CQT Lecture #3

CQT, Lecture#3: Probabilities, Wavefunctions and Green Functions

Unified Model for Quantum Transport Far from Equilibrium

Objectives:

To extend the simple model from Lecture 2 into the full-blown model shown opposite that combines the NEGF (Non-Equilibrium Green Function) method with the Landauer approach.

Model based on
(1)Datta, Phys.Rev.B40, 5830
(1989); J.Phys.Cond.Matt.2, 8023(1990).
(2)Meir and Wingreen, Phys.Rev.Lett.68, 2512(1992).

Reference: QTAT, Chapters 8-11.

"QTAT"
Datta, Quantum Transport:
Atom to Transistor,
Cambridge (2005)

Probabilities, wavefunctions, Green functions

Simple quantitative model For Transport Far from Equilibrium

Unified Model for Quantum Transport Far from Equilibrium

Probabilities, wavefunctions, Green functions

Summary: 1-grid point model

online simulations and more

$$I_1 = q \frac{\gamma_1}{\hbar} dE D(E) \left[F - f_1 \right]$$

$$F - f_1 = f_2 - F$$

$$\Rightarrow F - f_1 = \frac{f_2 - f_1}{2} \Rightarrow I = \frac{q}{h} \int dE \frac{K(E)}{2} \left[f_2 - f_1 \right]$$

Transmission

$$K(E) \equiv 2\pi D(E) \gamma_1$$

Introducing a Grid

online simulations and more

O.1 mm Macroscopic dimensions

$$R_2 > R_1$$

$$R_2 = R_1$$

1 nm

R₂ can even be less than R₁

0.1 nm

Atomic dimensions

 R_2 :

 γ_1/\hbar

Energy -resolved current

online simulations and more

$$T(E) = K(E)/2$$

$$K(E) \equiv 2\pi D(E) \gamma_1$$

1-grid point model

$$I = \frac{q}{h} \int dE \frac{K(E)}{2} \left[f_1 - f_2 \right]$$

Transmission

$$\approx \frac{q}{h} qV T$$

2-grid point diffusive model

online simulations and more

$$I_{12} = K(E) [F_1 - F_2]$$

$$F_{1} - f_{1} = F_{2} - F_{1} = f_{2} - F_{2}$$

$$\Rightarrow F_{1} - f_{1} = \frac{f_{2} - f_{1}}{3} \Rightarrow I = \frac{K(E)}{3} [f_{1} - f_{2}]$$

$$K(E) \equiv 2\pi \gamma_1 D(E)$$

(Currents normalized to q dE/h)

Equivalent circuit

online simulations and more

$$f_1 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow f_2$$
 $v_1 \longrightarrow V_1 \longrightarrow V_2$

Discretized $I \sim \frac{\partial F}{\partial z}$ version of $\begin{array}{ccc} & & & \\ & &$

Introducing a Grid

$$R_2 > R_1$$

$$R_2 = R_1$$

1 nm

0.1 nm

Atomic dimensions

2-grid point ballistic model

 $F_1 F_2$

Subtract →

$$I_1^- = \frac{K(E)}{2} F_1^-$$

$$I_2^+ = \frac{K(E)}{2} F_2^+$$

$$I_2^- = \frac{K(E)}{2} F_2^-$$

$$f_1 = F_1^+ = F_2^+$$

$$F_1^- = F_2^- = f_2$$

$$I = \frac{q}{h} \int dE \frac{K(E)}{2} [f_1 - f_2]$$

Current is same as in 1-point model: Ballistic transport

2-grid point, 2-flux model

online simulations and more

$$I = \frac{K(E)}{2} (1-b) [f_2 - f_1]$$

Can show that for 'n+1' sections each having a small 'b':

ons
$$I = \frac{K(E)}{2} \frac{1}{1+nb} [f_2 - f_1]$$

Interpolates smoothly from ballistic to diffusive transport

Boltzmann equation

$$I_1^- = (1-b)I_2^- + bI_1^+$$

 $\Rightarrow F_1^- = (1-b)f_2 + bf_1$
 $I_2^+ = (1-b)I_1^+ + bI_2^-$
 $\Rightarrow F_2^+ = (1-b)f_1 + bf_2$

$$\frac{\partial I^{+}}{\partial z} = -\beta I^{+} - \beta I^{-}$$
$$\frac{\partial I^{-}}{\partial z} = \beta I^{+} + \beta I^{-}$$

More generally
$$\frac{\partial I(\vec{k})}{\partial z} = \int d\vec{k}' \left(S(\vec{k}, \vec{k}') I(\vec{k}') - S(\vec{k}', \vec{k}) I(\vec{k}) \right)$$

Ref. Mark Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000)

Discrete

version of

Introducing a Grid

online simulations and more

Macroscopic 0.1 mm dimensions

$$R_2 > R_1$$

$$R_2 = R_1$$

1 nm

R₂ can even be less than R₁

0.1 nm

Atomic dimensions $\gamma_1/\hbar \gamma_2/\hbar$

From particles to waves ..

