
Writing your first Verilog-A
compact model

Geoffrey Coram
Analog Devices

NEEDS External Advisory Group

Assumptions

You are a device engineer / researcher

You need a compact model (not TCAD)

You understand the physics of the device

You have a set of equations that describe the
terminal characteristics.

You’ve never written a compact model before

Question

How can you write a model that is good enough
for early stage circuit simulation…

… and one that can serve as a starting point for
an industrial-strength compact model that
designers can use?

Answers

You need to understand:

 1) What a compact model must do

 2) How a circuit simulator uses a compact model

 3) How to translate device equations into Verilog-A

 4) Some common mistakes to be aware of

 5) How to test your model

 6) What a model deployment package consists of.

Outline

1. What circuit simulators and compact models do
2. Verilog-A (vs. Matlab or C)
3. Simple examples
4. Basic language features
5. Coding guidelines
6. Common mistakes
7. Testing your model
8. The model release package
9. Summary

1. Circuit simulators and compact models

Circuit simulators (almost?) all use Modified Nodal Analysis

• Unknowns are node voltages (and certain branch currents)
• Each row in the matrix specifies KCL for a particular node

(or KVL for certain elements)

Solutions are obtained by Newton’s method

• Derivatives must be smooth
• Crazy voltages are almost guaranteed

Your model should:

• Be formulated to give I and Q as a functions of V
• Be smooth
• Handle unexpected voltages gracefully

"through" quantities as functions of
"across" variables

2. Verilog-A vs. Matlab or C

 Verilog-A is a “hardware description language”

• Intended for high-level behavioral modeling

• Less focused on the math, more on the behavior (physics)

• Much of the simulator interface handled by the compiler

3. Simple examples

module simpleres(a, b);
 inout a, b;
 electrical a, b;

 analog I(a,b) <+ V(a,b) / 1000;
endmodule

3. Simple examples

`include "disciplines.vams"

module simpleres(a, b);
 inout a, b;
 electrical a, b;
 parameter real r = 1000 from (0:inf);

 analog begin
 I(a,b) <+ V(a,b) / r;
 end
endmodule

3. Simple examples

HSpice:
.hdl "simpleres.va"
x1 top 0 simpleres r=2k
v1 top 0 5

Spectre:
ahdl_include "simpleres.va"
r1 (top 0) simpleres r=2k
v1 (top 0) vsource dc=5

4. Basic language features

Header files contain standard information

`include "disciplines.vams"

Defines "electrical" discipline and access functions V and I
(also thermal, kinematic, …)

`include "constants.vams"

Physical (`P_Q) and mathematical (`M_PI) constants

Please! don't `define M_PI 3.14

4. Basic language features

Module is the standard building block:

 module mymodule(list_of_ports);

 endmodule

Ports or terminals are the connections to the circuit:

 inout port1, port2;
 electrical port1, port2;

Always use inout for your compact models.

4. Basic language features

Powerful syntax for declaring parameters with default and range:

parameter real r = 1000 from (0:inf);

Chained defaults:
 parameter real l = 1u from (0:inf);
 parameter real w = 1u from (0:inf);
 parameter real rho = 1 from (0:inf);
 parameter real r = rho*l/w from (0:inf);

4. Basic language features

All behavior in the analog block

 analog begin
 I(a,b) <+ V(a,b) / r;
 end

Use begin / end for multi-line blocks – like you would use
braces { } in C

*** Emacs and VIM have "Verilog-mode" plug-ins that can
highlight keywords and keep your indentation correct.

4. Basic language features

The contribution operator:

 analog begin
 I(a,b) <+ V(a,b) / r;
 I(a,b) <+ white_noise(4*`P_K
 *$temperature, "thermal");
 end

Not quite an assignment – all contributions to I are summed.

3. Simple examples

`include "disciplines.vams"

module simplecap(a, b);
 inout a, b;
 electrical a, b;
 parameter real c = 1000 from [0:inf);
 (* desc = "charge" *) real q;

 analog begin
 q = c * V(a,b);
 I(a,b) <+ ddt(q);
 end
endmodule

Always use
ddt(charge)
not C*ddt(V)

4. Basic language features

Where to go next?

• Verilog-AMS Language Reference Manual
(available free from www.accellera.org)
Especially sections 1-5.

• Designer's Guide to Verilog-AMS
by Ken Kundert

• Existing models (mostly open-source)
Mextram, Hicum, BSIMSOI, PSP, MOS20, …

http://www.accellera.org/downloads/standards/v-ams

5. Coding guidelines

• Write legibly
– indent blocks consistently

– align equations vertically on = or <+

– use spaces, not TAB (ts=4 or 8?)

– use comments to document equations

– use meaningful variable names
(not T0, T1, … and Vd, Vs not Vx, Vy)

can’t hide behind compiled code

5. Coding guidelines

Can anyone besides you read your code?

Rd=Rc/W*(1+rv*max((Vgg-VtO),0))
+Rsh*Ld/W/(1+lamda*(dvd-dvg)/Ld)
*pow((1+zeta*I(b,a)*Vd/300),2.3)
*(pow((1+pow(((dvd-dvg+1e-
10)/(Ld*Ecd)),
theta)),(1.0/theta)));

Self-heating

5. Coding guidelines

// MOS Model 11 Verilog-A implementation

// Level 11010 "physical scaling"

// Based on the report "NL-UR2002/802: MOS Model 11 Level 1101"

// by R. van Langevelde, A.J. Scholten, and D.B.M Klaassen

// Copyright Koninklijke Philips Electronics N.V. 2003/2004

...

