very little when the channel thickness is reduced, regardless

of channel direction. Again, this is due to the longer EGL of JL devices,

which makes the tunneling current less important.
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Figure 3.7: (a): DIBL for different channel aspect ratio, the channel thickness
is fixed to T=5nm. (b): DIBL for different channel thickness, the channel
aspect ratio is fixed to L/T=2.

The DIBL as functions of channel aspect ratio and channel thickness are

plotted in Fig. 3.7. Similar trends as SS plotted in Fig. 3.6 are observed, as

SS and DIBL are closely related quantities.

3.3.2.2 ∆Vth

The ∆Vth as functions of channel aspect ratio and channel thickness are plot-

ted in Fig. 3.8. From Fig. 3.8(a), it is found that as the channel length is

scaled down (with fixed channel thickness), more positive Vth is required to

maintain the threshold current. The reason is twofold, one is that the neg-

ative drain voltage tends to raise the channel potential, the other is that

tunneling current contribution becomes larger due to the narrower barrier.

Direction [100] is again the most robust. In all cases, the JL devices outper-

form IM ones, particularly for ultra-short devices. These trends are similar

to SSs in Fig. 3.6 and can be supported with similar arguments.
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Figure 3.8: (a): ∆Vth with respect to channel aspect ratio, the channel thick-
ness is fixed to T=5nm, ∆Vth is obtained with reference to L/T=3. (b): ∆Vth
with respect to channel thickness, the channel aspect ratio is fixed to L/T=2,
∆Vth is obtained with reference to T=6nm.

From Fig. 3.8(b) it is seen that while ∆Vth is very small for IM devices as

the channel thickness is narrowed (with fixed aspect ratio), it is significantly

larger for JL ones. This is consistent with the semi-classical studies [64, 65].

Regarding channel orientations, on the contrary, [100] is more sensitive to

the channel thickness scaling and [111] turns out to be the most robust for

both kinds of devices, although the distinction is less pronounced for JL

ones. This has been attributed to the larger subband modulation in the

[100] direction [80].

3.3.2.3 ION

The ION/W (where W=4T is nanowire perimeter) as functions of channel

aspect ratio and channel thickness are plotted in Fig. 3.9. The ION are

obtained by setting VGS = VDS = −0.5V after adjusting the gate work

functions such that the IOFF are all equal to 10nA/µm [67]. From Fig.

3.9(a), it is found that JL devices have better ION/W only when the channel

length is short, mainly due to their better short-channel SSs. However, when

the channel length is long, the JL cases lose their advantages as the SSs

become similar for both devices.

In Fig. 3.9(b), it is seen that the JL devices have better ION/W only when

the channel thickness is small, especially in the [110] and [111] directions, as
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a result of their better thin-channel SSs. Overall, [110] and [111] directions

have similar ION/W and they are greater than those of [100] direction. The

only exception is when L/T = 1 as shown in Fig. 3.9(a), where [100] direction

provides the largest ION/W . This is due to [100] direction’s excellent short

channel SS mentioned before. Their performances in low standby power

applications are also examined by lowering the IOFF , similar trends have

been observed that JL devices have better ION/W only when the channel is

short or thin, although they do have more margin to perform better.
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Figure 3.9: (a): ION/W for different channel aspect ratio, the channel thick-
ness is fixed to T=5nm. (b): ION/W for different channel thickness, the
channel aspect ratio is fixed to L/T=2.

3.3.3 Discussions

The code is based on continuum k · p method and the dopants are mod-

eled through doping concentration in the Poisson equation, which is valid

when the devices are large. As the devices are aggressively scaled, the atom-

istic effects become crucial, calling for atomistic simulator. For example,

just a few discrete dopants in the JL devices can result in a large doping

density and there will be a doping density limit. Besides, the positions of

these dopants matter, which may induce large performance variabilities, as

reported recently by studying n-type JL transistors [71]. There is also an is-

sue related to the dopant de-activation and dielectric screening at very small

nanowires [81]. Such kind of studies are out of the scope of this work and

will be published elsewhere.
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3.4 Summary

In summary, an MOR technique is presented for efficient simulations of

nanowire transistors based on the multi-band k · p Hamiltonian and NEGF

method. Numerical results show that this method can correctly produce the

band structures of SiNWs and I-V curves of p-type SiNW transistors, mean-

while significant reduction is achieved. With this method, the influences of

various device parameters on the performances of p-type JL transistors are

then studied and compared to IM devices for the first time.

The method not only applies to GAA structures, but also applies to tri-

gate structures, such as FinFETs. Alternative channels using Germanium

or III-V materials could also be simulated in this framework. Moreover,

strain effects can easily be incorporated into the k · p Hamiltonian. In the

next chapter, studies will be devoted to eight-band models which enable

simulation of band-to-band tunneling devices.
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CHAPTER 4

MODEL ORDER REDUCTION FOR

SIMULATION OF BAND-TO-BAND

TUNNELING DEVICES

In last chapter, a model order reduction method was developed for simula-

tion of hole transport in silicon nanowires using three- and six-band k · p
models. In this chapter, it is shown that, with a spurious band elimina-

tion process, the method can be readily extended to the eight-band case

that enables us to simulate band-to-band tunneling devices. The method is

demonstrated via constructing reduced models for indium arsenide (InAs)

nanowires and simulation of I-V characteristics of InAs tunneling field-effect

transistors (TFETs). It is shown that significant model reduction is achieved,

meanwhile good accuracy can be retained. The method is then applied to in-

vestigate InAs TFETs with different channel orientations and source-pocket

TFETs with n-p-i-p doping profiles.

4.1 Introduction

Band-to-band tunneling (BTBT) is a very interesting quantum phenomenon

in electronic device applications. It accounts for a portion of the leakage

current in the subthreshold region of carbon nanotube (CNT) field-effect

transistors (FETs) [82]. It has also been utilized to build novel devices, like

tunneling diodes [83] and tunneling FETs (TFETs) [84]. TFETs are energy

efficient switches since their subthreshold slope can be less than 60mV/dec

at room temperature [85]. This is impossible for conventional FETs which

are based on thermal injection. Therefore, TFET has been selected by ITRS

as a very attractive candidate device for future low-power applications [3].

Non-equilibrium Green’s function (NEGF) is among the most popular ap-

proaches for quantum transport calculations [41]. Combined with tight bind-

ing [86] or eight-band k · p Hamiltonian [51], which describes both the con-

duction and valence bands, the BTBT process can be rigorously simulated.
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Unfortunately, these multi-band NEGF studies require huge computational

resource. Several efforts have been devoted to improve their efficiency. In

Ref. [57], equivalent but greatly reduced tight-binding models are constructed

for silicon nanowires (SiNWs), which greatly speed up the simulation of p-

type SiNW FETs even in the presence of inelastic scattering. For multi-band

k · p models, a mode space approach is proposed to simulate p-type SiNW

FETs and indium arsenide (InAs) TFETs [51]. However, it selects the modes

only at the Γ point, i.e., at k = 0, which is insufficient since the modes are

generally k-dependent.

For three- and six-band k · p models, as is shown in the last section, by

sampling the Bloch modes at multiple points in the k space and (or) E

space, a significantly reduced Hamiltonian can be constructed that describes

very well the valence band top, based on which p-type SiNW FETs are

simulated with good accuracy and efficiency [87]. The purpose here is to

extend the method to eight-band k · p model to simulate BTBT devices.

However, as will be shown later, the direct extension fails. The problem

is that the reduced model constructed by multi-point expansion generally

leads to some spurious bands, in addition to the normal bands, a situation

similar to constructing the equivalent tight binding models [57], rendering the

reduced model useless. Therefore, it is essential to eliminate these spurious

bands, meanwhile retaining the accuracy of the normal bands.

In Section 4.2, the eight-band k · p approach will be given first. Then the

scheme of model order reduction will be outlined, followed by some discussion

of the discretization. A procedure to eliminate the induced spurious bands

will be discussed in detail. The accuracy will be checked by comparing the

band structures as well as the I-V curves. In Section 4.3, the method devel-

oped will be applied to simulate TFETs with different crystalline orientations

and with source pockets. Some conclusions will be drawn in the end.

4.2 Theory and Method

The gate-all-around (GAA) InAs nanowire TFET to be simulated is illus-

trated in Fig. 4.1. The InAs nanowire is n-type (p-type) doped in the source

and p-type (n-type) doped in the drain, while it is intrinsic in the channel.

The InAs nanowire is surrounded by the oxide layer, through which the gate
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controls the channel portion. The working principle of this device is based

on BTBT as described in Ref. [84,85]. InAs is chosen as the channel material

because high “on” current is possible due to its small direct band gap and

light effective masses [86].

Figure 4.1: GAA InAs TFET with n-i-p (or p-i-n) type doping profile. The
transport direction is x. The source, channel, and drain lengths are Ls, Lg,
and Ld respectively. Nanowire thickness is Ty and Tz. Oxide layer thickness
is denoted by To, dielectric constant is εox.

4.2.1 Eight-Band k · p Approach

To describe the band structure involving both the conduction and valence

bands of III-V compound semiconductor materials, a widely used approach

is the eight-band k · p model. When the eight basis functions are chosen to

be spin-up and spin-down s and p atomic orbital-like states, the Hamiltonian

can be written as [74, 88] (for its derivation, please refer to Appendix D),

H
8
(k) =

[
G (k) Γ

−Γ
∗

G
∗
(k)

]
. (4.1)

The matrix G (k) is defined as,

G (k) = G1 (k) +G2 (k) +Gso, (4.2)

where

G1 (k) =




Eg ikxP ikyP ikzP

−ikxP −∆/3 0 0

−ikyP 0 −∆/3 0

−ikzP 0 0 −∆/3



, (4.3)
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G2 (k) =




Ak2 Bkykz Bkxkz Bkxky

Bkykz Mk2 + LMk
2
x Nkxky Nkxkz

Bkzkx Nkxky Mk2 + LMk
2
y Nkykz

Bkxky Nkxkz Nkykz Mk2 + LMk
2
z



, (4.4)

and

Gso =
∆

3




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



. (4.5)

The matrix Γ is

Γ =
∆

3




0 0 0 0

0 0 0 1

0 0 0 −i
0 −1 i 0



. (4.6)

Here the parameter Eg is the band gap, ∆ is the spin-orbit split-off energy, P

is proportional to the momentum matrix element and can be evaluated by its

equivalent energy Ep. The parameter A is determined from the conduction

band effective mass and B is set to be 0. LM = L −M has been used to

shorten the expression. The parameters L, M , and N are related to the

Luttinger parameters. For more discussion of the parameters, please refer to

Ref. [74, 88].

For nanostructures like InAs nanowires that are considered here, the pe-

riodicity is broken by the finite sizes and the external potentials. The wave

function can be found by solving the following coupled differential equation

for envelop function Fm (m = 1, 2, · · · , 8),

8∑

n=1

[H
8

mn (−i∇) + V (r) δmn]Fn (r) = EFm (r) (4.7)

where V (r) is the slowly varying perturbed potential distribution, and oper-

ator H
8

mn (−i∇) is the element of H
8
(k) with k replaced by the differential

operator −i∇.

The parameters of bulk InAs material [74] are used in this Chapter, except

that the parameter Ep is reduced to 18eV according to Ref. [89]. Note that

adjustment of the bulk parameters may be needed in order to match other

band structure models, such as in Ref. [78].
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4.2.2 Model Order Reduction

In order to solve (4.7) numerically with the NEGF approach, the operator

needs to be discretized first. For reasons which will be stated later, finite

difference method (FDM) is adopted in the transport direction while k-space

discretization is employed in the transverse directions [51]. For simplicity,

hard wall boundary condition is assumed at the interfaces between the ox-

ide layer and the InAs channel. The resultant matrix equation for Green’s

function G (E) can be written as,

[
EI−H0 −Σ (E)

]
G (E) = I, (4.8)

whereH0 is the discretized k · p Hamiltonian of the isolated device (including

the potential term), and Σ is the self-energy matrix due to the semi-infinite

leads. For nanowire structures like Fig. 4.1, the Hamiltonian can be written

down layer by layer and H0 takes block tridiagonal form (each block is of

size Nt).

