

Design of CMOS Circuits in the Nano-meter Regime: Leakage Tolerance

Kaushik Roy

Professor of Electrical & Computer Engineering

Purdue University

Challenges ahead ...

in Si nanometer regime

Scaling & Ion/Ioff

1 um 100 nm 10 nm 10 nm

Silicon micro electronics

Silicon nano electronics

Non-Silicon technology

 $\frac{I_{ON}}{1} = 10^6$

- Increasing leakage
- Increasing process variations
- Short Channel Effects

$$\frac{I_{ON}}{I_{OFF}} = 10^3$$

- Carbon Nanotubes
- Molecular transistors
- Molecular RTDs

$$\frac{I_{ON}}{I_{OFF}} = 10^4$$

Process Variations

A. Asenov*, TED03*Line-Edge

Roughness

M. Hane, et. al., SISPAD 2003

Random Dopant Fluctuations
(RDF)

- Intrinsic parameter variations:
 - Channel length and width
 - Variations due to line edge roughness
 - Threshold voltage (Vt) variations due to random dopant fluctuation

Device parameters are no longer deterministic

Reliability

Temporal degradation of performance -- NBTI

Power Consumption

- Leakage Power
 - Subthreshold, Gate, Junction, GIDL,
 Punchthrough,
- Dynamic Power
 - Due to charging/discharging of capacitive load
 - Short-circuit power due to direct path currents when there is a temporary connection between power and ground

Switching/Dynamic Power

Switching Power

- Signal properties
 - Signal probability, P_i, probability of a signal being logic ONE
 - Signal activity, a_i , probability of signal switching(0->1, or 1->0)
- Energy dissipated per transition

$$E_{VDD} = \int_{0}^{\infty} i_{VDD}(t)V_{DD}dt = V_{DD}\int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt}dt$$

$$= C_{L}V_{DD}\int_{0}^{V_{DD}} dv_{out} = C_{L}V_{DD}^{2}$$

$$E_{C} = \int_{0}^{\infty} i_{VDD}(t) v_{out} dt = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} v_{out} dt = C_{L} \int_{0}^{V_{DD}} v_{out} dv_{out} = C_{L} V_{DD}^{2} / 2$$

Energy dissipated for 1->0 or 0->1 transition: $C_L V_{DD}^2 / 2$

Leakage Power

Scaling and Other Leakage Components

- Leakage Components
 - Subthreshold Leakage
 - Gate Leakage
 - Reverse-biased Junction Band-To-Band-Tunneling (BTBT)
 Leakage.
 - Others

Total Leakage

"Sum of Current Source Model" Voltage Controlled Current Sources describing each leakage comp.

Total Transistor Leakage= $I_{overall} = I_{BTBT} + I_{sub} + I_{gate}$

Leakage Estimation Method

600

Leakage Reduction: Logic & Memory

Self-Reverse Bias (Source-Biasing, Supply-Gating, Stacking)

• Primary effect:

- $-V_{GS} < 0$
- move downsubthreshold slope
- Secondary effects:
 - Drain InducedBarrier Lowering
 - Body effect

$$V_{DS} \downarrow \Rightarrow V_{T} \uparrow$$
 $V_{S} \uparrow \Rightarrow V_{T} \uparrow$

Leakage Control: Stacking

Vgs=0,Vbs=0,Vds=Vdd

- ✓ Negative Vgs,
- ✓ Negative Vbs- More Body effect,
- **✓ Reduced Vds-Less DIBL**
- 2-T stack has lower subthreshold leakage

For M1:

 $Vgs = -V_M < 0, Vbs = -V_M < 0,$

 $Vds = Vdd-V_M < Vdd$

For M2:

Vgs = 0, Vbs = 0,

 $Vds = V_M < Vdd$

Input Vector Control - Subthreshold

Minimum Vgs is For M1:

$$Vgs_M1 < 0,$$

$$Vds_M1 = Vdd - V_M$$

Minimum Vgs is For M2:

$$Vgs_M2 = 0,$$

'00' gives minimum subthreshold leakage.