Introducing the "wavefunction"

$$n_1 = \psi_1 \psi_1^*$$

1 grid point

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$
Source

$$s_2s_2* = \gamma_2f_2$$

$$E\psi_1 = \varepsilon \psi_1 \longrightarrow [E - \varepsilon] \psi_1 = 0$$

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = 0$$

$$\left[i\hbar\frac{d}{dt} - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right]\psi_1 = 0$$

$$\psi_1 = \exp\left[\frac{-i\varepsilon t}{\hbar}\right] \exp\left[-\frac{\gamma_1 t}{2\hbar}\right] \exp\left[-\frac{\gamma_2 t}{2\hbar}\right]$$

$$\psi_1 \psi_1^* = \exp\left[-\frac{\gamma_1 t}{\hbar}\right] \exp\left[-\frac{\gamma_2 t}{\hbar}\right]$$

Introducing the "wavefunction"

online simulations and more

1 grid point

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$

$$s_2 s_2^* = \gamma_2 f_2$$
Source

$$\psi_1 = \frac{s_2}{E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}}$$

$$n_1(E) = \frac{\gamma_2 f_2}{(E - \varepsilon)^2 + \left(\frac{\gamma_1}{2} + \frac{\gamma_2}{2}\right)^2}$$

$$N_1 = \int \frac{dE}{2\pi} n_1(E) = \frac{\gamma_2 f_2}{\gamma_1 + \gamma_2}$$

The "wavefunction" with 2 grid points

$$\begin{bmatrix} E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2} \end{bmatrix} \psi_1 = s_2$$

$$s_2 s_2^* = \gamma_2 f_2$$

The "wavefunction" with multiple grid points

1 grid point $\frac{\gamma_1}{\mu_1}$

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$

$$s_2 s_2^* = \gamma_2 f_2$$

Broadening matrices

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[\Sigma_2 - \Sigma_2^+ \right]$$

Multiple grid points

$$E\{\psi\} = [H]\{\psi\}$$

$$[EI - H] \{\psi\} = \{0\}$$

$$[EI - H - \Sigma_1 - \Sigma_2] \{\psi\} = \{S_2\}$$

$$\begin{bmatrix} -i\gamma_1/2 & 0 & \cdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -i\gamma_2/2 \end{bmatrix}$$

"Self-energy" matrices

$$n_1 = \psi_1 \psi_1^*$$

1 grid point

$$s_1s_1*=\gamma_1f_1$$

$$s_2s_2*=\gamma_2f_2$$

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2 + s_1$$
Source

$$\psi_1 = \frac{s_2}{E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}}$$

$$n_{1}(E) = \frac{s_{2}s_{2}* + s_{1}s_{1}* + s_{2}s_{1}* + s_{1}s_{2}*}{(E - \varepsilon)^{2} + \left(\frac{\gamma_{1}}{2} + \frac{\gamma_{2}}{2}\right)^{2}}$$

$$n_1(E) = \frac{s_2 s_2 * + s_1 s_1 *}{(E - \varepsilon)^2 + \left(\frac{\gamma_1}{2} + \frac{\gamma_2}{2}\right)^2}$$

$$N_1 = \int \frac{dE}{2\pi} n_1(E) = \frac{\gamma_2 f_2 + \gamma_1 f_1}{\gamma_1 + \gamma_2}$$

Wavefunctions excited by uncorrelated sources cannot be added ... but wavefunction correlations can be ..