As this equation can be large, to solve it efficiently for many different

energy E, a reduced-order matrix equation can be constructed,

[
EĨ− H̃0 − Σ̃ (E)

]
G̃ (E) = Ĩ, (4.9)

and the reduced-order Green’s function G̃ (E) is to be solved. Here, the

reduced Hamiltonian, self energy, and Green’s function are

H̃0 = U
†
H0U, Σ̃ (E) = U

†
Σ (E)U, G̃ (E) = U

†
G (E)U, (4.10)

where U is a block-diagonal unitary matrix containing the reduced basis Vi

(with dimension Nt × Nm, where Nm is the number of reduced basis) for

each layer i. Then the problem is on how to construct this transformation

matrix U so that the reduced system is as small as possible, and yet it still

accurately describes the original system.

To construct the reduced basis Vi for layer i, the Hamiltonian of layer

i is repeated to form an infinite periodic nanowire. The reduction comes

from the fact that only the electrons near the conduction band bottom and

valence band top are important in the transport process. To approximate the

band structure over that small region, Vi then consists of the Bloch modes
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with energy lying in that region. Multiple-point construction based on k

space sampling and (or) E space sampling can be employed, as described

in Chapter 3. Here k space sampling is adopted since E space sampling is

more costly and that the eight-band matrix is much larger than the six- or

three-band case. Before going to the examples, there is a need to discuss the

discretization because solving the Bloch modes for each layer is itself very

costly when Nt is large.

4.2.3 The Discretization

In Chapter 3, FDM is adopted and it results in extremely sparse matrices.

Therefore, the Bloch modes can be obtained efficiently with sparse matrix

solvers. In fact, with the shift-and-invert strategy implemented, the Krylov

subspace based eigenvalue solver converges very quickly, as the interested

eigenvalues (close to the valence band top) distribute in a very small area.

However, it is found that the Krylov subspace method is less efficient in

the eight-band case. The reason is that the interested eigenvalues distribute

over a larger area, as both conduction and valence bands are of interest and

between them there is a band gap.

Therefore, the method used in Ref. [51] is adopted. In that method, the

transport direction is still discretized by FDM while the transverse directions

are discretized by spectral method. Spectral method has high spectral accu-

racy (i.e., the error decreases exponentially with the increase of discretization

points N) if the potential distribution is smooth [90]. This is true for de-

vices that do not have any explicit impurities or surface roughness. So, the

Hamiltonian matrix size of a layer, i.e., Nt, can be kept very small (although

it is less sparse or even dense), making direct solution of the eigenvalue prob-

lem possible. The discretized form valid for arbitrary nanowire orientation

is provided in Appendix E.

4.2.4 Spurious Band Elimination

As an example, Fig. 4.2(a) plots the E-k dispersion for an ideal InAs

nanowire orientated in the [100] direction. Fig. 4.2(b) is the result using the

reduced Hamiltonian H̃0. The reduced basis Vi (i is arbitrary here) is con-
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structed by sampling the Bloch modes evenly in the Brillouin zone (at k = 0,

±π/4, ±2π/4, and ±3π/4 [1/nm]), with the energy E ∈ [−0.5eV, 1.7eV],

which results in Nm = 262 modes. Note that the modes at negative k can

be obtained by a transformation of those at positive k. Clearly, the re-

duced Hamiltonian reproduces quite well the dispersion bands in that energy

window (except at the very bottom, which can be improved by sampling a

slightly larger energy window or more k points), demonstrating that the k

space sampling is effective. However, there are also some spurious bands

appearing in the conduction and valence bands, and even in the band gap,

making the reduced model useless. This situation is not encountered in the

three- or six-band model involving only the valence bands, or in the one-band

effective mass model involving the conduction band only. It should be caused

by the coupling between the conduction and valence bands. The coupling is

important for materials with narrow band gap.
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Figure 4.2: E-k diagram of a 5nm × 5nm InAs nanowire in [100] direction.
The potential is assumed to be zero everywhere inside the nanowire. (a):
exact solution, (b): reduced model solution, (c): reduced model solution
with spurious bands eliminated. Only +k is shown as the band structure is
symmetric with respect to k = 0.

To make the reduced model useful for TFET simulation, the spurious bands

must be suppressed. To this end, a singular value decomposition (SVD) is
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applied to the matrixVi. As plotted in Fig. 4.3(a), the singular values spread

from a large value down to zero. It is further found that the normal bands

are mainly contributed by singular vectors having large singular values, in

contrast to the spurious bands where singular vectors with small singular

values have large contribution. An example of this is shown in Fig. 4.3(b).

By removing the vectors with small singular values, i.e., vectors with v ≤ vth

where vth = 0.25 is the threshold, a new reduced basis Ṽi is generated with

Ñm = 116. Using this new reduced basis, a new reduced Hamiltonian is

constructed, the E-k diagram of which is given in Fig. 4.2(c). It is observed

that all the spurious bands have been eliminated but at the cost of a slightly

compromised accuracy.
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Figure 4.3: (a) Distribution of singular values of matrix Vi. (b) Contribution
of the singular vectors to the two modes at k = 0: one is the spurious mode
with E = 0.16eV, the other is the normal mode with E = 0.64eV (please
refer to Fig. 4.2(b)).

For the BTBT process, the evanescent dispersion inside the band gap is

particularly important, and it is thus plotted in Fig. 4.4. Only the smallest

imaginary k is plotted, since evanescent waves decay exponentially and thus

higher modes’ contribution to the tunneling can be neglected. As can be

seen, the MOR solution (after the spurious band elimination) agrees well

with the exact solution.

The choice of vth is found to be crucial. A small vth might be insufficient

to remove all the spurious bands while a large vth may degrade the accuracy

severely. Moreover, adjustment of vth may be required when different sam-

pling points or sampling energy windows are chosen. To determine the value

of vth automatically, we propose a search process as follows:
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Figure 4.4: Evanescent E-k diagram in the band gap of a 5nm × 5nm InAs
nanowire in the [100] direction. Only the band with the smallest imag{k} is
shown.

1. Sample enough Bloch modes and store them in matrix B. Suppose I

points are sampled in the k space, and mi modes with energy E ∈ [E1, E2]

are obtained at the ith point ki (1 ≤ i ≤ I), then the size of matrix B is

Nt ×Nm, where Nm =
∑I

i=1mi.

2. Do SVD of B, i.e., B = UΣV
†
.

3. Set an initial value for vth. Let us use vth = 0 here.

4. Use vth to construct a reduced basis Ũ by removing the singular vectors

with v < vth in U. The size of Ũ will be Nt × Ñm.

5. Use Ũ to build a reduced Hamiltonian H̃. For each layer of H̃, the size

will be Ñm × Ñm.

6. Solve the E-k relation of H̃ for certain ki, obtaining m̃i modes with

E ∈ [E1, E2]. It is found that ki = 0 is a good choice.

7. If m̃i > mi (which means that there are still some spurious bands),

increase vth appropriately and go back to step 4. Otherwise, stop.

The above searching process is fast, since step 5 and step 6 are much

cheaper than step 1 although they have to be repeated many times. In

fact, the complexity of step 1 is I × O (N3
t ), step 2 is O (NtN

2
m), step 5 is

O
(
ÑmN

2
t

)
, and step 6 is O

(
Ñ3
m

)
. Note that Ñm < Nm < Nt.

The vth = 0.25 used earlier is the result of the above searching process.

It has also been tested for energy windows [−0.4eV, 1.5eV] and [−0.6eV,

1.9eV] (see Fig. 4.5), and for [110] and [111] directions (not shown here),

with good results obtained. It should be mentioned that this process results

in a smaller basis set, which is different from the method for tight binding
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models in Ref. [57], where the basis is enlarged to eliminate those spurious

modes.
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Figure 4.5: E-k diagrams of a 5nm × 5nm InAs nanowire in the [100] di-
rection. (a): exact solution; (b), (c), and (d): reduced model solution for
E ∈ [−0.4eV, 1.5eV], E ∈ [−0.5eV, 1.7eV] (exactly the same as Fig. 4.2(c)),
and E ∈ [−0.6eV, 1.9eV], respectively. Note that for case (d) two more sam-
pling points (k = ±π) are included. The reduced basis is equal to 90, 116,
and 144, respectively.

4.2.5 Error Analysis

Now this reduced model can be applied to simulate a TFET as shown in

Fig. 4.1. NEGF equations and Poisson equation are solved self-consistently.

Phonon scattering has a negligible effect on the I-V curve [91] and thus is

excluded in this work. The charge density involving both the electrons and

the holes is calculated by the method in Ref. [54]. To improve the efficiency,

the reduced basis is constructed only once for one layer and is assumed to

be the same for each layer of the nanowire. Moreover, it remains unchanged

during the self-consistent iterations. This is a fairly good approximation

for GAA nanowire devices like Fig. 4.1, where the potential does not vary
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drastically. This approximation has also been adopted in Ref. [57] with good

accuracy demonstrated.
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Figure 4.6: (a) IDS-VGS transfer characteristics of a n-i-p TFET as shown
in Fig. 4.1. The nanowire is oriented in the [100] direction. Tox = 1nm,
Ty = Tz = 5nm, Lg = Ls = Ld = 15nm, εox = 12.7. The doping density is
equal to 5 × 1019cm−3 at both the source and the drain. The drain bias is
fixed to VDS = −0.3V. I1 and I2 are obtained by sampling energy windows
[−0.4eV, 1.5eV] and [−0.5eV, 1.7eV] (as in Fig. 4.5(b) and Fig. 4.5(c)). (b)
Relative errors of the two sets of currents.

The IDS-VGS transfer characteristics is obtained and plotted in Fig. 4.6(a),

in both linear and logarithm scales. To check how large the sampling energy

window is sufficient to produce the correct I-V curve, [−0.4eV, 1.5eV] and

[−0.5eV, 1.7eV] are tried, which result in I1 and I2. It is observed that I1

is very close to I2, indicating that the results converge and [−0.4eV, 1.5eV]

should be sufficient. The relative errors of the two sets of currents are cal-

culated in Fig. 4.6(b). It is seen that the relative errors are very small for

the region near “on” state, but are larger (up to 10%) for the subthreshold

region. The reason is that, in the subthreshold region, the tunneling path

is longer and thus the tunneling current is more sensitive to the (evanes-

cent) band structures errors. In the following of this Chapter, we use energy

window [−0.5eV, 1.7eV].
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4.3 Applications

4.3.1 Different Channel Orientations

Fig. 4.7(a) compares the IDS-VGS characteristics of InAs nanowire TFETs

oriented in the [100], [110], and [111] directions. It is found that [100] has

the best subthreshold slope (SS) but the smallest “on” current; [111] has the

worst SS but the largest “on” current. In addition, SS less than 60mV/dec is

observed in Fig. 4.6(a), but it is not observed here due to a shorter channel

used.
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Figure 4.7: (a) IDS-VGS curves of n-i-p InAs TFETs oriented in the [100],
[110], and [111] directions. Lg = 10nm, the other device parameters are the
same as those in Fig. 4.6. (b) Evanescent E-k relation in the band gap, only
the band with the smallest imag{k} is shown.

To explain it, Fig. 4.7(b) compares the lowest evanescent E-k relation in

the band gap for the three cases. It is found that [100] has the largest =m{k}
leading to the smallest tunneling probability, while [110] has slightly larger

=m{k} than [111] leading to a modest tunneling probability. Denoting the

tunneling length as Ln (Lf ) for the “on” (“off”) state, the “on/off” ratio can

be estimated by WKB method with uniform electric field approximation as

exp (kI (Lf − Ln)), where kI = =m{k}. This means that (i) large kI has large

“on/off” ratio when Lf −Ln is fixed, which is the case for the [100] direction;

(ii) the “on/off” ratio increases with Lf − Ln and the increasing speed is

larger for larger kI , so in practice long channel (with long Lf ) is employed to

increase the “on/off” ratio and [100] is expected to have much better “on/off”

ratio than the other directions when the channel is very long. The analysis
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also suggests that the evanescent E-k relation should be accurately modeled

for correctly predicting the tunneling current, in particular the “off” state

current.
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Figure 4.8: Comparison of source-pocket n-p-i-p TFETs with different pocket
lengths and n-i-p one with no pocket. The device settings are the same as
those in Fig. 4.6. (a) IDS-VGS curves. (b) Band diagrams at “off” state
(VGS = −0.2V). (c) Band diagrams at “on” state (VGS = −0.6V). The
source Fermi level is 0eV, while the drain Fermi level is −0.3eV.

4.3.2 The Source-Pocket TFETs

Many TFETs suffer from low “on” current [85]. It is theoretically predicted

and experimentally demonstrated that the source-pocket TFETs have sig-

nificantly improved “on” current and steeper subthreshold swing (SS) over

the classical TFETs [92, 93]. In addition, the significantly degraded linear-

region IDS-VDS characteristics of classical TFETs [94] can be improved by

incorporating the source pocket [95]. The source-pocket TFET is formed by
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inserting a thin layer of p-type (n-type) doping between the n-type (p-type)

source and the intrinsic channel, which results in an n-p-i-p (p-n-i-n) doping

profile. Most of the simulations were based on semiclassical methods [92,93].