 // Calculation of Conductance Parameters
 // (5.17)..(5.19)

 theth = thethr * (1.0 + We_inv * swtheth) * exp(lnLe*thethe

 ssf = ssfr * (1.0 + We_inv * swssf) * (1.0 + Le_inv * slssf

 alp = alpr * (1.0 + We_inv * swalp)

 * (1.0 + slalp * (exp(lnLe*alpexp) - 1.0));

Ref to docs

5. Coding guidelines

Mix of TABs and spaces

No range on phib

5. Coding guidelines

analog begin

 if (SHAPE==1)

 begin

 surface=a*b; //SQUARE

 end

 else if (SHAPE==2)

 begin

 surface=`M_PI*a*b/4.0; //ELLIPSE

 end

 else

 begin

 surface=`M_PI*r*r; //ROUND

 end

Vc=V(T2,T1);

Vb V(T1 T2)

Inconsistent
indentation

5. Coding guidelines

analog begin

 if (SHAPE==1) begin

 surface=a*b; //SQUARE

 end else if (SHAPE==2) begin

 surface=`M_PI*a*b/4.0; //ELLIPSE

 end else begin

 surface=`M_PI*r*r; //ROUND

 end

 Vc=V(T2,T1);

 Vb=V(T1,T2);

 //initial conditions

 @(initial_step) begin

 FA 3322 53/RA

Better!

5. Coding guidelines

Mix of TABs and spaces

No range on phib

5. Coding guidelines

V(b) – V(si) = V(b,si)
Best to use branch voltages!

No range on phib

5. Coding guidelines

• Use SI units: meters, Amps, etc.
– One NEEDS model used cm

– Design environment (schematic capture) uses m

• Don't miX CaSe of ParAmeTers
– Some tools are case-sensitive, some are not;

can cause difficulties moving from extraction to
simulation tools

5. Coding guidelines

• Many references:
– Coram BMAS 2004

– Coram/McAndrew CMRF 2005

– Coram MOS-AK 2006

– Mierzwinski et al. MOS-AK 2008

– Mierzwinski et al. MOS-AK 2009

– NEEDS talk on nanoHUB

http://nanohub.org/resources/18621

6. Common mistakes

• Verilog-AMS uses ln() instead of log()

• ½ = 0 (integer division)

• Use begin/end to delimit all if blocks

 if (rdeff < 0)

 $debug("fixing rdeff");

 rdeff = 0;
OOPS!

 begin

end

6. Common mistakes

A word about tolerances:

• SPICE-like simulators try to satisfy KCL: Σ i = 0

• Double-precision arithmetic: you never get 0
((1A - 1pA) – 1A) + 1pA = 1pA

• But that's OK: abstol = 1pA, reltol = 0.001

| Σ i | < abstol + reltol * | max i |

6. Common mistakes

A word about tolerances:

• HOWEVER, if your "flow" variables are much
smaller or much larger than "typical" currents,
convergence will be bad

7. Testing your model

• Of course you will test your model over the
measurement range
– To show fit to measurements

• You should also test OUTSIDE the
measurements:
– How does the model behave at high voltages?

– Extreme temperatures?

– What happens for Vds < 0 or other symmetries?

7. Testing your model

• Consider unexpected parameter values
– Some extraction tools may pick random values

– Set ranges to prevent mathematical errors

– Consider warnings for unexpected values

• N and P type devices (if applicable)

7. Testing your model

• Run DC, AC, TRAN analyses
– AC currents can expose derivatives

• Run in multiple simulators
– Each has its own quirks

– Spectre's PSS particularly good at catching
"hidden state"

8. The model release package

• Not just the source code!

• Documentation – of the model equations
and parameter extraction, if possible

• Sample parameter set and netlist

• BE SURE TO INCLUDE LICENSE TERMS!
and copyright notice

8. The model release package

9. Summary

• Verilog-A is a useful language
– Parameter extraction as well as circuit simulation

• Verilog-A is easy to learn
– Much easier than C/C++ interfaces to simulators

• Many models available
– Examples to follow
– Don't reinvent the junction diode

9. Summary

• Your code should be able to stand alone
– New students picking up your research

– Industrial users who might not read your paper

• Be proud of your code!

Further Work

• Establish requirements for posting on
nanoHUB

• Web-based model exerciser

• Definition of "NEEDS-Certified" compact
models

NEEDS-Basic

• Basic level of quality for posting to nanoHUB
– No syntax errors

– Clean formatting: no TABs, block indentation

– No "improper" functions:
• absdelay, transition, analysis, initial_step

• $system_functions (except $temperature, $limit)

Bronze, Silver, Gold

• Additional levels of code checking
– Proper variable initialization (no hidden state)
– No unused variables / orphan code
– Documentation in code

• Netlists for commercial simulators
– With reference results

• Parameters and operating-point variables
declared with units and description

• What else?

	Writing your first Verilog-A compact model
	Assumptions
	Question
	Answers
	Outline
	1. Circuit simulators and compact models
	2. Verilog-A vs. Matlab or C
	3. Simple examples
	3. Simple examples
	3. Simple examples
	4. Basic language features
	4. Basic language features
	4. Basic language features
	4. Basic language features
	4. Basic language features
	3. Simple examples
	4. Basic language features
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	5. Coding guidelines
	6. Common mistakes
	6. Common mistakes
	6. Common mistakes
	7. Testing your model
	7. Testing your model
	7. Testing your model
	8. The model release package
	8. The model release package
	9. Summary
	9. Summary
	Further Work
	NEEDS-Basic
	Bronze, Silver, Gold

