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Assumptions 

You are a device engineer / researcher 

You need a compact model (not TCAD) 

You understand the physics of the device 

You have a set of equations that describe the 
terminal characteristics. 

 

You’ve never written a compact model before 



Question 

 

How can you write a model that is good enough 
for early stage circuit simulation… 

 

… and one that can serve as a starting point for 
an industrial-strength compact model that 
designers can use? 



Answers 

You need to understand: 
 

 1)  What a compact model must do 

 2)  How a circuit  simulator uses a compact model 

 3)  How to translate device equations into Verilog-A 

 4) Some common mistakes to be aware of 

 5)  How to test your model 

 6)  What a model deployment package consists of. 



Outline 
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1.  Circuit simulators and compact models 

Circuit simulators (almost?) all use Modified Nodal Analysis 
 

• Unknowns are node voltages (and certain branch currents) 
• Each row in the matrix specifies KCL for a particular node 

(or KVL for certain elements) 
 
Solutions are obtained by Newton’s method 

 

• Derivatives must be smooth 
• Crazy voltages are almost guaranteed 

 
Your model should: 

 

• Be formulated to give I and Q as a functions of V 
• Be smooth 
• Handle unexpected voltages gracefully 

"through" quantities as functions of 
"across" variables 



2.  Verilog-A vs. Matlab or C 

 Verilog-A is a “hardware description language” 
 
 

• Intended for high-level behavioral modeling 
 

• Less focused on the math, more on the behavior (physics) 
 

• Much of the simulator interface handled by the compiler 
 
 
 



3.  Simple examples 

 
module simpleres(a, b); 
 inout a, b; 
 electrical a, b; 
 
 analog I(a,b) <+ V(a,b) / 1000; 
endmodule 
 



3.  Simple examples 

`include "disciplines.vams" 
 
module simpleres(a, b); 
 inout a, b; 
 electrical a, b; 
 parameter real r = 1000 from (0:inf); 
 
 analog begin 
  I(a,b) <+ V(a,b) / r; 
 end 
endmodule 
 



3.  Simple examples 

HSpice: 
.hdl "simpleres.va" 
x1 top 0 simpleres r=2k 
v1 top 0 5 
 
 
Spectre: 
ahdl_include "simpleres.va" 
r1 (top 0) simpleres r=2k 
v1 (top 0) vsource dc=5 



4.  Basic language features 

Header files contain standard information 
 

`include "disciplines.vams" 
 

Defines "electrical" discipline and access functions V and I 
(also thermal, kinematic, …) 

 
`include "constants.vams" 

 

Physical (`P_Q) and mathematical (`M_PI) constants 
 

Please!  don't `define M_PI 3.14 
 

 



4.  Basic language features 

Module is the standard building block: 
 

 module mymodule(list_of_ports); 
 

 endmodule 
 

Ports or terminals are the connections to the circuit: 
 

  inout port1, port2; 
  electrical port1, port2; 

 
Always use inout for your compact models. 

 



4.  Basic language features 

Powerful syntax for declaring parameters with default and range: 
 

parameter real r = 1000 from (0:inf); 

 

Chained defaults: 
 parameter real l   = 1u    from (0:inf); 
 parameter real w   = 1u    from (0:inf); 
 parameter real rho = 1     from (0:inf); 
 parameter real r = rho*l/w from (0:inf); 

 

 



4.  Basic language features 

All behavior in the analog block 
 
 analog begin 
  I(a,b) <+ V(a,b) / r; 
 end 
 

Use begin / end for multi-line blocks – like you would use 
braces { } in C 

 
*** Emacs and VIM have "Verilog-mode" plug-ins that can 
highlight keywords and keep your indentation correct. 

 



4.  Basic language features 

 
 
 
 

The contribution operator: 
 

 analog begin 
  I(a,b) <+ V(a,b) / r; 
  I(a,b) <+ white_noise(4*`P_K 
      *$temperature, "thermal"); 
 end 
 

Not quite an assignment – all contributions to I are summed. 



3.  Simple examples 

`include "disciplines.vams" 
 
module simplecap(a, b); 
 inout a, b; 
 electrical a, b; 
 parameter real c = 1000 from [0:inf); 
 (* desc = "charge" *) real q; 
 
 analog begin 
  q = c * V(a,b); 
  I(a,b) <+ ddt( q ); 
 end 
endmodule 

Always use 
ddt( charge ) 
not C*ddt(V) 



4.  Basic language features 

Where to go next? 
 

• Verilog-AMS Language Reference Manual 
(available free from www.accellera.org) 
Especially sections 1-5. 
 

• Designer's Guide to Verilog-AMS 
by Ken Kundert 
 

• Existing models (mostly open-source) 
Mextram, Hicum, BSIMSOI, PSP, MOS20, … 

http://www.accellera.org/downloads/standards/v-ams


5.  Coding guidelines 

• Write legibly 
– indent blocks consistently 

– align equations vertically on = or <+ 

– use spaces, not TAB (ts=4 or 8?) 

– use comments to document equations 

– use meaningful variable names 
(not T0, T1, … and Vd, Vs not Vx, Vy) 

can’t hide behind compiled code 



5.  Coding guidelines 

Can anyone besides you read your code? 
 

Rd=Rc/W*(1+rv*max((Vgg-VtO),0)) 
+Rsh*Ld/W/(1+lamda*(dvd-dvg)/Ld) 
*pow((1+zeta*I(b,a)*Vd/300),2.3) 
*(pow((1+pow(((dvd-dvg+1e-
10)/(Ld*Ecd)), 
theta)),(1.0/theta))); 

 

Self-heating 



5.  Coding guidelines 

// MOS Model 11 Verilog-A implementation 

// Level 11010 "physical scaling" 

// Based on the report "NL-UR2002/802: MOS Model 11 Level 1101" 

// by R. van Langevelde, A.J. Scholten, and D.B.M Klaassen 

// Copyright Koninklijke Philips Electronics N.V. 2003/2004  

 

... 

