CQT Lecture #2

CQT, Lecture#2: Electrical Resistance: A Simple Model

Objective:

To introduce a simple quantitative model for describing current flow in nanoscale structures and relate it to well-known large scale properties like Ohm's Law.

Model based on Datta, Nanotechnology, 15, 5433 (2004).

Reference: QTAT, Chapter 1.

Unified Model for Quantum Transport Far from Equilibrium μ_1 μ_2 Simple version Datta, Quantum Transport: Atom to Transistor, Cambridge (2005)

Equilibrium Energy Level Diagram

Fermi function

$$V_G > 0$$

 $V_G < 0$

What makes electrons flow?

online simulations and more

Escape rate

 γ/\hbar : Escape Rate

 γ has dimensions of energy

Current through a very small conductor

What is Conductance?

 $\frac{dI}{dV} \sim \frac{q\gamma_1/2\hbar}{4kT/q}$

Conductance quantum

Normalized Current

$$\frac{dI}{dV} \sim \frac{q\gamma_1/2\hbar}{(2\gamma_1 + 4kT)/q}$$

$$\sim q^2/4\hbar$$
 if $\gamma_1 >> kT$

Conductance quantum

$$\sim q^2/2\pi\hbar \sim 1/25.8 K\Omega$$

Conductance: The bottom line

D: Density of states

$$\frac{I}{V} = \frac{q^2}{2\pi\hbar} \underbrace{\langle \pi D \gamma \rangle}_{\text{Conductance Quantum}}$$

Bottom to Top: A Short-cut

$$I_{V} = \frac{q^2}{2\pi\hbar} \left\langle \pi D \gamma \right\rangle$$

$$\underbrace{D(E)}_{/eV} = \underbrace{N_0(E)}_{/eV-nm^3} \underbrace{AL}_{nm^3}$$

Will show that

$$\gamma \sim \frac{\hbar v}{L} \rightarrow D\gamma \sim A$$

$$\gamma \sim \frac{2\hbar D}{L^2} \rightarrow D\gamma \sim A/L$$

online simulations and more

$$n_L$$
 $\Rightarrow Flux = n_L v$ \Rightarrow

$$\frac{\gamma}{\hbar} = \frac{Flux}{Stored\ electrons}$$

$$= \frac{n_L v}{n_L L} = \frac{v}{L}$$

= 1/Transit time

Diffusive

$$n_{L} \longrightarrow Flux = -\tilde{\mathsf{D}} \frac{\partial n_{L}}{\partial x}$$

$$\frac{\gamma}{\hbar} = \frac{Flux}{Stored\ electrons}$$

$$= \frac{\widetilde{\mathsf{D}}n_L/L}{n_L L/2} = \frac{2\widetilde{\mathsf{D}}}{L^2}$$

= 1/Transit time

Drift-diffusion equations

Diffusive transport

$$\gamma = \frac{2\hbar\,\widetilde{\mathsf{D}}}{L^2}$$

$$D = N_0 A L$$

Einstein
$$\frac{\tilde{D}}{\mu} = \frac{k_B T}{q}$$

$$I_{V} = \frac{q^{2}}{2\hbar} \left\langle D\gamma \right\rangle$$

conductivity

$$\rightarrow (A/L) q^2 \frac{n}{k_B T} \tilde{D}$$

$$= (A/L) q n \mu$$

online simulations and more

One broadened level:

$$D(E) = \frac{\gamma/\pi}{(E-\varepsilon)^2 + \gamma^2}$$

$$D(E = \varepsilon) = 1/\pi \gamma$$
$$\langle \pi D \gamma \rangle = 1$$

$$I_{V} = \frac{q^{2}}{2\pi\hbar} \underbrace{\langle \pi D \gamma \rangle}_{\text{Conductance quantum}}$$
Transmission

online simulations and more

Ballistic transport

$$\gamma = \hbar v_{\chi} / L$$

$$I_{V} = \underbrace{\frac{q^{2}}{2\pi\hbar}}_{Conductan ce} \underbrace{\langle \pi D \gamma \rangle}_{Transmission}$$