Recently, 2-D quantum simulations were performed for all-Si and all-Ge dou-

ble gate structures [96], confirming the semiclassical simulation results. Here,

we investigate InAs nanowire based source-pocket TFETs for the first time,

using 3-D quantum simulations.
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Figure 4.9: Same plots as Fig. 4.8, except that εox is reduced from 12.7 to
3.8.

Fig. 4.8(a) shows the IDS-VGS of the n-p-i-p TFETs with three different

pocket lengths, in comparison with the n-i-p one without source pocket. For

the right part of the curve (due to the ambipolar nature of TFETs), as ex-

pected, these pockets have negligible influence on the turn-on property, since

the conduction there is via tunneling through the drain junction. However,

a better SS is observed due to the lower “off” current at VGS = −0.2V. For

the left part of the I-V curve, which is of interest, the pockets merely shift
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the threshold voltage and less negative gate voltage can now turn the de-

vice on. However, the SS remains almost unchanged, in contrast to previous

studies [92, 93, 96].
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Figure 4.10: (a): IDS-VDS curve of source-pocket n-p-i-p TFET with 3nm
pocket length, comparing with n-i-p one with no pocket. The device settings
are the same as those in Fig. 4.6. (b) and (c): Band diagrams of n-i-p
TFET (b) and source-pocket n-p-i-p TFET with 3nm pocket length (c), for
VDS varying from 0V to −0.3V with −0.05V step. The gate bias is fixed to
VGS = −0.6V. The solid lines are for linear region while the dashed lines are
for saturation region.

Fig. 4.8(b) and Fig. 4.8(c) compare the band diagrams of the TFETs

with and without the source pocket, at “off” and “on” state, respectively.

It is seen that the source pocket enhances the band bending at the source

junction, which leads to longer source-to-drain direct tunneling path but

shorter source-to-channel junction tunneling path. As the “off” (“on”) state

current is dominated by direct (junction) tunneling, the source pocket will

decrease (increase) the “off” (“on”) state current. But the band bending of
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the n-i-p structure at the source-channel junction is already very sharp; the

insertion of source pockets does not improve it much. The reason is that,

for the n-i-p structure here, the channel is fully controlled by the gate due

to the small cross-section nanowire, high-k gate oxide, and GAA geometry

used, making the lateral electric field between the source and the channel

very strong.

Fig. 4.9(a) plots the case when the gate oxide is reduced to εox = 3.8.

Now the source pocket has a larger impact on the I-V curve. The band

diagrams shown in Fig. 4.9(b) and Fig. 4.9(c) confirm that the band bending

improvement is more significant than Fig. 4.8(b) and Fig. 4.8(c).

Fig. 4.10(a) shows the IDS-VDS of the n-p-i-p TFET with 3nm pocket

length, in comparison with the n-i-p one. The linear dependence of IDS on

small VDS is observed here for both cases. This is in agreement with Ref.

[95] for the TFETs with source pockets, but in contrast to the exponential

dependence of IDS on small VDS observed for the p-i-n TFETs [94].
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Figure 4.11: Current Spectra of n-i-p TFET (a) and n-p-i-p TFET with 3nm
pocket length (b), for VDS varying from −0.05V to −0.25V with −0.05V
step. Please refer to Fig. 4.10 for the device setting.

To explain it, Fig. 4.10(b) and Fig. 4.10(c) compare the band diagrams by

varying VDS, for the TFETs with and without the source pocket, respectively.

When VDS is small, as can be seen, the potential in the channel changes with

VDS. This should modulate the source-to-channel tunneling width leading

to exponential change of the tunneling probability (and current). But here,

the tunneling width is almost unchanged, which is again due to the already

very sharp source-channel band bending. The change of VDS merely changes
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the tunneling window leading to the linear behavior. When VDS is large,

saturation occurs since the potential in the channel (and thus the source-

channel tunneling junction) no longer changes with VDS. The current spectra

plotted in Fig. 4.11 confirm this observation.

4.4 Summary

A MOR method is developed for efficient simulation of BTBT devices based

on solving self-consistently the Poisson equation and the NEGF equations

employing the eight-band k · p model. By introducing a spurious band elim-

ination process, reduced models can be constructed for reproducing the band

structures in any energy window near the band gap. The reduced models can

also capture the I-V characteristics of TFETs with acceptable accuracy. InAs

TFETs with different channel orientations are compared, it is found that [100]

direction has better subthreshold swing but smaller “on” current than [110]

and [111] directions, due to its larger imaginary wave vectors. Source-pocket

TFETs with an n-p-i-p doping profile are also studied, it is observed that

band bending at the source-to-channel junction is enhanced by the source

pocket, which results in better “on”/“off” ratio, SS, and output behaviors.

But such effects tend to be diminished when the electrostatic integrity of the

device is improved. These studies are beneficial for high-performance TFET

design in the future.
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CHAPTER 5

FAST EVALUATION OF SELF-ENERGY

MATRICES IN ATOMISTIC SIMULATIONS

Besides the heavy computational cost of obtaining the wave function or the

Green’s function of the device region, another major part of the computa-

tional burden is the calculation of self-energy matrices. The calculation in

atomistic schemes usually requires dealing with matrices of the size of a unit

cell in the leads. Since a unit cell always consists of several planes (for ex-

ample, in silicon nanowire, four atomic planes for [100] crystal orientation

and six for [111] and [112]), it is shown in this chapter that a condensed

Hamiltonian matrix can be constructed with reduced dimension (∼ 1/4 of

the original size for [100] and ∼ 1/6 for [111] and [112] in the nearest neigh-

bor interaction) and thus greatly speeding up the calculation. Examples of

silicon nanowires with sp3d5s∗ basis set and the nearest neighbor interaction

are given to show the accuracy and efficiency of the proposed methods.

5.1 Introduction

Non-equilibrium Green’s function (NEGF) approach [41,97] has been widely

adopted to simulate quantum transport in nanoscale devices. However, the

large computational cost of this method limits its application to small prob-

lems. One major part of computational cost is the inversion of the large

Hamiltonian matrix so as to obtain the Green’s function of the device. Con-

siderable effort has been made to reduce the complexity, such as recursive

Green’s function algorithm [34], mode space approaches [28,30], contact block

reduction method [35,36], and the recent R-matrix method [37,38]. Another

major source of the cost is the open boundary treatment, which is expressed

explicitly through the self-energy matrices. In the effective mass approxima-

tion [30, 37], the self-energy matrices can be obtained for the whole energy

band once the eigenmodes of the leads are solved [60]. Beyond the effective
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mass approximation, such as the ab initio methods [26] and the empiri-

cal tight-binding approaches [38], however, the self-energy matrices must be

evaluated for each energy point individually, further increasing the compu-

tational burden. The tight binding models will be the focus of this work, as

they are well-suited for nanodevice modeling due to limited-range interac-

tions and reasonably-sized basis sets [98].

Traditionally, there are roughly two kinds of approaches for self-energy

evaluation [99], one is through iterative evaluation of the surface Green’s

function [100], the other is by solving the Bloch modes of the leads [101–103].

The underlining assumption of both approaches is that the leads are charac-

terized by a periodic potential and thus a principle layer [104,105] (usually a

unit cell in tight-binding schemes) can be defined with translational invari-

ance along the leads. The former approach usually requires many inversions

of a Hamiltonian matrix of the size of the unit cell. The latter one, instead,

requires solving a generalized eigenvalue problem (GEVP) for a matrix of

the size twice that of the unit cell.

Several improvements that speed up the calculation have been developed

over the past years. The widely used decimation algorithm [104] greatly

improves the convergence of the iterative method by reducing the iteration

steps from N to log(N). The shift-and-invert method transforms the GEVP

to a normal eigenvalue problem (NEVP) [106]. The Krylov subspace method

reduces the cost of the GEVP approach by computing only a portion of the

eigenmodes that have contribution to the transmission [77]. However, the

calculation is still very slow when the size of the unit cell matrix becomes very

large. By imposing absorbing boundary conditions into the leads, the open

system is transformed to a closed system and the surface Green’s function

(and then the self energy) can be constructed for any energy by spectral

representation [107]. But this should be designed very carefully in order to

eliminate possible reflections (less reflection with more absorbing layers, but

with more computational cost).

However, by taking a closer look at the structure of the unit cell, it is easy

to find that there are some redundancies when these traditional methods are

applied to tight-binding schemes. Take silicon (or germanium) for example,

the [100] crystal direction nanowire consists of four atomic planes in the

unit cell and the [111] (or [112]) direction consists of six planes, as shown

in Fig. 5.1. Moreover, take the nearest neighbor tight binding scheme [23]
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for example, the surface Green’s function of the size of the unit cell is not

needed, but actually the size of an atomic plane is needed. Despite the

method in [108], which transforms the GEVP to a NEVP of reduced size,

it calculates the whole surface Green’s function of the size of the unit cell

and at the same time involves inverting a matrix of the size of the unit cell

that incurs additional cost. In fact, due to the short-range interactions, it

is possible to compress the Hamiltonian matrix of a unit cell to that of an

atomic plane. Then, after some slight modifications, the decimation method

and the eigenvalue methods can be employed to calculate the surface Green’s

function (and then the self energy). The gain is obvious, as we are now

dealing with a much smaller matrix (approximately by a factor of 1/4 for

[100] and 1/6 for [111] and [112]).

Figure 5.1: Cross section and profile of a unit cell for silicon nanowires along
the [110] direction (a and b), [100] direction (c and d), and the [111] direc-
tion (e and f). The unit cell consists of two, four, and six atomic planes,
respectively. Different planes are denoted with different colors.

In Section 5.2, the condensation of the Hamiltonian matrix (in the nearest

neighbor tight-binding schemes) for the semi-infinite leads is derived in detail,

followed by the applications of the decimation approach and the eigenvalue
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approach, respectively. Some numerical examples are provided in Section 5.3

to show the accuracy and the efficiency. In Section 5.4, the methods in this

chapter are generalized to second-near (and third-near) neighbor interaction

schemes. Section 5.5 gives a brief summary and also some possible extensions.

5.2 Description of the Methods

5.2.1 Condensation of the Hamiltonian Matrix

A typical two-probe system as illustrated in Fig. 5.2 is considered here, where

the system Hamiltonian is divided into HL, HD, and HR. The self energy

calculation for the right lead will be the focus as the left lead can be done

similarly. The Green’s function matrix gR for the right lead at energy point

E is defined as (
EI−HR

)
gR = I, (5.1)

where I is the identity matrix. Orthogonal basis has been assumed here;

non-orthogonal basis case can be done by replacing EI with overlap matrix

ES.

Take the nearest neighbor interaction scheme for example (the generaliza-

tion to second-near or third-near neighbor interaction schemes is discussed

in Section 5.4), the matrix HR can be written in a block tridiagonal form

and gR is usually a full matrix,

HR =




H1,1 H1,2 0 · · ·
H

†

1,2 H2,2 H2,3 · · ·
0 H

†

2,3 H3,3 · · ·
...

...
...

. . .



, gR =




g1,1 g1,2 g1,3 · · ·
g2,1 g2,2 g2,3 · · ·
g3,1 g3,2 g3,3 · · ·
...

...
...

. . .



, (5.2)

where Hp,q with p = q denotes the on-site Hamiltonian for atomic plane p

and Hp,q with p 6= q denotes the coupling Hamiltonian between atomic plane

p and q, H
†

p,q is the Hermitian conjugate of Hp,q. H1,0 = 0 has been used

since the semi-infinite lead terminates at plane 1.

According to (5.1) and (5.2), the Green’s function gp,q for q = 1 should
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Figure 5.2: Schematic representation of a two-probe system. The system
consists of a device part with Hamiltonian HD and two semi-infinite leads
with Hamiltonian HL and HR. The system is divided into many atomic
planes and the right lead is described with atomic plane Hamiltonian Hp,p

(p = 1, 2, · · · ) as illustrated.

satisfy the following equation,




EI1,1 −H1,1 −H1,2 0 · · ·
−H

†

1,2 EI2,2 −H2,2 −H2,3 · · ·
0 −H

†

2,3 EI3,3 −H3,3 · · ·
...

...
...

. . .







g1,1

g2,1

g3,1
...




=




I1,1

0

0
...



.

