# CQT Lecture #3

# CQT, Lecture#3: Probabilities, Wavefunctions and Green Functions

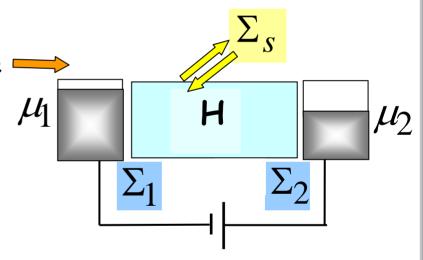
Unified Model for Quantum Transport Far from Equilibrium

#### Objectives:

To extend the simple model from Lecture 2 into the full-blown model shown opposite that combines the NEGF (Non-Equilibrium Green Function) method with the Landauer approach.

Model based on
(1)Datta, Phys.Rev.B40, 5830
(1989); J.Phys.Cond.Matt.2, 8023(1990).
(2)Meir and Wingreen, Phys.Rev.Lett.68, 2512(1992).

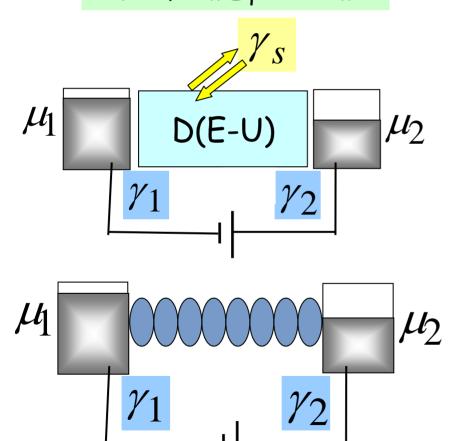
Reference: QTAT, Chapters 8-11.



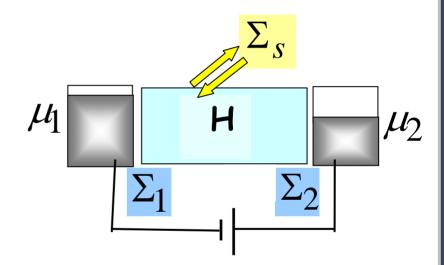
"QTAT"
Datta, Quantum Transport:
Atom to Transistor,
Cambridge (2005)

#### Probabilities, wavefunctions, Green functions

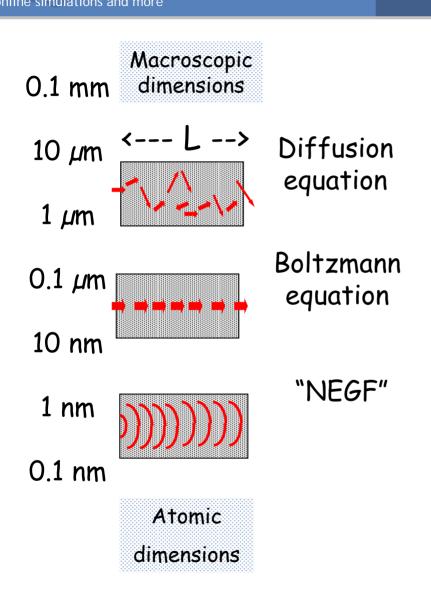
Simple quantitative model For Transport Far from Equilibrium

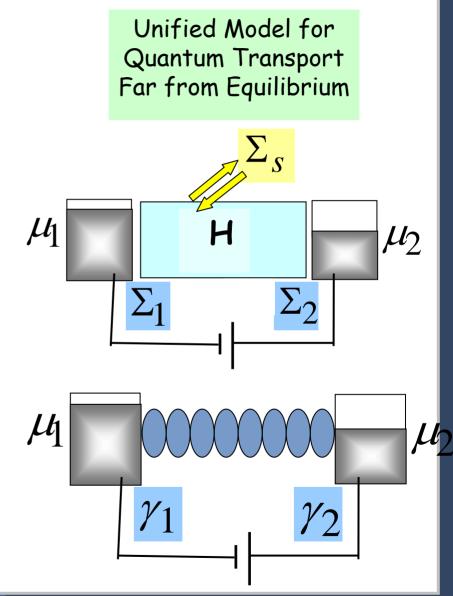


Unified Model for Quantum Transport Far from Equilibrium



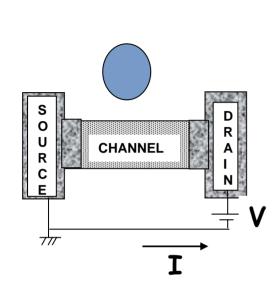
#### Probabilities, wavefunctions, Green functions