Electrons with effective mass 'm'

$$1D: D = L(m/\pi \hbar v)$$
$$\langle \pi D \gamma \rangle = 1$$

$$2D: D = LW m/2\pi \hbar^{2}$$

$$\langle \pi D \gamma \rangle = W m \nu_{x}/2\hbar$$

$$\approx \frac{W}{\lambda/2}$$

$$3D: D = LAm^{2}v/3\pi^{2}\hbar^{3} \quad \stackrel{\mathsf{E}}{\uparrow} \quad \left[\pi D\gamma \right] \approx \frac{A}{(\lambda/2)^{2}}$$

Current through one level

Set
$$\gamma_2 = \gamma_1$$
:

$$I \sim \frac{q}{\hbar} \frac{\gamma_1}{2} \left[f_1 - f_2 \right]$$

$$I_{1}=q\frac{\gamma_{1}}{\hbar}[f_{1}-f]$$

$$I_{2}=q\frac{\gamma_{2}}{\hbar}[f-f_{2}]$$

$$I = \frac{q}{\hbar}\frac{\gamma_{1}\gamma_{2}}{\gamma_{1}+\gamma_{2}}[f_{1}-f_{2}]$$

$$I \sim \frac{q}{\hbar} \frac{\gamma_1}{2}$$

Current with Broadening

$$n = \int dE \quad D(E) \quad \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} \int dE \ D(E) \ \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \left[f_1 - f_2 \right]$$

Importance of electrostatics

Why does the current in a transistor saturate?

Self-consistent potential

$$n = D(E - U) \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} D(E - U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} [f_1 - f_2]$$

$$U = U_L + U_0(n - n_0)$$

 $\nabla^2 U \sim Charge \ Density$

Self-consistent field method

online simulations and more

$$U = U_L + U_0(n - n_0)$$

$$n = D(E - U) \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} D(E - U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} [f_1 - f_2]$$

Nanowires / Nanotubes / Molecules

$$U = U_L + U_0(n - n_0)$$

$$n = D(E - U) \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} D(E - U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} [f_1 - f_2]$$

$$I_1 = q \frac{\gamma_1}{\hbar} D(E) [f_1 - f]$$

$$I_2 = q \frac{\gamma_2}{\hbar} D(E) [f - f_2]$$

$$I_1 - I_2 = I_s$$

AP Spin Valves

$$I_R = q \frac{\gamma_1}{\hbar} D(E) [f_1 - f_R] = 0$$

$$I_B = q \frac{\gamma_2}{\hbar} D(E) [f_B - f_2] = 0$$

$$I = q \frac{\gamma_1}{\hbar} D(E) [f_1 - f_R]$$

$$= q \frac{\gamma_2}{\hbar} D(E) [f_B - f_2]$$

$$= q \frac{\gamma_s}{\hbar} D(E) \begin{bmatrix} f_R (1 - f_B) B \\ -f_B (1 - f_R) R \end{bmatrix}$$

$$I \approx q \frac{\gamma_{S}}{\hbar} D(E) \begin{bmatrix} f_{1}(1 - f_{2})B \\ -f_{2}(1 - f_{1})R \end{bmatrix}$$

The cool demon as a heat engine

online simulations and more

 Q_1 : heat from contacts Q_2 : heat to demon $Q_1 - Q_2$: useful work

Carnot's principle

$$I \approx q \frac{\gamma_s}{\hbar} D(E) \begin{bmatrix} f_1(1 - f_2)B \\ -f_2(1 - f_1)R \end{bmatrix}$$

$$\frac{R}{B}$$
 < $\frac{f_1(1-f_2)}{f_2(1-f_1)}$

$$e^{-\Delta/kT_D} < \frac{e^{(E-\Delta-\mu_2)/kT}}{e^{(E-\mu_1)/kT}}$$

$$\frac{\Delta}{kT_D} > \frac{E - \mu_1}{kT} - \frac{E - \Delta - \mu_2}{kT}$$

$$\frac{Q_2}{kT_D} > \frac{Q_1}{kT}$$

Carnot's principle

online simulations and more

CQT, Lecture#2: Electrical Resistance: A Simple Model

Simple quantitative model For Transport Far from Equilibrium