(5.3)

Assuming that a unit cell in the lead consists of P atomic planes, the

Hamiltonian then repeats every P atomic planes, i.e.,

HnP+p,nP+q = Hp,q, (p = 1, 2, · · · , P ; q = p, p+ 1; n = 1, 2, · · · ) . (5.4)

Utilizing this fact, equation (5.3) can be rewritten in the following format

with matrix partitioning,




EI1,1 −H1,1 B 0 0 0 · · ·
B

†
C D 0 0 · · ·

0 D
†
EI1,1 −H1,1 B 0 · · ·

0 0 B
†

C D · · ·
...

...
...

...
...

. . .




•




g1,1

g2∼P,1

gP+1,1

g(P+2)∼2P,1

g2P+1,1
...




=




I1,1

0

0

0
...




, (5.5)
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where several new blocks have been defined,

B =
(
−H1,2, 0, · · · , 0

)
, D =




0
...

0

−HP,P+1



, (5.6)

C =




EI2,2 −H2,2 −H2,3 · · · 0

−H
†

2,3 EI3,3 −H3,3 · · · 0
...

...
. . .

...

0 0 · · · EIP,P −HP,P



, (5.7)

g2∼P,1 =




g2,1

g3,1
...

gP,1



, g(P+2)∼2P,1 =




gP+2,1

gP+3,1
...

g2P,1



. (5.8)

Eliminating g2∼P,1, g(P+2)∼2P,1, · · · , in equation (5.5) results in,




EI1,1 −Ξs −Π 0 · · ·
−Π

†
EI1,1 − Ξ −Π · · ·

0 −Π
†

EI1,1 −Ξ · · ·
...

...
...

. . .







g1,1

gP+1,1

g2P+1,1
...




=




I1,1

0

0
...



,

(5.9)

where,

Ξs = H1,1 +BC
−1
B

†
, (5.10)

Ξ = H1,1 +BC
−1
B

†
+D

†
C

−1
D, (5.11)

Π = BC
−1
D. (5.12)

From equation (5.9), a condensed Hamiltonian can be identified that only

consists of planes p = nP + 1 (n = 0, 1, · · · ), i.e.,

Hcnd =




Ξs Π 0 · · ·
Π

†
Ξ Π · · ·

0 Π
†

Ξ · · ·
...

...
...

. . .



, (5.13)
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where the blocks are of the size ∼ (N/P )× (N/P ) with N being the matrix

dimension of a unit cell. Note that the condensed on-site Hamiltonian Ξs of

plane 1 differs from condensed on-site Hamiltonian Ξ of plane p = nP + 1

(n = 1, 2, · · · ), as Ξs only includes the influences of right side planes (plane

2 to P ) while Ξ includes the influences of both sides (plane (n− 1)P + 2 to

nP and plane nP +2 to (n+ 1)P ). The condensed coupling Hamiltonian Π

connects plane p = nP + 1 to plane p = (n+ 1)P + 1 directly.

The problem now is to evaluate the expressions of Ξs, Ξ, and Π as shown

in (5.10)-(5.12). This requires inversion of matrix C of the size ∼
(
P−1
P
N
)
×(

P−1
P
N
)
, which can be done efficiently since it is highly sparse. Alternatively,

the full inversion can be avoided by noticing that the matrix B or D consists

of only one non-zero block and thus several blocks inC
−1

are actually needed.

In fact, by denoting C
−1

as

C
−1

=




C̃2,2 C̃2,3 · · · C̃2,P

C̃3,2 C̃3,3 · · · C̃3,P

...
...

. . .
...

C̃P,2 C̃P,3 · · · C̃P,P



, (5.14)

due to (5.6), it is found that only C̃2,2, C̃2,P , and C̃P,P are relevant. Further-

more, these blocks can be calculated efficiently with forward and backward

recursions since C is block tridiagonal. The details are as follows:

ALGORITHM 0 (Recursive Condensation of the Hamiltonian Matrix):

1. H̃P,P =
(
EIP,P −HP,P

)−1

2. For p = P − 1, P − 2, · · · , 2 (in this order), do {
3. H̃p,p =

(
EIp,p −Hp,p −Hp,p+1H̃p+1,p+1H

†

p,p+1

)−1

4. H̃p,P = H̃p,pHp,p+1H̃p+1,P }
5. C̃2,2 = H̃2,2, C̃2,P = H̃2,P

6. For p = 3, · · · , P (in this order), do {
7. C̃p,p = H̃p,p + H̃p,p

(
Hp,p−1C̃p−1,p−1H

†

p,p−1

)
H̃p,p }

8. Obtain Ξs = H1,1 +H1,2C̃2,2H
†

1,2

9. Obtain Ξ = Ξs +H
†

P,P+1C̃P,PHP,P+1

10. Obtain Π = H1,2C̃2,PHP,P+1

With this condensed Hamiltonian (5.13) of reduced size, it is now ready

to calculate the self energy either by the iterative approach or the eigenvalue
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approach as described separately in the following.

5.2.2 Iterative Approach

As seen from matrix (5.13), the translational invariance is broken by the first

block. Nevertheless, the decimation method [104] can still be applied to the

chain in (5.9).

The main idea is to continue eliminating gP+1,1, g3P+1,1, · · · , in equation

(5.9), which results in,




EI1,1 −Ξ
1

s −Π
1

0 · · ·
−Π

1†
EI1,1 −Ξ

1 −Π
1 · · ·

0 −Π
1†

EI1,1 − Ξ
1 · · ·

...
...

...
. . .







g1,1

g2P+1,1

g4P+1,1
...




=




I1,1

0

0
...



,

(5.15)

where,

Ξ
1

s = Ξs +Π
(
EI1,1 −Ξ

)−1
Π

†
, (5.16)

Ξ
1
= Ξ+Π

† (
EI1,1 − Ξ

)−1
Π+Π

(
EI1,1 −Ξ

)−1
Π

†
, (5.17)

Π
1
= Π

(
EI1,1 − Ξ

)−1
Π, (5.18)

Π
1†
= Π

† (
EI1,1 −Ξ

)−1
Π

†
. (5.19)

Now equations (5.15) defines a new chain with planes p = 2nP + 1 (n =

0, 1, 2, · · · ).
The above process is repeated by eliminating g2P+1,1, g6P+1,1, · · · , in

(5.15), which results in a yet new chain with planes p = 4nP + 1 (n =

0, 1, 2, · · · ), and the process is repeated continuously. After i repetitions, a

chain with planes 2inP + 1 (n = 0, 1, 2, · · · ) will be obtained, where the on-

site Hamiltonian are Ξ
i

s and Ξ
i
, the coupling Hamiltonian are Π

i
and Π

i†
.

It should be noted that Π
i
and Π

i†
will become weaker and weaker. The

process can be terminated when the coupling is small enough (Π
i ≈ 0 and

Π
i† ≈ 0), and then the surface Green’s function g1,1 can be computed by,

g1,1 =
(
EI1,1 −Ξ

i

s

)−1

. (5.20)
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Finally, the self energy is constructed through g1,1 by

Σ = H0,1g1,1H
†

0,1. (5.21)

The above approach is implemented in the following way,

ALGORITHM I (Iterative method):

0. Do ALGORITHM 0.

1. Let E∗ = E + iη, where η is an infinitesimal positive quantity. Let

A =
(
E∗I1,1 − Ξ

)
, As =

(
E∗I1,1 −Ξs

)
. Note that A 6= As.

2. While (max
(∣∣Π

∣∣ ,
∣∣∣Π†
∣∣∣
)
> δ), do {

3. Solve AX
Π
= Π for X

Π

4. Solve AX
Π

† = Π
†
for X

Π
†

5. Update A = A−ΠX
Π

† −Π
†
X

Π

6. Update As = As −ΠX
Π

†

7. Update Π = ΠX
Π

8. Update Π
†
= Π

†
X

Π
† }

9. Solve AsY = H
†

0,1 for Y

10. Obtain the self energy Σ = H0,1Y

It should be emphasized that, although the decimation may be directly

applied to the original chain in (5.3), the implementation here is systematic

and much simpler, as now all the layers (except the first one) in (5.13) are

made identical no matter how many different atomic planes there are in a

unit cell.

5.2.3 Eigenvalue Approach

The eigenvalue approach [102, 103], however, cannot be directly applied to

the chain in (5.13). Fortunately, it can still be applied to the chain starting

from layer 2, and the extra treatment of layer 1 can be done without too

much effort.

First, let’s define a new semi-infinite chain that starts from layer 2 of

(5.13). By using Bloch wave condition

Ψp+P = λΨp, (5.22)

where λ = eikd with k real (complex) for propagating (evanescent) modes,
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we have the following equation for Bloch waves,

−λ−1Π
†
Ψp +

(
EI1,1 −Ξ

)
Ψp − λΠΨp = 0. (5.23)

This equation can be solved by transforming to a GEVP of size 2N1 (N1 is

the size of Ξ), i.e.,

(
0 I1,1

−T
† −D

)(
Ψp

Ψp+P

)
= λ

(
I1,1 0

0 T

)(
Ψp

Ψp+P

)
, (5.24)

where the blocks are

D = EI1,1 − Ξ, T = −Π. (5.25)

Second, let’s define a new Green’s function g′ for this new semi-infinite

chain, the blocks g′
p,q for q = 1 should satisfy the following,

(
EI1,1 −Ξ

)
g′
1,1 = I1,1 +Πg′

P+1,1, (5.26)

(
EI1,1 −Ξ

)
g′
P+1,1 = Π

†
g′
1,1 +Πg′

2P+1,1, (5.27)

...

Then g′
1,1 can be expanded through Bloch modes of the chain,

g′
1,1 = U

+
C

+
, (5.28)

where matrixU
+
(of size N1×M) consists ofM right-going normalized Bloch

vectors constructed from the first N1 elements of the solution of (5.24), and

matrix C
+
(of sizeM×N1) consists of N1 vectors of corresponding expansion

coefficients, i.e.,

U
+
=
(
u+
1 ,u

+
2 , · · · ,u+

M

)
, (5.29)

C
+
=
(
c+1 , c

+
2 , · · · , c+N1

)
. (5.30)

Since the waves go outward from the δ source, g′
P+1,1 can be expressed as,

g′
P+1,1 = U

+
Λ

+
C

+
, (5.31)
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where the propagator Λ
+
is a M ×M diagonal matrix with elements

Λ
+

mm = λ+m. (5.32)

By defining pseudo-inverse Ũ
+
of U

+
, i.e.,

Ũ
+
U

+
= I, (5.33)

and using (5.31), g′
P+1,1 can be related to g′

1,1 through the following way

g′
P+1,1 = U

+
Λ

+
Ũ

+
U

+
C

+
= U

+
Λ

+
Ũ

+
g′
1,1 = Fg′

1,1, (5.34)

where a new propagator was defined

F = U
+
Λ

+
Ũ

+
. (5.35)

Similarly, the following holds

g′
2P+1,1 = Fg′

P+1,1. (5.36)

Putting (5.34) and (5.36) into (5.26) and (5.27), we have

(
EI1,1 − Ξ−ΠF

)
g′
1,1 = I1,1, (5.37)

(
EI1,1 −Ξ−ΠF

)
Fg′

1,1 = Π
†
g′
1,1. (5.38)

From above two we can solve for the surface Green’s function g′
1,1, which is

g′
1,1 = FΠ

†−1
. (5.39)

In the case when Π
†
is not invertable, we solve for self energy directly, i.e.,

Σ
′
= Πg′

1,1Π
†
= ΠF. (5.40)

Finally, the surface Green’s function for the original chain (including layer

1 of (5.13)) is obtained as,

g1,1 =
(
EI1,1 −Ξs −Σ

′
)−1

, (5.41)
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and the self energy is constructed using,

Σ = H0,1g1,1H
†

0,1. (5.42)

The above approach (the approach is self-consistent since we can verify

that Eqs. (5.28), (5.31), and (5.36) satisfy Eqs. (5.26) and (5.27) by direct

substitution) is implemented in the following way,

ALGORITHM II (Eigenvalue method):

0. Do ALGORITHM 0.

1. Let A =

(
0 I1,1

−T
† −D

)
, and B =

(
I1,1 0

0 T

)
.

2. Instead of solving a generalized eigenvalue problem AΨ = λBΨ, we

resort to a normal eigenvalue problem by constructing Ã =
(
A− σB

)−1
B,

where σ is a shift. Note that the 2×2 block matrix
(
A− σB

)
can be inverted

efficiently by using the Schur complement block [106].