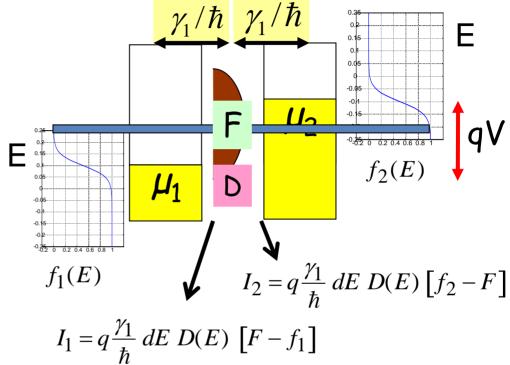




# Summary: 1-grid point model

#### online simulations and more





$$I_1 = q \frac{\gamma_1}{\hbar} dE D(E) \left[ F - f_1 \right]$$

$$F - f_1 = f_2 - F$$

$$\Rightarrow F - f_1 = \frac{f_2 - f_1}{2} \Rightarrow I = \frac{q}{h} \int dE \frac{K(E)}{2} \left[ f_2 - f_1 \right]$$

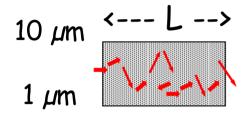
**Transmission** 

$$K(E) \equiv 2\pi D(E) \gamma_1$$

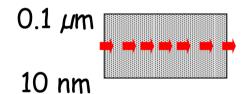
### Introducing a Grid

online simulations and more

O.1 mm Macroscopic dimensions

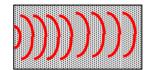


$$R_2 > R_1$$



$$R_2 = R_1$$

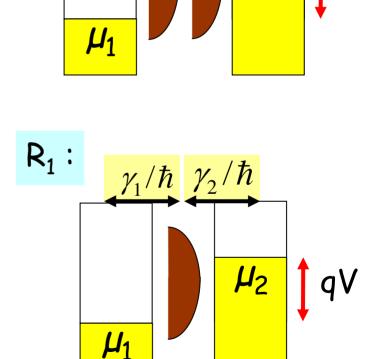
1 nm



R<sub>2</sub> can even be less than R<sub>1</sub>

0.1 nm

Atomic dimensions

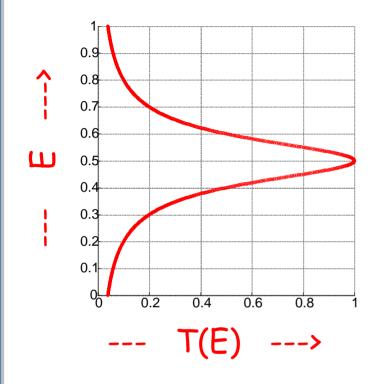


 $R_2$ :

 $\gamma_1/\hbar$ 

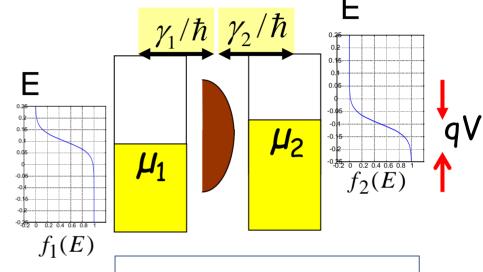
#### Energy -resolved current

#### online simulations and more



$$T(E) = K(E)/2$$

$$K(E) \equiv 2\pi D(E) \gamma_1$$



# 1-grid point model

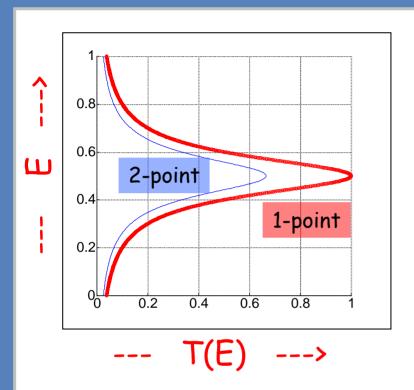
$$I = \frac{q}{h} \int dE \frac{K(E)}{2} \left[ f_1 - f_2 \right]$$