Turn 'off' maximum number of transistors in a stack to reduce subthreshold leakage

Leakage vs. Transistors Off

Leakage [nA]

Number of transistors off in stack

Input Vector Control – Gate Leakage

With '00' –
Igdo_M1(Vdd) >>
Igso_M1(V_M) + Igdo_M2(V_M)
Igdo of M1 dominates the total gate current

$$I_{gstack} = WL_{SDE} A \left(V_{dd} / T_{ox}\right)^{2} exp \left(\frac{-B \left(1 - \left(1 - V_{dd} / \phi_{ox}\right)^{3/2}\right)}{V_{dd} / T_{ox}}\right)$$

Input Vector Control – Gate Leakage

With '10' the major gate currents are:

- ✓ Igso_M1(Vth)
- ✓ Igdo_M2(Vdd Vth_M1)
- ✓Igc_M1(Vgs = Vth)

Igdo_M2 dominates the total current.

$$I_{gstack} = WL_{SDE}A\left(\frac{(V_{dd} - V_{th_{-}M1})}{T_{ox}}\right)^{2} exp\left(\frac{-B\left(1 - \left(1 - (V_{dd} - V_{th_{-}M1})/\phi_{ox}\right)^{3/2}\right)}{(V_{dd} - V_{th_{-}M1})/T_{ox}}\right)$$

Input Vector Control – BTBT

'00' and '01' –drain-substrate BTBT of M1 dominates.
'10' – additional BTBT components drain-substrate of M2 and source-substrate of M1.

'10' gives maximum BTBT. However, BTBT is not very sensitive to stacking.

Supply Gating for Logic

How to use supply gating dynamically in active mode?

Dynamic Supply Gating (DSG): An Example

Dynamic Supply Gating for General Circuits

Shannon's expansion:

$$f(x_1,...,x_i,...,x_n) = \mathbf{x}_i \Box f(x_1,...,x_i = 1,...,x_n) + \mathbf{x}_i' \Box f(x_1,...,x_i = 0,...,x_n)$$

$$= \mathbf{x}_i \Box CF_1 + \mathbf{x}_i' \Box CF_2$$

$$CF_1 = f(x_1,...,x_i = 1,...,x_n); \quad CF_2 = f(x_1,...,x_i = 0,...,x_n)$$

X_i is referred as Control Variable

Control variable selection is important

Simulation Results

Supply-Gating & Test

Improvement in IDDQ Sensitivity

IDDQ Sensitivity (S) = $(I_f - I_g) / I_g$ $I_f = Faulty IDDQ$ $I_g = Fault free IDDQ$

Avg. improvement of 94% in IDDQ sensitivity

Improvement in Test Power

Avg. reduction of 50% in test power

Improvement in Test Coverage/Test Length

Avg. reduction of 20% (21%) in test time with deterministic (random) patterns

Supply Gating in Scan Design -- Low-power Scan Operation

Conventional Scan Architecture

First Level Supply Gating (FLS)

Results and Comparisons for FLS

- Compared to Nor-based Gating:
 - Area: 62% less overhead
 - Delay: 94% less

Low-Overhead Delay Fault Testing With Supply Gating

First Level Hold (FLH) for Delay Testing

PMOS Network

IN - INV1 INV2

OUT

OUT

TC - INV1 INV2

OUT

- 1. Scan-in V1
- 2. Apply V1. Hold state for V1
- 3. Scan-in V2
- 4. Launch V2

- Embedded latch can be implemented with minimumsized transistors
- No extra signal; simple control
- Eliminates redundant test power in comb. logic

Results and Comparisons for FLH

- Compared to Enhanced Scan:
 - (a) Area: 33% less overhead, (b) Delay: 71% less overhead, (c) Power: 90% less overhead
- Local Fanout Reduction reduces area overhead by ~20%

Gated DeCap: Another Application of Stacking & Leakage Reduction

Decoupling Capacitor (Decap)

- Area and power of Decap
 - 15-20% of the total chip area (Alpha 21264).
 - Large Decap gate leakage power consumption (reported by IBM, 2003).