3. Solve the normal eigenvalue problem ÃΨ = λ̃Ψ, obtain the eigenpairs(
λ̃,Ψ

)
.

4. Obtain the eigenpairs of the original problem:
(
λ = λ̃−1 + σ,Ψ

)
.

5. Retrieve all the eigenpairs corresponding to the right-going propagating

modes with |λ| = 1; Retrieve a part of the eigenpairs corresponding to the

right-going evanescent modes with ε < |λ| < 1, where ε can be truncated to

include only slowly decaying evanescent modes. Construct a N1 ×M matrix

U
+
and a M ×M diagonal matrix Λ

+
from these eigenpairs.

6. Obtain pseudo-inverse Ũ
+
of U

+
by factorizing U

+
= QR and solving

RŨ
+
= Q

†
.

7. Construct F according to (5.35). Solve
(
EI1,1 −Ξs −ΠF

)
Y = H

†

0,1

for Y. Note that this is the only step where layer 1 (Ξs) comes in.

8. Obtain the self energy Σ = H0,1Y.

5.2.4 Computational Cost

To reduce the Hamiltonian to (5.13), as shown in ALGORITHM 0, it requires

P − 1 inversions of the small matrices of the size ∼ (N/P ). The cost is

(P − 1) × O ((N/P )3), which is very cheap. Once (5.13) is obtained, the

computational cost of ALGORITHM I is (M + 1)×O ((N/P )3) if the process

converges in M steps (usually 20 to 50 steps, depending on the value of

75



η). This is a tremendous reduction compared with the original decimation

method [104], where the complexity is (M + 1)×O (N3) (here it is assumed

that the inversions are carried out for matrices of the size of a unit cell).

The computational cost of ALGORITHM II is O ((2N/P )3) + O ((N/P )3),

where the first term is due to step 3, and the second term due to steps 2,

6, and 7. This is also a significant improvement over the original eigenvalue

approach [101–103], the cost of which is about O ((2N)3) + O (N3). Note

that P = 4 for [100] orientation and P = 6 for [111] and [112].

5.3 Results and Discussion

The testing examples are rectangular silicon nanowires. The representation of

the Hamiltonian matrix is through sp3d5s∗ tight binding scheme with nearest

neighbor interaction (10 orbits per atom without spin-orbit coupling, and 20

orbits per atom with spin-orbit coupling) [23]. The dangling sp3 hybridized

bonds at the surfaces are passivated using hydrogen-like atoms [109]. This

tight binding scheme has been widely employed to study nanowire transistors.

Please refer to Ref. [22, 110] for the details of the Hamiltonian construction.

5.3.1 Validation of the Method

First, to validate these methods, the transmission spectrum of an unbiased

perfect silicon nanowire was calculated with Green’s function approach [41,

97]. The self energies involved were obtained by ALGORITHM I and II

respectively. The results are shown in Fig. 5.3, also shown are the E-k

dispersion and density of states (DOS) calculated for an infinite periodic

nanowire.

It is clearly seen that the transmission is an integer over the whole band

and it steps up or down when a transmission channel is opened or closed. The

transition points of the transmission match perfectly with the positions of

the one dimensional DOS peaks (van Hove singularities), indicating that our

transmission calculation is reliable, and in turn, validating our self energy

calculations. Note that to explain the transmission in valance band, it is

better to trace through the E-k diagram since there are additional DOS peaks

which do not correspond to the van Hove singularities and the number of
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transmission channel remains unchanged when one goes through these peaks.

Similar phenomena can be observed for a [111] oriented silicon nanowire (see

Fig. 5.4).
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Figure 5.3: (a) and (b): E-k relation, (c) and (d): transmission spectrum and
DOS, for an ideal [100] oriented silicon nanowire with cross-section ∼ 2nm×
2nm. (a) and (c): for valance band, and spin-orbit coupling is included in the
calculation, (b) and (d): for conduction band, and spin-orbit coupling is not
included in the calculation. No external bias is applied. The transmissions
calculated by the two methods in this chapter lie almost on top of each other.

5.3.2 Comparison with Other Methods

Next, to show the efficiency, the run times of these algorithms along with

those of the existing methods are list in Table 5.1.

For the iterative methods (methods 1, 2, and 3), η = 10−9eV is chosen

that the iterative processes converge in a certain number of steps. It is seen

that ALGORITHM I can greatly speed up the simulation compared with

the fastest iterative one, i.e., method 2. It should be mentioned that in this
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work, method 2 is implemented by inverting the matrices of the unit cell.

In particular, for [100] and [111] directions, an acceleration factor of about

40 to 80 is gained. Note that for these two cases, sparse matrix operations

have been implemented in method 2 as the matrices involved have many zero

blocks.
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Figure 5.4: Same plots as Fig. 5.3, except that the silicon nanowire is [111]
oriented.

While among the eigenvalue approaches (methods 4, 5, and 6), ALGO-

RITHM II is the best and it slightly outperforms the fastest existing one,

i.e., method 5. Note that sparse matrix operations have been implemented

in method 5 so that the matrix inversion involved is very efficient.

To include spin-orbit interaction, which is important for hole transport,

the computational cost is significantly increased. The reason is two fold, one

is that the number of orbits doubles, the other is the introduction of complex

operations (in the eigenvalue approaches) as a result of complex Hamiltonian

elements. Generally speaking, ALGORITHM I and II are comparable in

terms of speed when spin-orbit coupling is included; ALGORITHM II shows

advantage when spin-orbit coupling is not included due to the real arithmetic,
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Table 5.1: List of run times (in seconds) for self energy evaluation in one
energy point for silicon nanowires with cross section ∼ 2nm× 2nm. Calcula-
tions are carried out for three crystal directions ([110], [100], and [111]) and
for two basis sets (without and with spin-orbital coupling). Six methods are
implemented (in MATLAB). The quantities in the brackets are the speed
degradation factors compared with the fastest method. The simulations are
performed on an Intel Xeon processor (restricted to four cores, 2.66 GHz).

Orientation [110] [100] [111]

Number of planes p.u.c 2 4 6

Number of atoms p.u.c 88 128 208

Matrix size p.u.c 880 1280 2080

1. Iterative methoda 1816 (386×) 819.4 (394×) 239.9 (79.2×)

2. Decimation [104] 34.3 (7.3×) 86.6 (41.6×) 169.2 (55.8×)

3. ALGORITHM I 4.71 2.08 3.03

4. NEVP method [106] 5.04 (5.5×) 11.1 (21.8×) 38.9 (45.2×)

5. Advanced NEVP [108] 1.52 (1.7×) 1.77 (3.5×) 3.43 (4.0×)

6. ALGORITHM II 0.92 0.51 0.86

Matrix size p.u.c 1760 2560 4160

1. Iterative methodb 13475 (409×) 5468 (390×) 1590 (83.4×)

2. Decimation [104] 262.6 (8.0×) 722.0 (51.5×) 1473 (77.2×)

3. ALGORITHM I 32.91 14.02 19.07

4. NEVP method [106] 108.6 (7.1×) 314.2 (40.9×) 1302 (92.4×)

5. Advanced NEVP [108] 22.36 (1.5×) 18.63 (2.4×) 36.47 (2.6×)

6. ALGORITHM II 15.26 7.69 14.09

aThis is done by repetitive use of relations,

g(n)
p,p =

(
E∗Ip,p −Hp,p −Hp,p+1g

(n)
p+1,p+1H

†

p,p+1

)−1

, for p = P, P − 1, · · · , 1, and
g
(n)
P+1,P+1 = g

(n−1)
1,1 .

bAs described in footnote (a) above.

which is not the case in ALGORITHM I since a small imaginary part is

introduced to ensure convergence.
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5.4 Generalization to the Second- and Third-Near

Neighbor Interaction Schemes

The methods proposed can be generalized to the second- and the third-near

neighbor (2NN and 3NN) interaction schemes. Take 2NN interaction for

example (3NN can be done in the same spirit), the Hamiltonian matrix in

terms of atomic planes takes the form,

HR =




H1,1 H1,2 H1,3 0 0 0 · · ·
H

†

1,2 H2,2 H2,3 H2,4 0 0 · · ·
H

†

1,3 H
†

2,3 H3,3 H3,4 H3,5 0 · · ·
0 H

†

2,4 H
†

3,4 H4,4 H4,5 H4,6 · · ·
0 0 H

†

3,5 H
†

4,5 H5,5 H5,6 · · ·
0 0 0 H

†

4,6 H
†

5,6 H6,6 · · ·
...

...
...

...
...

...
. . .




, (5.43)

which can be rewritten in a block tridiagonal form,

HR =




H̃1,1 H̃1,2 0 · · ·
H̃

†

1,2 H̃2,2 H̃2,3 · · ·
0 H̃

†

2,3 H̃3,3 · · ·
...

...
...

. . .



, (5.44)

where the blocks are

H̃1,1 =

(
H1,1 H1,2

H
†

1,2 H2,2

)
, H̃22 =

(
H3,3 H3,4

H
†

3,4 H4,4

)
, H̃33 =

(
H5,5 H5,6

H
†

5,6 H6,6

)
,

H̃12 =

(
H1,3 0

H2,3 H2,4

)
, H̃23 =

(
H3,5 0

H4,5 H4,6

)
. (5.45)

Now, the method in Section 5.2.1 can be applied to equation (5.44) to

condense the Hamiltonian matrix into a small one which consists only the

planes p = nP + 1 and p = nP + 2, where n = 0, 1, 2, · · · . Thus, a size

reduction factor of ∼ 1/2 is gained for [100] orientation and ∼ 1/3 for [111]

and [112]. With the condensed Hamiltonian matrix, the self energy matrix

can be evaluated with the methods described in Sections 5.2.2 and 5.2.3.
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5.5 Summary

In order to efficiently simulate quantum transport in nanodevices within

NEGF or wave function formalism, two algorithms are proposed for the fast

evaluation of self-energy matrices in atomistic simulations. The efficiency

of the algorithms is based on constructing a condensed Hamiltonian with

reduced size for the semi-infinite leads. The condensation successfully takes

advantage of the crystal structures together with the short-range interac-

tions of tight binding schemes. The reliability of the methods has been

demonstrated by studying the transmission of an ideal silicon nanowire in

the nearest neighbor interaction scheme. Extensive numerical examples and

comparisons have shown that the methods can speed up the decimation ap-

proach by 7 to 80 times and can also out-perform the advanced eigenvalue

approach by several times.

The methods are particularly useful when the unit cell in the leads is

made very long due to the presence of doping atoms. This situation is very

common in nano-electronics nowadays as the doping density (per nanometer)

in the leads is usually very low as a result of the ultra-small cross sections.

Furthermore, the methods can be applied to ab initio models as long as the

interaction range is short compared with the unit cell length.
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Numerical Methods

In this thesis, several numerical methods are developed to improve the effi-

ciency of nanoelectronic transport simulations, with effective mass, k · p, and
tight binding models adopted as the Hamiltonian models. It is found that

the numerical properties of the transport problems are strongly related to

the Hamiltonian model employed.

For the effective mass model, AWE combined with CFH algorithm in Chap-

ter 2 can reduce by over 10× the number of energy points needed for getting

the wide band results. The algorithm is valid for any number of leads, ar-

bitrary device geometry, and various potential profile. This makes a very

powerful tool for studying n-type devices with scattering induced by geo-

metrical variations (surface roughness for instance) and potential variations

(ionized impurities for example). In the case of multiband k · p simulations,

the MOR methods in Chapters 3 and 4 construct reduced models which are

nearly 100× smaller, making it possible to simulate hole transport and band-

to-band tunneling in large cross-section nanowire devices. The algorithms in

Chapter 5 improve the self energy evaluation by condensing the atomistic

Hamiltonian of the leads. Acceleration up to 80× is demonstrated for silicon

nanowires, and the acceleration will be larger if the unit cell in the leads is

longer. Moreover, the condensation is exact with no approximation made

and can be applied to any atomistic schemes.

Although the results are promising, there is still some room for improve-

ments.

The Ax = b problem in Chapter 2 is based on sparse LU decomposi-

tion, the computational cost of which scales as O (NM2) where M is the

bandwidth of A. The bandwidth M is usually proportional to the nanowire
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cross section. Therefore, iterative solvers with lower complexity, like conju-

gate gradient (CG) based solvers, should be used for large nanowires. As

there are multiple right hand sides, block methods can be used to generate

block Krylov subspace, which is cheaper than solving each right hand side

individually.