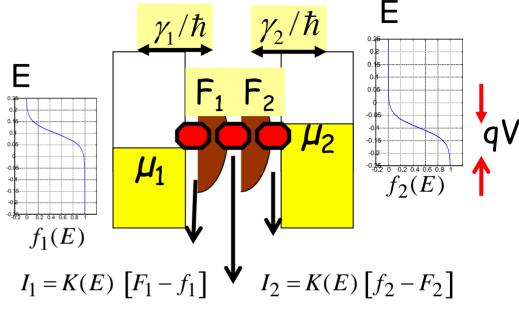
Transmission

$$\approx \frac{q}{h} qV T$$

# 2-grid point diffusive model

online simulations and more





$$I_{12} = K(E) [F_1 - F_2]$$

$$F_{1} - f_{1} = F_{2} - F_{1} = f_{2} - F_{2}$$

$$\Rightarrow F_{1} - f_{1} = \frac{f_{2} - f_{1}}{3} \Rightarrow I = \frac{K(E)}{3} [f_{1} - f_{2}]$$

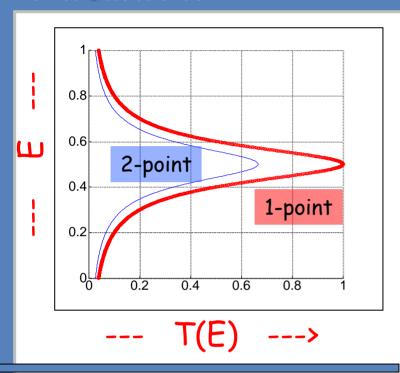
$$K(E) \equiv 2\pi \gamma_1 D(E)$$

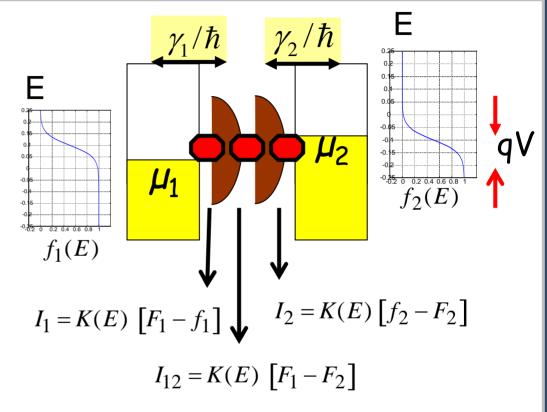
(Currents normalized to q dE/h)



### Equivalent circuit

online simulations and more





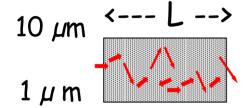
$$f_1 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow f_2$$
 $v_1 \longrightarrow V_1 \longrightarrow V_2$ 

Discretized  $I \sim \frac{\partial F}{\partial z}$  version of  $\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ 