Gated-Decap

- (a) Conventional NMOS Decap
- (b) NMOS Decap with control gate
- The gate and the channel of M1 constitute a capacitor.
- M2 is turned off when Decap is unnecessary (FU is idle).

Layout of GDecap

GDecap
Area Overhead:
6.78%

Conventional Decap

Leakage Power Saving of GDecap in PLB Pipeline

- Average Decap leakage power reduction: Mod. PLB – 41.7% (FU gated ratio: 55.15%)
- 0.037% worst-case IPC degradation in Mod. PLB.

Leakage & Body Bias

- Sub-threshold leakages decreases with RBB
- Band-to-band tunneling increases with RBB
- Gate Leakage insensitive to body bias

Results for 70nm nmos

BSIM3 device augmented with voltage-controlled current sources for gate leakage and BTBT

Leakage Reduction with OBB

• Leakage savings ranged from 14-55% compared to zero body bias case for nominal 70nm and 50nm transistors in Taurus device simulations.

Tech.	Temp (°C)	$V_{B}(V)$	I _{OFF} (normalized)	I _{ON} (normalized)	I_{ON}/I_{OFF}	Leakage Reduction
70nm	25	0	1	97115	97115	43%
	25	-0.16	0.57	91005	159657	
	70	0	5.14	120673	23477	55%
	70	-0.20	2.30	118269	51421	
50nm	25	0	1	3478	3478	45%
	25	0.15	0.55	3992	7258	
	70	0	2.51	4044	1611	14%
	70	0.09	2.15	4286	1993	

Dual Threshold CMOS

- Low-V_{th} transistors in critical path for high performance
- Some high-V_{th} transistors in non-critical paths to reduce leakage
- Impact on yield need to consider variations and Vt-assignment

 Non critical paths(high-V_{th})

Total Power of 32-bit Adder

- Total power can be reduced by 9% for high activity
- Total power can be reduced by 22% at low activity

Dual Threshold CMOS

- Low-V_{th} transistors in critical path for high performance
- Some high-V_{th} transistors in non-critical paths to reduce leakage
- Impact on yield need to consider variations and Vt-assignment

 Non critical paths(high-V_{th})

Design of Nanometer Caches: Low-Leakage

SRAM Leakage Reduction Schemes

Schemes	Source Brasing SL	Fwd/Reverse Fory-Biasing (V _{PWELL} , V _{NWELL})	Dynamic V _{DD} (V _{DL})	Floating Bitlines (V _{BL} , V _{BLB})	Negative Word Line (V _{WL})
Schemes	V _{SL} V _{DD} OV Active Standby	V _{PWELL} 0V -V _{BB} Active Standby	Active Standby VDL	V _{BL} ,V _{BLB} V _{BL} Active Standby V _{BLB}	O
Leakage reduction	Sub: ↓↓ Gate: ↓↓	Sub: ↓↓ BTBT:↑(RBB)	Sub, gate: ↓ *Bitline leak: -	Sub: ↓ Gate: ↓	Sub: ↓ *Gate: ↑
Delay	*Delay increase	No delay increase	No delay increase	No delay increase	No delay increase
Overhead	Low transition overhead	Large transition overhead	Large transition overhead	*Precharge latency overhead	*Low charge pump efficiency
Stability	Impact on SER	No impact on SER	*Worst SER	No impact on SER	No impact on SER, voltage stress

Device-aware Circuit/Microarch: Cache

Taox

Gate

Depicted body

Drain

Domin

Taox

Substrate (back gate)

Bulk Ultra-high V_t

Nominal V_t

Ground-plane SOI

FinFET

Circuit Design Issues

Leakage – Sub-threshold, Gate, Junction, BTBT
Stability – Read noise margin, Writability, Soft errors
Delay – Decoder, Wordline, Bitline, MUX, Sense-amp, Driver
Transition between active and standby modes
Variations – Process, V_{dd}, Temperature

Microarch Design Issues

Array aspect ratio – # cells WL/BL Sub-array structure and selection strategy Active-Standby transition frequency, delay, energy

How do you co-design?