The eigenvalue solution in Chapter 3 is still very costly, especially when the

nanowire size is large. In fact, the shift-and-invert Krylov subspace solvers

scale as O (N2) where N is the matrix size of a layer. As the eigenvalue prob-

lems need to be solved for each layer, the cost may be reduced by reusing the

Krylov subspace information generated in the neighboring layers, instead of

generating the Krylov subspace individually. The other way is to parallelize

the calculation of each layer, since they are independent of each other. The

recursive Green’s function algorithm for each energy point can be easily par-

allelized as well. In Chapter 4, the discretization is in Fourier space, which

results in a dense matrix (due to the potential terms, although the kinetic

terms are still relatively sparse). If Krylov subspace based iterative solvers

are used to solve the eigenvalue problem, the matrix-vector product step will

cost O(N2). However, the matrix-vector product can be separated into two

parts, the sparse matrix-vector product part (for the kinetic terms) can be

done with O(N) complexity, and the dense matrix-vector product part (for

the potential term) is a convolution that can be accelerated by Fast Fourier

Transform (FFT) algorithm which is O (N log (N)) in complexity. This might

be useful if the matrix in Fourier space is still too large to be solved directly.

Self energy matrix calculation in Chapter 5 could also be improved. Note

that once the self energy matrix is obtained for a certain bias, it can be

reused in the simulation of other biases. Therefore, it is better to calculate

the self energy once and then store it in the memory or even in the hard disk

for later.

6.2 Device Physics

By applying the developed methods, several emerging electronic devices are

studied. In particular, p-type junctionless transistors and source-pocket InAs

tunneling FETs operating in the quantum ballistic transport limit are studied

for the first time. It is found that tunneling and band structure effects have
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significant influences on the performances of junctionless transistors, and thus

the doping density, channel orientation, and channel size should be carefully

optimized in order to outperform classical inversion mode transistors. Source

pocket is a good performance booster for tunneling FETs as it decreases

(increases) the tunneling length at the “on” (“off”) state and thus improves

the subthreshold swing, but such effect tends to be diminished when the

electrostatic integrity is improved by using GAA structure together with

high-k gate oxide.

There are also some physical issues in need of further investigation.

First, inelastic scattering is not included in this work. It plays a very

important role in classical devices, and still exists when devices shrink to

nanoscale. Recent studies show that phonon-scattering has a significant im-

pact on the I-V curves of nanoscale transistors [86, 111]. Electron-phonon

scattering plays an important role in junctionless transistors as well [62] and

thus should be taken into account in the future work.

Second, for ultra small devices and new materials (like MoS2 [112]) with un-

known parameters, first-principles calculations are necessary. First-principles

method combining density functional theory (DFT) and NEGF approach [26]

has found applications in simulation of exotic molecular devices. It is a

parameter-free approach and treats exchange-correlation effects rigorously.

But the computational cost is so heavy that most codes can only deal with

thousands of atoms or less. It is worth mentioning that significant im-

provements have been made recently by employing parallelization and GPUs

(graphics processing unit) [113]. The other choice is the density functional

tight binding (DFTB) method [114,115], which is a compromise between the

accuracy of DFT and the efficiency of tight binding method.

Third, multi-scale method combining the efficiency of classical models and

the accuracy of quantum models is another feasible approach to efficient elec-

tronic device modeling [116, 117]. Fourth, electronic transport is inherently

coupled with phonon transport, so, multi-physics solution could be impor-

tant in understanding some electronic and thermal problems. With regard to

optoelectronic applications, especially devices incorporating quantum-well or

quantum dot structures [118], there is a call for solving quantum transport

equations and Maxwell’s equations together.
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APPENDIX A

DERIVATION OF THE

LANDAUER-BÜTTIKER FORMULA

Because the electron density of a single k state in a large conductor of length

L is 1/L, the current I+ carried by the +k states can be calculated by [97],

I+ =
e

L

∑

k

vf+ (E) =
e

L

∑

k

1

h̄

∂E

∂k
f+ (E) , (A-1)

where the velocity v = (1/h̄) (∂E/∂k) is substituted and f+ (E) specifies the

electron occupation probability.

Since density of states in k space is L/2π, the above summation can be

converted into integral by the following prescription

∑

k

→ 2× L

2π

∫
dk, (A-2)

where the prefactor 2 accounts for the spin, which results in

I+ =
2e

h

∫
∂E

∂k
f+ (E) dk. (A-3)

Now, if an electron with energy E comes in from contact α′ with mode n

(denoting as χα
′,n), it will induce wave function in the device (denoting as

ψα
′,n

D (E)). The probability of the electron going out to another contact α

with mode m (denoting as χα,m) is then,

Pmn
αα′ (E) = |ψα′,n†

D (E) · χα,m|2, (A-4)

which should carry current according to (A-3) as

Imnαα′ =
2e

h

∫
Pmn
αα′ (E)

∂Eα,m

∂k
fα

′

(E) dk. (A-5)

Note that the velocity in contact α is used, and the Fermi function in contact
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α′ is used. The above equation can be modified to

Imnαα′ =
2e

h

∫
Pmn
αα′ (E)

∂Eα,m/∂k

∂Eα′,n/∂k

(
∂Eα′,n/∂k

)
fα

′

(E) dk

=
2e

h

∫
Pmn
αα′ (E)

∂Eα,m/∂k

∂Eα′,n/∂k
fα

′

(E) dE

=
2e

h

∫
Tmnαα′ (E) fα

′

(E) dE, (A-6)

where

Tmnαα′ (E) = Pmn
αα′ (E)

∂Eα,m/∂k

∂Eα′,n/∂k
= Pmn

αα′ (E)
kα,m

kα′,n
, (A-7)

is the transmission from contact α′ with mode n to contact α with mode

m. Note that the second equation in (A-7) is only valid for parabolic band

structure, i.e., effective mass approximation.

When there are multiple modes in the contacts, we have to take into ac-

count all of them to get the current from α′ to α, i.e.,

Iαα′ =
2e

h

∫
Tαα′ (E) fα

′

(E) dE, (A-8)

where

Tαα′ (E) =
∑

m,n

Tmnαα′ (E) , (A-9)

Similarly, we have the current from α to α′, i.e.,

Iα′α =
2e

h

∫
Tα′α (E) f

α (E) dE. (A-10)

It can be argued that Tα′α (E) = Tαα′ (E), so the net current from α′ to α

is,

Îαα′ = Iαα′ − Iα′α =
2e

h

∫
Tαα′ (E)

[
fα

′

(E)− fα (E)
]
dE. (A-11)

Finally, if there are more than two contacts, the above Landauer formula

should be generalized to Landauer-Büttiker formula to get the net current of

contact α,

Îα =
2e

h

∑

α′ 6=α

∫
Tαα′ (E)

[
fα

′

(E)− fα (E)
]
dE. (A-12)
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APPENDIX B

INTEGRAL EQUATION FORMULATION

Let us consider an arbitrary quantum device as shown in Fig. B.1.

Figure B.1: An arbitrary quantum device and notations.

We let M−1 (r)= h̄2

2m(r)
. Then, the equation in the device region is

−∇ ·M−1 (r)∇ψD (r) + [V (r)− E]ψD (r) = 0. (B-1)

In the contact region, the governing equation is

−∇ ·M−1 (r)∇ψC (r) + [V (r)− E]ψC (r) = S (r) , (B-2)

with the boundary conditions that

ψD = ψC on ΓC , (B-3)

M−1
D n · ∇ψD =M−1

C n · ∇ψC on ΓC , (B-4)

ψD = 0 on ΓD, (B-5)

ψC = 0 on ΓO, (B-6)

and ψC satisfies the outgoing wave radiation condition at the far end of the

contact.
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We define a Green’s function for the device region

−∇ ·M−1 (r)∇gD (r, r′) + [V (r)−E] gD (r, r′) = −δ (r− r′) . (B-7)

Multiplying (B-1) by gD (r, r′) from the left, and (B-7) by ψD (r), and sub-

tracting to get

− gD (r, r′)∇ ·M−1 (r)∇ψD (r) + ψD (r)∇ ·M−1 (r)∇gD (r, r′)

= ψD (r) δ (r− r′) . (B-8)

Integration (B-8) over VD, and using Green’s theorem, we have

−
∫

ΓD+ΓC

dSn ·
[
gD (r, r′)M−1 (r)∇ψD (r)− ψD (r)M−1 (r)∇gD (r, r′)

]

=

{
ψD (r′) , r′ ∈ VD

0, r′ /∈ VD.
(B-9)

Swapping r and r′, we have

ψD (r) =

∫

ΓD+ΓC

dS ′n′·

[
−gD (r, r′)M−1 (r′)∇′ψD (r′) + ψD (r′)M−1 (r′)∇′gD (r, r′)

]
, r ∈ VD.

(B-10)

We can pick gD (r, r′) such that

gD (r, r′)=0, r ∈ ΓD + ΓC . (B-11)

Making use of (B-5) and (B-11), we have

ψD (r) =

∫

ΓC

dS ′ψD (r′)M−1 (r′)n′ · ∇′gD (r, r′). (B-12)

In the contact region, we define a Green’s function such that

−∇ ·M−1 (r)∇gC (r, r′) + [V (r)− E] gC (r, r′) = −δ (r− r′) . (B-13)
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By the same token as before, we have

−
∫

ΓO+ΓC

dS ′n′ ·
[
gC (r, r′)M−1 (r′)∇′ψC (r′)− ψC (r′)M−1 (r′)∇′gC (r, r′)

]

=

∫

VC

gC (r, r′)S (r′)dr′ +

{
ψC (r) , r ∈ VC

0, r /∈ VC .
(B-14)

We pick gC (r, r′) such that

gC (r, r′)=0 r ∈ ΓO, (B-15)

n′ · ∇′gC (r, r′)=0 r ∈ ΓC . (B-16)

Making use of (B-6), (B-15) and (B-16), we have

−
∫

ΓC

dS ′n′ · ∇′ψC (r′) gC (r, r′)M−1 (r′)

=

∫

VC

gC (r, r′)S (r′)dr′ + ψC (r) , r ∈ VC , (B-17)

or

ψC (r)=−
∫

VC

gC (r, r′)S (r′)dr′ −
∫

ΓC

dS ′n′ · ∇′ψC (r′)M−1 (r′) gC (r, r′),

(B-18)

or

ψC (r)=ψincC (r) +ψrefC (r) . (B-19)

We identify the first term in (B-18) to be the incident wave upon ΓC, while

the second term is the reflection from the device region.

Using (B-18) and (B-19) into (B-12), we have the integral equation

ψD (r) =

∫

ΓC

dS ′ψincC (r′)M−1 (r′)n′ · ∇′gD (r, r′)−

∫

ΓC

dS ′



∫

ΓC

dS ′′

−n′′·∇′′ψD(r′′)︷ ︸︸ ︷
n′′ · ∇′′ψC (r′′)M−1 (r′′) gC (r′, r′′)


M−1 (r′)n′ · ∇′gD (r, r′),

(B-20)
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which can be solved by method of moment (MoM).

To get a form similar to (2.16), we can write the above in operator notation

ψD =
(
τ · gtD

)t ·M−1 ·ψinc
C +

(
τ · gtD

)t ·M−1 · gC ·M−1 · τ ·ψD, (B-21)

where

τ ⇔ n′ · ∇′, (B-22)

ψD ⇔ ψD (r) , (B-23)

gD ⇔ gD (r, r′) , (B-24)

gC ⇔ gC (r, r′) , (B-25)

M
−1 ⇔ M−1 (r) . (B-26)

Eq. (B-21) can be rewritten as

ψD = gD · τ t ·M−1 ·ψinc
C + gD · τ t ·M−1 · gC ·M−1 · τ ·ψD, (B-27)

or

g−1
D ·ψD = τ t ·M−1 ·ψinc

C + τ t ·M−1 · gC ·M−1 · τ ·ψD, (B-28)

or (
g−1
D − τ t ·M−1 · gC ·M−1 · τ

)
ψD = τ t ·M−1 ·ψinc

C . (B-29)

Note that g−1
D = EI−H.
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APPENDIX C

THE MATRICES IN THE WAVE

FUNCTION APPROACH

Consider a typical case where there are two contacts (contact 1 and contact

2) and the directions ξα and ηα (α = 1, 2) are the same as x and y. A second

order central finite difference method (FDM) with the following formulas is

applied to discretize the 2D Schrödinger equation (2.1),

∇ ·
[

1

m∗ (x, y)
∇ψ
]

x=xi,y=yj

≈ 1

∆x2

(
ψi+1,j − ψi,j
m∗
i+1/2,j

− ψi,j − ψi−1,j

m∗
i−1/2,j

)

+
1

∆y2

(
ψi,j+1 − ψi,j
m∗
i,j+1/2

− ψi,j − ψi,j−1

m∗
i,j−1/2

)
, (C-1)

where ψi,j = ψ (xi, yj) and m∗
i±1/2,j±1/2 = m∗ ((xi + xi±1) /2, (yi + yi±1) /2),

i = 1, 2, · · · , Nx, j = 1, 2, · · · , Ny. ∆x and ∆y are the uniform grid spacing

in the x and y directions.

