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Unified Model for Quantum
Transport Far from Equilibrium

CQT, Lecture#2:
Electrical Resistance:
A Simple Model

Objective:
To introduce a simple quantitative
model for describing current flow in
nanoscale structures and relate it to § " simple version

well-known large scale properties like
, [
Model based on t \ -

Ohm's Law.
Datta, Nanotechnology,15, S433 (2004). Datta, Qua‘r';’njm'Tmnspor"r:

Atom to Transistor,
Reference: QTAT, Chapter 1. Cambridge (2005)
|
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dl _ qy/2n
v (2y1+M)/q !

- q2/4n if p>>KT .
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Conductance quantum
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Ballistic

= Flux=ngv

Flux

Stored electrons

n|_v v

n|_L L

= 1/Transit time

Ballistic vs. Diffusive channels

Diffusive

Stored electrons
SnL /L 26

n|_L/2 - F

1/Transit time
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Diffusive transport
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Relation: , g = (A/L) qnu
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Ballistic transport
y =hvy /L
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Current with Broadening
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Why does the current in a transistor saturate ?
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n+r

| = IDpE-U) Y2 [f-1,]
n yLt2

Well-designed gate \
D(E)

= D(E-U) {7/1f1+72 fz}

Potential lowere
due to decrease
in electrons

viy=0 =mmmdp U= U  +Up(n—ng)

V? U ~ Charge Density J
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Simplified treatment
7/1 /4 2 of a very complicated problem

/ “Poisson”
D(E) n--=-uU

Self-
Consistent
Solution

U-->n

U =U|_ +U0(n—n0)

"Schrodinger”

n= D(E—U){“fl”ZfZ} U--=>1
y1+72

Nanowires /

g g,
| = ZD(E-U) [, 5]
7 YL+ 7o Nanotubes / Molecules
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U =U|_ +U0(n—n0)

l1=q = D(E)[f1—f]

o D(E_U){mfﬁ?/zfz}
y1+72

lo= q 2 D(E)[f - f,]
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The cool demon as a heat engine

Current --->

/TD - 600K
|

-0.05 0

Voltage --->

_Ql heat from con’rac’rs
. Q' heat to demon
. Q - Q¢ useful work
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CQT, Lecture#2:
Electrical Resistance:
A Simple Model

Simple quantitative model
For Transport
Far from Equilibrium

Summary
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