#### Introducing a Grid







$$R_2 > R_1$$

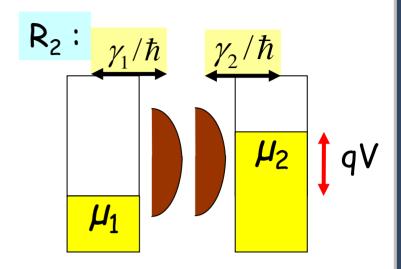
$$R_2 = R_1$$

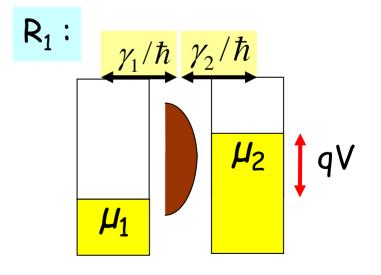
1 nm



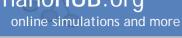
0.1 nm

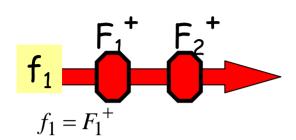
Atomic dimensions

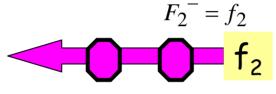




### 2-grid point ballistic model

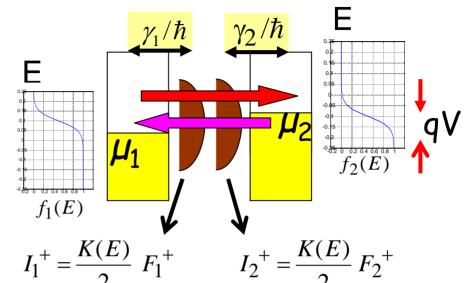






 $F_1 F_2$ 

Subtract →



$$I_1^- = \frac{K(E)}{2} F_1^-$$

$$I_2^+ = \frac{K(E)}{2} F_2^+$$

$$I_2^- = \frac{K(E)}{2} F_2^-$$

$$f_1 = F_1^+ = F_2^+$$

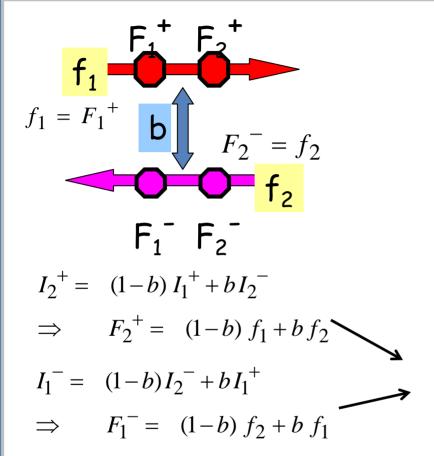
$$F_1^- = F_2^- = f_2$$

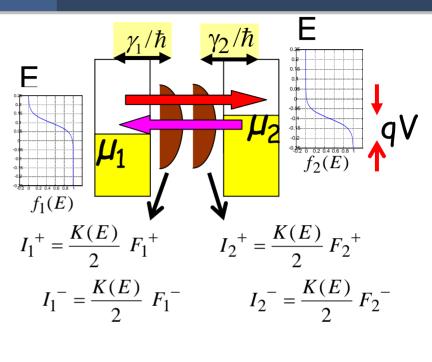
$$I = \frac{q}{h} \int dE \frac{K(E)}{2} [f_1 - f_2]$$

Current is same as in 1-point model: Ballistic transport

# 2-grid point, 2-flux model

online simulations and more





$$I = \frac{K(E)}{2} (1-b) [f_2 - f_1]$$

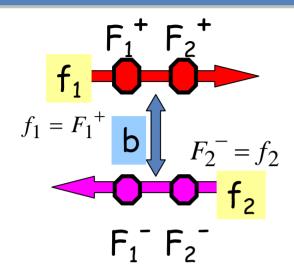
Can show that for 'n+1' sections each having a small 'b':

ons 
$$I = \frac{K(E)}{2} \frac{1}{1+nb} [f_2 - f_1]$$

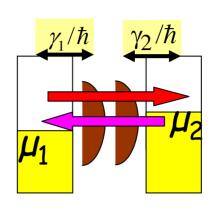
Interpolates smoothly from ballistic to diffusive transport

# Boltzmann equation





$$I_1^- = (1-b)I_2^- + bI_1^+$$
  
 $\Rightarrow F_1^- = (1-b)f_2 + bf_1$   
 $I_2^+ = (1-b)I_1^+ + bI_2^-$   
 $\Rightarrow F_2^+ = (1-b)f_1 + bf_2$ 



$$\frac{\partial I^{+}}{\partial z} = -\beta I^{+} - \beta I^{-}$$
$$\frac{\partial I^{-}}{\partial z} = \beta I^{+} + \beta I^{-}$$

More generally 
$$\frac{\partial I(\vec{k})}{\partial z} = \int d\vec{k}' \left( S(\vec{k}, \vec{k}') I(\vec{k}') - S(\vec{k}', \vec{k}) I(\vec{k}) \right)$$

Ref. Mark Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000)