It is apparent that when i = 1 (i = Nx is similar), the values ψ0,j for

j = 1, 2, · · · , Ny need to be specified. These values are directly obtained

from the solution in contact 1 (equation (2.15)) as

ψ0,j =− 2ia1nχ
1
n (yj) sin(k

1
n∆x)

+

N1∑

m=1

(∫
χ1
m (y)ψ (x1, y) dy

)
χ1
m (yj) exp

(
ik1m∆x

)
,

=− 2ia1nχ
1
n (yj) sin(k

1
n∆x)

+

N1∑

m=1

(
Ny∑

j′=1

χ1
m (yj′)ψ1,j′∆y

)
χ1
m (yj) exp

(
ik1m∆x

)
, (C-2)

where the integration is replaced by a summation using trapezoid rule. Sim-

ilarly, the values ψNx+1,j for j = 1, 2, · · · , Ny can be obtained using the

solution in contact 2.

Writing the discretized equations with matrix form results in equation
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(2.16). The matrix H for the isolated device is

H =




H1 T
†

12 0 · · · 0

T12 H2 T
†

23
. . .

...

0
. . .

. . .
. . . 0

...
. . . TN−2,N−1 HN−1 T

†

N−1,N

0 · · · 0 TN−1,N HN




, (C-3)

where Hi is the tri-diagonal Hamiltonian matrix for layer i (i = 1, 2, · · · , Nx)

and Tij is the diagonal matrix represents the coupling between adjacent

layers. The matrix S for self energy is

S =




S
1

0 0 · · · 0

0 0 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 0 0

0 · · · 0 0 S
2




, (C-4)

where the non-zero elements are

S
α

j,j′ =− h̄2∆y

2m∗
1/2,j∆x

2

Nα∑

m=1

χαm (yj′)χ
α
m (yj) exp (ik

α
m∆x),

α ∈ {1, 2} , and (j, j′) ∈ {1, · · · , Ny} . (C-5)

The vector v is

v =




v1

0

0
...

0




, or




0
...

0

0

v2




, (C-6)

for wave from the left or the right lead, where the non-zero elements are

vα
j
=

h̄2

2m∗
1/2,j∆x

2
2iaαnχ

α
n (yj) sin (k

α
n∆x) ,

α ∈ {1, 2} , and j ∈ {1, · · · , Ny} . (C-7)
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APPENDIX D

DERIVATION OF THE K · P
HAMILTONIAN

D.1 Overview

The electronic structures of the semiconductors can be obtained by solving

the single-electron Schrödinger equation, i.e.,

Ĥψ (r) =

[
p2

2m0
+ V (r) +

h̄

4m2
0c

2
(σ ×∇V ) · p

]
ψ (r) = Eψ (r) , (D-1)

where Ĥ is the Hamiltonian, ψ is the electronic wave function, E is the

total energy, p is the momentum operator, r is the position vector, m0 is the

free electron mass, V is the periodic potential produced by the atoms of the

crystal, the third term of Ĥ is due to spin-orbit coupling where σ is a vector

with three components consisting of the Pauli spin matrices.

Since the Hamiltonian is translationally invariant in the crystal, the solu-

tion of the Schrödinger equation (D-1) is of the following form according to

the Bloch theorem,

ψn,k (r) = eik·run,k (r) . (D-2)

where k is the wave vector, n is the band index, and un,k (r) is the Bloch

lattice function with periodicity equal to lattice vector R. Substituting (D-2)

into (D-1), we have the equation for un,k (r) only,

(
Ĥ0 +

h̄2k2

2m0

+
2h̄k · p
2m0

+ Ĥso

)
un,k (r) = En,kun,k (r) , (D-3)

where,

Ĥ0 =
p2

2m0
+ V (r) , (D-4)

Ĥso =
h̄

4m2
0c

2
(σ ×∇V ) · (h̄k + p) . (D-5)
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Equation (D-3) can be solved by many methods with different kinds of ap-

proximations to obtain the band structure En,k. Here, we use the k · p
method, which is a useful technique for analyzing the band structure near a

particular point k0.

The basic idea of k · p method is to solve (D-3) at k0, usually the high

symmetry Γ point with k0 = 0, without taking into account spin-orbit cou-

pling,

Ĥ0un,0 (r) = En,0un,0 (r) . (D-6)

As un,0 (r) form a complete basis set, one can expand un,k (r) in this basis,

un,k (r) =
∑

j

cn,k,juj,0 (r) . (D-7)

To obtain the coefficient cn,k,j, we substitute (D-7) into (D-3) and test both

sides with u∗i,0 (r), which results in a matrix equation,

∑

j

Hi,jcn,k,j = En,kcn,k,i, (D-8)

where the element of the matrix is

Hi,j =

(
Ei,0 +

h̄2k2

2m0

)
δ (i, j) +

∫
dru∗i,0 (r)

(
2h̄k · p
2m0

+ Ĥso

)
uj,0 (r) . (D-9)

Equation (D-8) can then be diagonalized to find En,k. In practice, however,

we only use a subset of the basis functions to approximate un,k (r) and it

results in a matrix of small dimension. Usually, those corresponding to the

lowest conduction and highest valence bands are included in this subset since

the band structure near the band gap is of great interest. The rest of the

bands can be taken into account approximately, which is necessary to produce

the correct heavy-hole effective mass. This method is best described by

Löwdin’s perturbation theory, as will be derived later.

Note that to write down Hamiltonian matrix element (D-9), it is quite

common to utilize the symmetry properties of un,0 (r), which will result in a

small set of non-zero elements and many of them are equal, greatly reducing

the number of parameters required in this model. For most semiconductors

of interest, the top of the valence band can be described by three degenerate

p-type states with energy EV B,0: upx,0 = ρv (r)x, upy,0 = ρv (r) y, and upz,0 =
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ρv (r) z, where r =
√
x2 + y2 + z2. This means that they are antisymmetric

with respect to a coordinate and symmetric with respect to the others. The

bottom of the conduction band (of direct band gap material), however, is

described by a non-degenerate symmetric s-type state with energy ECB,0:

us,0 = ρc (r).

D.2 Löwdin’s Perturbation Theory

In Löwdin’s method, the set of basis functions are grouped into class A

that are treated exactly and class B that are treated approximately. With

this method, we only need to solve eigenvalue problem restricted to A space

instead of the full A+B space, i.e.,

∑

α∈A

Umαcα = Ecm, m ∈ A, (D-10)

since the renormalized matrix U has taken into account the effect of B space,

Umα = Hmα +
∑

β∈B

HmβHβα

E −Hββ

+ · · · , m, α ∈ A. (D-11)

To derive (D-10) and (D-11), the original eigenvalue problem in the full

A+B space, i.e., equation (D-8), can be rewritten as

∑

n∈A∪B

Hmncn = Ecm, m ∈ A ∪ B, (D-12)

which can be slightly reformulated to

∑

n∈A∪B,n 6=m

Hmncn =
(
E −Hmm

)
cm, m ∈ A ∪ B. (D-13)

From (D-13), we can have a expression of cm as

cm =
∑

α∈A,α6=m

Hmα

E −Hmm

cα +
∑

β∈B,β 6=m

Hmβ

E −Hmm

cβ , m ∈ A ∪ B, (D-14)
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from which we can write cβ as,

cβ =
∑

α∈A

Hβα

E −Hββ

cα +
∑

γ∈B,γ 6=β

Hβγ

E −Hββ

cγ, β ∈ B. (D-15)

Inserting (D-15) back into (D-14) and repeating the process with the ultimate

goal of eliminating all the coefficient of set B, we obtain a chain as follows,

cm =
∑

α∈A,α6=m

Hmα

E −Hmm

cα +
∑

β∈B,β 6=m

Hmβ

E −Hmm

∑

α∈A

Hβα

E −Hββ

cα + · · · .

(D-16)

Moving E −Hmm to the left hand side, we have

(
E −Hmm

)
cm =

∑

α∈A,α6=m

Hmαcα +
∑

β∈B,β 6=m

Hmβ

∑

α∈A

Hβα

E −Hββ

cα + · · · .

(D-17)

Choosing m ∈ A and moving Hmmcm to the right, we have

Ecm =
∑

α∈A

(
Hmα +

∑

β∈B

HmβHβα

E −Hββ

+ · · ·
)
cα, m ∈ A, (D-18)

which can be written as (D-10) and (D-11).

Note that equations (D-10) and (D-11) need to be solved iteratively to

obtain self-consistent value of E. Several approximations are commonly used,

(i) the series of (D-11) is truncated after the second term, (ii) the energy E

in (D-11) is replaced with an approximated value so that no self-consistency

is actually performed.

D.3 One-Band Model

By keeping only one single band in class A, one obtains the single band

effective mass dispersion. Take the conduction band s for example, we have

only one matrix element according to (D-3),

Es,k = Es,0 +
h̄2k2

2m0
+
h̄k

m0
· 〈us,0|π̂|us,0〉+

h̄2

m2
0

∑

i 6=s

|k · 〈us,0|π̂|ui,0〉|2
Es,0 − Ei,0

, (D-19)
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where

π̂ = p+
h̄

4m0c2
(σ ×∇V ) . (D-20)

At the band minima, the 3rd term in (D-19) reduces to zero, since it is linear

in k. The 4th term can be decomposed into x, y, z components, thus we have,

Es,k = Es,0 +
∑

α,β

h̄2

2
kαkβ

(
1

m∗
s

)

α,β

, α, β ∈ {x, y, z} (D-21)

where the effective mass tensor is,

(
1

m∗
s

)

α,β

=

(
1

m0

)
δα,β +

2

m2
0

∑

i 6=s

〈us,0|π̂α|ui,0〉〈ui,0|π̂β |us,0〉
Es,0 − Ei,0

. (D-22)

If the three valence bands are included in class B, and spin-orbit coupling is

neglected in (D-20), we find that

〈us,0|pα|upβ ,0〉 = −〈upβ,0|pα|us,0〉 =
im0P

h̄
δα,β, α, β ∈ {x, y, z}, (D-23)

due to symmetry properties of the basis functions as mentioned before and

that the momentum operator pα is odd under inversion of α. Consequently,

the effective mass for the conduction band is isotropic and equal to

(
1

m∗
s

)

α,β

=

(
1

m0
+

2P 2

h̄2Eg

)
δα,β . (D-24)

where Eg = ECB,0 − EV B,0 is the band gap.

D.4 Three-Band Model

In the three-band model we have three degenerate states in class A: upx,0,

upy,0, and upz,0; the rest of the bands are included in class B. We also set

Ĥso = 0 in (D-3), which means that spin-orbit coupling is not considered.

The first order contribution to the matrix element Umα in (D-11) is pro-

portional to,

〈upi,0|pα|upj,0〉, α, i, j ∈ {x, y, z}, (D-25)

which are evaluated to zero since the momentum operator is odd under in-
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version.

The second order contribution to the matrix element is

Iij =
∑

α,β∈{x,y,z}

h̄2

m2
0

kαkβ
∑

n 6=upx,y,z,0

〈upi,0|pα|n〉〈n|pβ|upj ,0〉
EV B,0 − En

, i, j ∈ {x, y, z}.

(D-26)

To simplify these summations, we will make use of the symmetry properties,

〈upx,0|px|n〉 = 〈upy,0|py|n〉 = 〈upz,0|pz|n〉, (D-27)

and

〈upz,0|px|n〉 = 〈upx,0|py|n〉 = 〈upy,0|pz|n〉 =
〈upz,0|py|n〉 = 〈upx,0|pz|n〉 = 〈upy,0|px|n〉, (D-28)

It can be shown that the integral 〈upi,0|pα|n〉〈n|pβ|upj,0〉 is non-zero only

when all cartesian coordinates appear in pairs.