From "wavefunction" to Green function

online simulations and more

Correlation function

$$G^{n} (\equiv -iG^{<})$$
$$= \{\psi\} \{\psi\}^{+}$$

$$\left\{egin{array}{c} \psi_1 \ dots \ \psi_N \end{array}
ight\} \left\{m{\psi}_1^* \quad \cdots \quad m{\psi}_N^*
ight\}$$

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[\Sigma_2 - \Sigma_2^+ \right]$$

$$\begin{bmatrix} EI - H - \Sigma_1 - \Sigma_2 \end{bmatrix} \{ \psi \} = \{ S_2 \}$$

Define Green function $[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$

$$\{\psi\} = [G]\{S_2\}$$

$$G^{n} = \{\psi\} \{\psi\}^{+} = [G] \{S_{2}\} \{S_{2}^{+}\} [G]^{+}$$

Superpose contributions from different sources

to correlation function
$$G^n = G\Gamma_2G^+ f_2 + G\Gamma_1G^+ f_1$$

Spectral function

online simulations and more

Correlation function

$$G^{n} (\equiv -iG^{<})$$
$$= \{\psi\} \{\psi\}^{+}$$

$$\begin{cases}
\vdots \\ \psi_{N}
\end{cases} \begin{cases}
\psi_{1}^{*} \cdots \psi_{N}^{*}
\end{cases}$$

$$= \begin{bmatrix}
\psi_{1}\psi_{1}^{*} \cdots \psi_{1}\psi_{N}^{*} \\
\vdots \cdots \vdots
\end{bmatrix}$$

$$\begin{bmatrix}
\psi_{N}\psi_{1}^{*} \cdots \psi_{N}\psi_{N}^{*}
\end{bmatrix}$$

Can show from (1) and (3):

$$A = i[G - G^+]$$

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right]$$

(1)
$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

"Electron density"

(2)
$$G^n = G\Gamma_2G^+ f_2 + G\Gamma_1G^+ f_1$$

"Density of states"

(3)
$$A = G\Gamma_2G^+ + G\Gamma_1G^+$$

2 grid points: LDOS

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right] \qquad \Gamma_2 = i \left[\Sigma_2 - \Sigma_2^+ \right]$$

$$[G] = \left[EI - H - \Sigma_1 - \Sigma_2 \right]^{-1}$$

"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

$$A = i[G - G^+]$$

Calculating the current

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right]$$
 $\Gamma_2 = i \left[\Sigma_2 - \Sigma_2^+ \right]$

$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

$$A = i[G - G^{+}]$$

Coherent transport

$$I = \frac{q}{h} \int dE \ T(E) \left[f_2 - f_1 \right]$$

$$T(E) = Trace \left[\Gamma_1 G \Gamma_2 G^+ \right]$$

Basis transformation

online simulations and more

Basis Transformation: new H = U' * old H * U

$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$\Gamma_{1} = i \left[\Sigma_{1} - \Sigma_{1}^{+} \right] \qquad \Gamma_{2} = i \left[\Sigma_{2} - \Sigma_{2}^{+} \right]$$

$$[G] = \left[EI - H - \Sigma_{1} - \Sigma_{2} \right]^{-1}$$

"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

$$A = i[G - G^+]$$

Current

$$\frac{I_1}{q/\hbar} = Trace\left([\Gamma_1 A] f_1 - [\Gamma_1 G^n] \right)$$

Trace is invariant with basis transformation

online simulations and more

$$H = egin{bmatrix} arepsilon & t \ t & arepsilon \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Basis Transformation: new H = U' * old H * U

$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

online simulations and more

$$H = \begin{bmatrix} \varepsilon & t \\ t & \varepsilon \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$\theta = 0$$
: $\begin{cases} 1 \\ 0 \end{cases}$ and $\begin{cases} 0 \\ 1 \end{cases}$

$$\theta = \frac{\pi}{2}: \begin{cases} +1 \\ +1 \end{cases} and \begin{cases} +1 \\ -1 \end{cases}$$

Introducing a Grid

online simulations and more

From coherent to incoherent transport

$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

$$[G] = [EI - H - \Sigma_1 - \Sigma_2 - \Sigma_s]^{-1}$$

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1 + G\Sigma_s^{in} G^+$$

 $G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$

Equations for Quantum Transport

online simulations and more

1-point:

$$n = \int dE \ D(E - U) \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} \int dE \ D(E - U) \, \gamma_1 \left[f_1 - F \right]$$

N points, quantum

$$\Gamma_1 = i \left[\Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[\Sigma_2 - \Sigma_2^+ \right]$$

$$\varepsilon \rightarrow [H]$$

$$\gamma \rightarrow [\Gamma], [\Sigma]$$

$$U \rightarrow [U]$$

$$n \rightarrow [\rho]$$

$$n(E) \rightarrow [G^n(E)] \equiv -iG^{<}(E)$$

$$D(E) \rightarrow [A(E)]$$

Unified view of nanodevices

online simulations and more

Macroscopic dimensions 0.1 mm

Diffusion equation

Boltzmann equation

"NEGF"

1 nm

 R_2 can even be less than R_1

0.1 nm

Atomic dimensions

