CQT Lecture #1

CQT, Lecture#1: Nanodevices and Maxwell's Demon

Objective:

To illustrate the subtle interplay of dynamics and thermodynamics that distinguishes transport physics.

Reference:

S.Datta, "Nanodevices and Maxwell's demon", to appear in the Proceedings of the Third ASI International Workshop on Nano Science & Technology, Ed. Z.K. Tang, Taylor & Francis (2007).

http://arxiv.org/abs/0704.1623

Unified Model for Quantum Transport Far from Equilibrium

"QTAT" Datta, Quantum Transport: Atom to Transistor, Cambridge (2005)

Maxwell's demon

online simulations and more

Electronic demon

Top-down view

$$V = IR$$
 or $I = VG$

Conductance, G = 1/R

$$G = \sigma A/L$$

Conductivity

$$\sigma = d^2 n \pi m$$

$$m = ? n = ?$$

"Very complicated"

Top"

Bottom-up View

Ohm's law

$$I = GV$$
 , $G = \sigma A/L$

 $\gamma \equiv escape \ rate$

Density of states

$$G = (q^2/h) (\pi D \gamma)$$

CHANNEL

$$G = \underbrace{(q^2/h)}_{1/25.8 \ K\Omega}$$

"Bottom"

Escape rate

Equilibrium Energy Level Diagram

What makes electrons flow?

Escape rate

 γ/\hbar : Escape Rate

 γ has dimensions of energy

Current depends on Density of states, D(E) around the contact electrochemical potentials.

AND

on escape rates

 $\gamma_1 \qquad \gamma_2$

Where is the power dissipated?

Dynamics and dissipation

Separate dynamics + dissipation

Landauer model Dissipation

Dynamics

The state of the stat

Newton's law Schrodinger equation

Mixed dynamics + dissipation

Boltzmann NEGF

Spin Valves

Anti-parallel (AP)

Perfect AP with Spin-flip Impurities

Perfect AP with Spin-polarized gate

-0.1

Current at zero voltage!!

-0.05

Voltage --->

Fig : 1*A*

Device to "demon"

Answer: From the contacts

Second law?

S = 0

S = Nk In 2

Energy upto $T\Delta S$ may be extracted

Resetting the demon takes energy

Maxwell's demon, ed. H.S.Leff and A.F.Rex, ISBN 0-691-08727-X pbk

Nanomagnets: Bistable demons

Higher energy

.. A finite-sized demon .. gets so hot that he cannot see very well after a while ..", Feynman lectures, Vol.1, 46-5.

Angle of magnetization from plane of magnet

Flipping a spin costs energy

Energy

The cool demon as a heat engine

 $T_{D} = 60K$ 0.05 Q_{1} : heat from contacts Q_{2} : heat to demon $Q_{1} - Q_{2}$: useful work 0.05

Carnot's $\frac{Q_1}{kT} < \frac{Q_2}{kT_D}$

0.25

Cooling the demon: Refrigerator

 Q_1 : heat delivered to contacts Q_2 : heat taken from demon

Battery delivers Q₁ - Q₂

Carnot's principle

$$\frac{Q_1}{kT} > \frac{Q_2}{kT_D}$$

Why is the flow unidirectional?

No energy needed

Need > N kT to "Erase"

Entropy as a driving force

Entropy-driven vs. dynamic processes

Entangled "demon"

Unified model for nanodevices

"Even simple things .. work .. in only one direction because it has some ultimate contact with the rest of the universe .."

Feynman lectures, Vol.1, 46-8

Nanowires, nanotubes, molecules

Switches, energy conversion ...