For the case when i = j, the integral 〈upi,0|pα|n〉〈n|pβ|upi,0〉 is non-zero

only when α = β, and then Iii reduces to

Ixx = Lk2x +M
(
k2y + k2z

)
, (D-29)

Iyy = Lk2y +M
(
k2x + k2z

)
, (D-30)

Izz = Lk2z +M
(
k2x + k2y

)
, (D-31)

where we only have two different coefficients,

L =
h̄2

m2
0

∑

n 6=upx,y,z,0

〈upx,0|px|n〉〈n|px|upx,0〉
EV B,0 − En

, (D-32)

M =
h̄2

m2
0

∑

n 6=upx,y,z,0

〈upx,0|py|n〉〈n|py|upx,0〉
EV B,0 − En

, (D-33)

Similarly, for the case when i 6= j, 〈upi,0|pα|n〉〈n|pβ|upj ,0〉 is non-zero when

α and β are chosen to pair all the Cartesian coordinates. It turns out that

α and β are not determined but up to a permutation. We have, making use

of (D-27) and (D-28),

Ixy = Iyx = Nkxky, (D-34)
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Ixz = Izx = Nkxkz, (D-35)

Iyz = Izy = Nkykz, (D-36)

where

N =
h̄2

m2
0

∑

n 6=upx,y,z,0

〈upz,0|pz|n〉〈n|px|upx,0〉+ 〈upz,0|px|n〉〈n|pz|upx,0〉
EV B,0 −En

,

(D-37)

Therefore the three-band Hamiltonian can be written as,

U3×3 =

(
EV B,0 +

h̄2k2

2m0

)
I3×3 +HDKK, (D-38)

where I3×3 is 3 × 3 identity matrix, HDKK is the DKK (Dresselhaus-Kip-

Kittel) Hamiltonian,

HDKK = (D-39)



Lk2x +M
(
k2y + k2z

)
Nkxky Nkxkz

Nkykx Lk2y +M (k2x + k2z) Nkykz

Nkzkx Nkzky Lk2z +M
(
k2x + k2y

)


 .

D.5 Six-Band Model

To generalize the three-band model to six-band model, we include the spin-

orbit coupling Ĥso in (D-3). The class A is extended to include spin up ones

upx,0 ↑, upy,0 ↑, upz,0 ↑, and spin down ones upx,0 ↓, upy,0 ↓, upz,0 ↓. Again,

the rest of the bands are put in class B.

First, the spin-orbit Hamiltonian defined in (D-5) can be simplified to

Ĥso =
h̄

4m2
0c

2
(σ ×∇V ) · p, (D-40)

since the momentum of the electron in its atomic orbit is very much greater

than Bloch wave momentum.

It is then decomposed into Cartesian components,

Ĥso =
h̄

4m2
0c

2
(∇V × p) · σ =

h̄

4m2
0c

2
× (D-41)
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[(
∂V

∂y
pz −

∂V

∂z
py

)
σx +

(
∂V

∂z
px −

∂V

∂x
pz

)
σy +

(
∂V

∂x
py −

∂V

∂y
px

)
σz

]
.

Third, we evaluate the matrix element of (D-41) up to the first order.

Again, to have non-zero integral, the coordinates needs to be paired. It

turns out that the non-zero integrals are equal, which are

〈upx,0|
∂V

∂x
py −

∂V

∂y
px|upy,0〉 = 〈upy,0|

∂V

∂y
pz −

∂V

∂z
py|upz,0〉 =

〈upz,0|
∂V

∂z
px −

∂V

∂x
pz|upx,0〉 = ∆

4m2
0c

2

3ih̄
, (D-42)

and the transposed elements have opposite signs due to the p operators.

Therefore, the matrix form is

Hso =




0 σz −σy
−σz 0 σx

σy −σx 0




∆

3i
. (D-43)

Inserting into the above the Pauli spin matrix,

σx →
(

0 1

1 0

)
, σy →

(
0 −i
i 0

)
, σz →

(
1 0

0 −1

)
, (D-44)

we obtain Hso in the basis arranged in the order upx,0 ↑, upy,0 ↑, upz,0 ↑,
upx,0 ↓, upy,0 ↓, upz,0 ↓,

Hso =




0 1 0 0 0 i

−1 0 0 0 0 1

0 0 0 −i −1 0

0 0 −i 0 −1 0

0 0 1 1 0 0

i −1 0 0 0 0




∆

3i
. (D-45)

Finally, the total 6× 6 Hamiltonian can be written as,

U6×6 =

(
EV B,0 +

h̄2k2

2m0

)
I6×6 +

(
HDKK 0

0 HDKK

)
+Hso, (D-46)

where I6×6 is 6 × 6 identity matrix and HDKK is the DKK Hamiltonian
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derived in the three-band model.

D.6 Eight-Band Model

The eight-band model can be regarded as a generalization of the six-band

model, since now we add in the two conduction bands. So class A consists of

spin up ones us,0 ↑, upx,0 ↑, upy,0 ↑, upz,0 ↑, and spin down ones us,0 ↓, upx,0 ↓,
upy,0 ↓, upz,0 ↓.
From the discussion of six-band model, it is easy to infer that the renor-

malized matrix U8×8 takes the following form,

U8×8 =

(
H4 0

0 H4

)
+

(
HR 0

0 HR

)
+H

′

so, (D-47)

where H4 is the direct k · p interaction, HR is the renormalized part of the

k · p interaction, and H
′

so is the spin-orbit interaction part.

Due to (D-23) and (D-25),

H4 = (D-48)



ECB,0 +
h̄2k2

2m0

ikxP ikyP ikzP

−ikxP EV B,0 +
h̄2k2

2m0
0 0

−ikyP 0 EV B,0 +
h̄2k2

2m0
0

−ikzP 0 0 EV B,0 +
h̄2k2

2m0



,

where P = −i h̄
m0

〈us,0|px|upx,0〉 is the optical matrix element.

Similar to HDKK Hamiltonian, we have

HR = (D-49)



Ak2 Bkykz Bkxkz Bkxky

Bkykz Lk2x +M
(
k2y + k2z

)
Nkxky Nkxkz

Bkzkx Nkxky Lk2y +M (k2x + k2z) Nkykz

Bkxky Nkxkz Nkykz Lk2z +M
(
k2x + k2y

)



,

where the parameters A, B, L, M , and N are expressed in terms of k · p
perturbation sums over all bands other than the eight we consider. Note

that L, M , and N are closely related to those in the DKK Hamiltonian
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(D-39), the only difference is that the summation here does not include the

two conduction bands, which are now treated exactly.

For parameter A, the non-zero integrals are

〈us,0|px|n〉〈n|px|us,0〉 = 〈us,0|py|n〉〈n|py|us,0〉 =
〈us,0|pz|n〉〈n|pz|us,0〉, (D-50)

therefore

A =
h̄2

m2
0

∑

n 6=us,0,upx,y,z,0

〈us,0|px|n〉〈n|px|us,0〉
ECB,0 −En

. (D-51)

For parameter B, the non-zero integrals are

〈us,0|px|n〉〈n|py|upz,0〉 = 〈us,0|py|n〉〈n|pz|upx,0〉 =
〈us,0|pz|n〉〈n|px|upz,0〉, (D-52)

therefore, with E replaced by (ECB,0 + EV B,0) /2, we have

B =
2h̄2

m2
0

∑

n 6=us,0,upx,y,z,0

〈us,0|px|n〉〈n|py|upz,0〉
(ECB,0 + EV B,0) /2− En

. (D-53)

H
′

so is Hso plus two more rows and columns for the conduction bands,

H
′

so =




0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 i

0 −1 0 0 0 0 0 1

0 0 0 0 0 −i −1 0

0 0 0 0 0 0 0 0

0 0 0 −i 0 0 −1 0

0 0 0 1 0 1 0 0

0 i −1 0 0 0 0 0




∆

3i
, (D-54)

all added elements are zero due to symmetry.

For more details please refer to Ref. [19,20,73,119], where the above deriva-

tion is extracted.
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APPENDIX E

DISCRETIZATION OF THE K · P
HAMILTONIAN IN THE FOURIER SPACE

Discretization of the k · p operator usually results in very complicated forms,

in particular when the number of bands is large, since it involves various

differential operators. Therefore, it is very useful to have a simplified dis-

cretization form that is valid for arbitrary nanowire orientation.

Take the eight-band k · p operator in (4.7) as an example, it can be rewrit-

ten as [75],

H
8
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= H0 +Hso +Hx

∂

∂x
+Hy

∂

∂y
+Hz

∂

∂z
−Hxx

∂2

∂x2

−Hyy
∂2

∂y2
−Hzz

∂2

∂z2
−Hxy

∂2

∂x∂y
−Hyz

∂2

∂y∂z
−Hzx

∂2

∂z∂x
, (E-1)

where the matrices H0, Hso, Hx, Hy, Hz, Hxx, Hyy, Hzz, Hxy, Hyz, and Hzx

are the coefficients containing contributions from Löwdin’s renormalization

and spin-orbit interactions.

For nanowire directions other than [100], coordinate transformations have

to be performed. For example, to obtain the coordinate for [110] direction,

we rotate the coordinate of [100] direction in xy plane by φ = π/4, therefore

the components of k of the two systems are related by,




kx

ky

kz


 =




cosφ − sin φ 0

sinφ cosφ 0

0 0 1







k′x
k′y

k′z


 . (E-2)

Similarly, for [111] direction, we continue rotating the coordinate of [110] in

yz plane by θ with sin θ = 1/
√
3, therefore,




kx

ky

kz


 =




cosφ − sinφ 0

sin φ cosφ 0

0 0 1







cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ







k′x
k′y

k′z


 . (E-3)
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Once we have k in terms of k′, we plug them into the Hamiltonian expression

(4.1) to obtain the new Hamiltonian (now in k′). It turns out that the

new Hamiltonian operator can still be written in the form of (E-1), the

only difference is that now we have different coefficient matrices Hi and Hij

(i, j = x, y, z).

To discretize the above operator (E-1), the transversal components are

expanded using Fourier series [51], i.e.,

φp,q (ym, zn) =
2√
NyNz

sin (kpym) sin (kqzn) , (E-4)

where Ny and Nz are the number of grid points in the y and z directions

respectively, m and n (1 ≤ m ≤ Ny, 1 ≤ n ≤ Nz) are the coordinates of the

Rth grid point in real space, p and q (1 ≤ p ≤ Ny, 1 ≤ q ≤ Nz) are the coor-

dinates of the Sth grid point in the Fourier space,

kp =
pπ

Ly
, kq =

qπ

Lz
, (E-5)

where Ly and Lz are the nanowire length in the y and z directions.

The discretization is done by operating (E-1) on (E-4), multiplying the

result with (E-4), and performing integrations. While the longitudinal com-

ponent of the unknown envelope function is discretized with second-order cen-

tral finite difference method. The discretized Hamiltonian for the nanowires

will have the following format,

H =




D1 T

T
†

D2 T

. . .
. . .

. . .

T
†

DNx−1 T

T
†

DNx




, (E-6)

where Di is the on-site Hamiltonian for layer i (1 ≤ i ≤ Nx, Nx is the

number of grid points in the longitudinal direction x) and T is the coupling

Hamiltonian between adjacent layers.

It is found that the (S, S ′) block of Di (excluding the potential term) can
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be written down using very simple prescription,

DS,S′ =

(
H0 +Hxx

2

(∆x)2
+Hyyk

2
p +Hzzk

2
q +Hso

)
δp,p′δq,q′

+

(
Hy

4k′p
π

p

p2 − p′2

)
δp+p′,oddδq,q′

+

(
Hz

4k′q
π

q

q2 − q′2

)
δq+q′,oddδp,p′

−
(
Hyz

4k′p
π

p

p2 − p′2
4k′q
π

q

q2 − q′2

)
δp+p′,oddδq+q′,odd, (E-7)

where ∆x is the grid spacing in FDM, (p, q) and (p′, q′) are the coordinates of

the Sth and S ′th grid points respectively, and δ is Kronecker delta function.

For instance, δq+q′,odd is equal to 1 (0) if q + q′ is an odd (even) number.

Similarly, the (S, S ′) block of T can be written as,

TS,S′ =

(
−Hxx

1

(∆x)2
+Hx

1

2∆x

)
δp,p′δq,q′

−
(
Hxy

1

2∆x

4k′p
π

p

p2 − p′2

)
δp+p′,oddδq,q′

−
(
Hxz

1

2∆x

4k′q
π

q

q2 − q′2

)
δq+q′,oddδp,p′. (E-8)

Finally, the scheme in Ref. [51] can be adopted to index the grid points in

the Fourier space, and the size of matrices Di and T can be greatly reduced.

In Chapter 4, ∆x = 0.125nm is used and 1 ≤ S ≤ 183.
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