 

    // Calculation of Conductance Parameters 
    // (5.17)..(5.19) 

    theth = thethr * (1.0 + We_inv * swtheth) * exp(lnLe*thethe

    ssf = ssfr * (1.0 + We_inv * swssf) * (1.0 + Le_inv * slssf  

    alp = alpr * (1.0 + We_inv * swalp)  

          * (1.0 + slalp * (exp(lnLe*alpexp) - 1.0)); 

Ref to docs 



5.  Coding guidelines 

Mix of TABs and spaces 

No range on  phib 



5.  Coding guidelines 

analog begin 

 if (SHAPE==1) 

  begin 

  surface=a*b; //SQUARE 

  end 

  else if (SHAPE==2) 

  begin 

  surface=`M_PI*a*b/4.0; //ELLIPSE 

  end 

  else  

  begin 

  surface=`M_PI*r*r;    //ROUND 

 end 

Vc=V(T2,T1); 

Vb V(T1 T2)  

Inconsistent 
indentation 



5.  Coding guidelines 

analog begin 

 if (SHAPE==1) begin 

  surface=a*b; //SQUARE 

 end else if (SHAPE==2) begin 

  surface=`M_PI*a*b/4.0; //ELLIPSE 

 end else begin 

  surface=`M_PI*r*r;    //ROUND 

 end 

 

 Vc=V(T2,T1); 

 Vb=V(T1,T2); 

 

 //initial conditions 

 @(initial_step) begin 

  FA 3322 53/RA  

Better! 



5.  Coding guidelines 

Mix of TABs and spaces 

No range on  phib 



5.  Coding guidelines 

V(b) – V(si) = V(b,si) 
Best to use branch voltages! 

No range on  phib 



5.  Coding guidelines 

• Use SI units: meters, Amps, etc. 
– One NEEDS model used cm 

– Design environment (schematic capture) uses m 

 

• Don't miX CaSe of ParAmeTers 
– Some tools are case-sensitive, some are not; 

can cause difficulties moving from extraction to 
simulation tools 



5.  Coding guidelines 

• Many references: 
– Coram BMAS 2004 

– Coram/McAndrew CMRF 2005 

– Coram MOS-AK 2006 

– Mierzwinski et al. MOS-AK 2008 

– Mierzwinski et al. MOS-AK 2009 

– NEEDS talk on nanoHUB 

 

http://nanohub.org/resources/18621


6.  Common mistakes 

• Verilog-AMS uses ln() instead of log() 

• ½ = 0 (integer division) 

• Use begin/end to delimit all if blocks 

 
 if (rdeff < 0) 

  $debug("fixing rdeff"); 

  rdeff = 0; 
OOPS! 

                           begin 
 
 
 

end 



6.  Common mistakes 

A word about tolerances: 

• SPICE-like simulators try to satisfy KCL: Σ i = 0 

• Double-precision arithmetic: you never get 0 
((1A - 1pA) – 1A) + 1pA = 1pA 

• But that's OK: abstol = 1pA, reltol = 0.001 
 
| Σ i  |  <  abstol + reltol * | max i | 

 

 

 



6.  Common mistakes 

A word about tolerances: 

 

• HOWEVER, if your "flow" variables are much 
smaller or much larger than "typical" currents, 
convergence will be bad 

 



7.  Testing your model 

• Of course you will test your model over the 
measurement range 
– To show fit to measurements 

• You should also test OUTSIDE the 
measurements: 
– How does the model behave at high voltages? 

– Extreme temperatures? 

– What happens for Vds < 0 or other symmetries? 



7.  Testing your model 

• Consider unexpected parameter values 
– Some extraction tools may pick random values 

– Set ranges to prevent mathematical errors 

– Consider warnings for unexpected values 

 

• N and P type devices (if applicable) 



7.  Testing your model 

• Run DC, AC, TRAN analyses 
– AC currents can expose derivatives 

 

• Run in multiple simulators 
– Each has its own quirks 

– Spectre's PSS particularly good at catching 
"hidden state" 



8.  The model release package 

• Not just the source code! 

• Documentation – of the model equations 
and parameter extraction, if possible 

• Sample parameter set and netlist 

 

• BE SURE TO INCLUDE LICENSE TERMS! 
and copyright notice 



8.  The model release package 



9.  Summary 

• Verilog-A is a useful language 
– Parameter extraction as well as circuit simulation 

 

• Verilog-A is easy to learn 
– Much easier than C/C++ interfaces to simulators 

 

• Many models available 
– Examples to follow 
– Don't reinvent the junction diode 



9.  Summary 

• Your code should be able to stand alone 
– New students picking up your research 

– Industrial users who might not read your paper 

 

• Be proud of your code! 



Further Work 

• Establish requirements for posting on 
nanoHUB 

• Web-based model exerciser 

• Definition of "NEEDS-Certified" compact 
models 

 

 

 



NEEDS-Basic 

• Basic level of quality for posting to nanoHUB 
– No syntax errors 

– Clean formatting: no TABs, block indentation 

– No "improper" functions: 
• absdelay, transition, analysis, initial_step 

• $system_functions (except $temperature, $limit) 

 

 



Bronze, Silver, Gold 

• Additional levels of code checking 
– Proper variable initialization (no hidden state) 
– No unused variables / orphan code 
– Documentation in code 

• Netlists for commercial simulators 
– With reference results 

• Parameters and operating-point variables 
declared with units and description 

• What else? 
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