Bulk Nominal V_t Source-biased Cache

Co-design approach leads to higher payoffs and more opportunities

Conventional Cell Leakage Paths

- V_{dd} to ground path
- Bitline to ground path

Gated-Ground (Source-Biased) SRAM

Gating options: NMOS, Dual-V_t, PMOS

Leakage Reduction in Diode Footed Cache

Voltages across terminals get reduced by Vd (diode intrinsic voltage)

Reduces gate and subthreshold leakage

Gated-Ground Transistor Sharing

16K-Byte SRAM Organization

- Active leakage reduction SRAM
- Distributed sleep transistors
- SRAM block turned on ahead of time
- Self-decay circuit for low dynamic power overhead

2x16K-Byte SRAM Testchip

Technology	180nm 6-metal CMOS		
Chip Size	3.3X2.9 mm ²		
Supply Voltage	1.8V		
Threshold Voltage	NMOS: 0.53V PMOS: -0.53V		
Read Access Cycle	984MHz @ 1.8V, RT		
Active Current	0.14mW/MHz @ 1.8V		
Standby Current	7.27µA (16KB array)		

Kim, Roy, ISSCC'05

Measured Leakage Reduction

- 94.2% total leakage reduction at VGND=0.9V
- Raising VGND also reduces gate tunneling leakage

Forward-Body Biased Cache

Bulk Ultra-High V_t Forward-biased Cache

Bulk Ultra-high V_t
Strong halo, Low I_{SUB}
FBB to ↑ I_{ON}

V_z

Gate

V_z

Gate

V_D

Cource

Drain

Dox

Substrate depletion

Substrate (back gate)

V_D

پي Ground-plane SOI

FinFET

FB-SRAM Circuit Design Issues

- Zero body bias in standby to reduce leakage
- FBB in active-mode to improve speed
- Early sub-array selection to hide body-bias transition latency

FB-SRAM Microarch Design Issues

Use MSB of memory address for early selection of memory sub-array Use locality of reference in cache to reduce transition energy

Co-design approach gives 64% leakage savings

Forward Body-Biased Cache (50nm)

- Previous techniques: use circuit/arch. to lower leakage
- This technique: use dev/ckt/arch opt. to lower leakage
- Main idea: high Vt device + forward body-biasing

32x32 Forward Body-Biased Sub-array

Comparison

- SBSRAM (DRG) has been proven with Si measurements
- Dynamic VDD, RBB SRAM have fundamental design issues
- MEDICI: gate/BTBT leakage is also modeled

32KB Cache Total Leakage Reduction

- SBSRAM and FBSRAM are designed to give isoleakage savings
- 64% total leakage reduction including overhead

Another Application: Data Retention Flip-Flop

- Cross-coupled inverters are cores of any flip-flops
- Cross-coupled inverters retain data under gated ground
- Data and clock gating is required to preserve data
- Successful fabrication and test:
 - 16-bit shift-register based on our dataretention FF

40% power reduction by enabling power-down mode

Computing with Leakage for Ultralow Power: Digital Subthreshold Logic

Subthreshold Operation

Computing Using Leakage Current

Dev/Cir/Arch co-optimization is necessary

Switching back-and-forth between sup. and sub. operations

Dev/Cir/Arc Co-design: Summary

Conclusions

- Power considerations (both dynamic and leakage) are very important for scaled technologies
 - Leakage control techniques are becoming essential!
 - Leakage problem is expected in other variations of Si technologies
 - One can effectively use some of the leakage control circuits for testability enhancement
- An integrated approach to design device/circuit/arch. is essential for an optimized design
- Subthreshold leakage for computing ultralow power

Questions and Answers