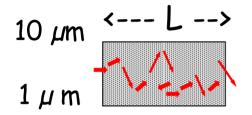
Discrete

version of

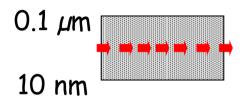
### Introducing a Grid

online simulations and more

Macroscopic 0.1 mm dimensions



$$R_2 > R_1$$



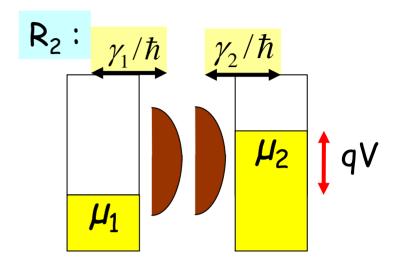
$$R_2 = R_1$$

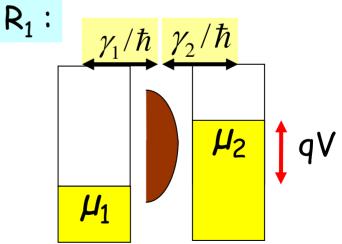
1 nm

R<sub>2</sub> can even be less than R<sub>1</sub>

0.1 nm

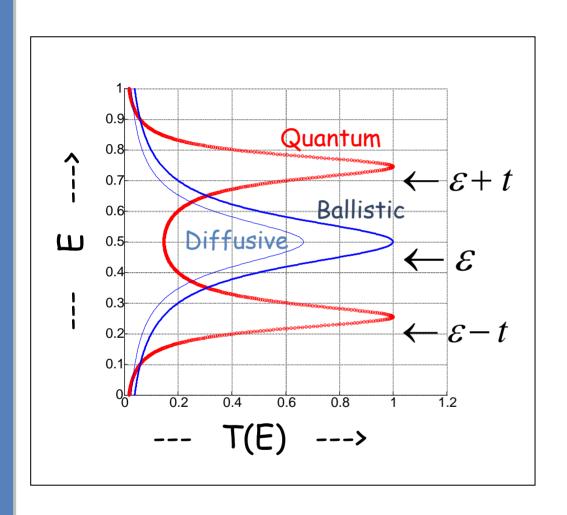
Atomic dimensions  $\gamma_1/\hbar \gamma_2/\hbar$ 

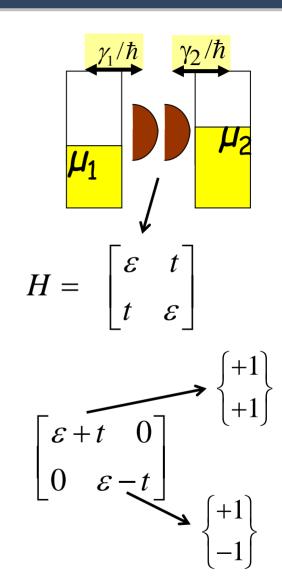




#### From particles to waves ..





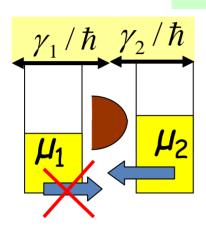


### Introducing the "wavefunction"



$$n_1 = \psi_1 \psi_1^*$$

1 grid point



$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$
Source

$$s_2s_2* = \gamma_2f_2$$

$$E\psi_1 = \varepsilon \psi_1 \longrightarrow [E - \varepsilon] \psi_1 = 0$$

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = 0$$

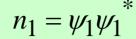
$$\left[i\hbar\frac{d}{dt} - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right]\psi_1 = 0$$

$$\psi_1 = \exp\left[\frac{-i\varepsilon t}{\hbar}\right] \exp\left[-\frac{\gamma_1 t}{2\hbar}\right] \exp\left[-\frac{\gamma_2 t}{2\hbar}\right]$$

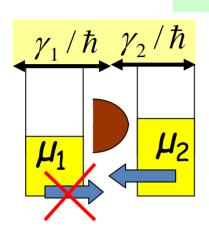
$$\psi_1 \psi_1^* = \exp\left[-\frac{\gamma_1 t}{\hbar}\right] \exp\left[-\frac{\gamma_2 t}{\hbar}\right]$$

### Introducing the "wavefunction"

online simulations and more



1 grid point



$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$

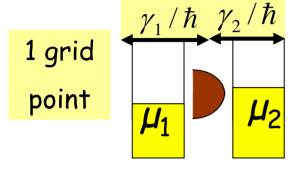
$$s_2 s_2^* = \gamma_2 f_2$$
Source

$$\psi_1 = \frac{s_2}{E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}}$$

$$n_1(E) = \frac{\gamma_2 f_2}{(E - \varepsilon)^2 + \left(\frac{\gamma_1}{2} + \frac{\gamma_2}{2}\right)^2}$$

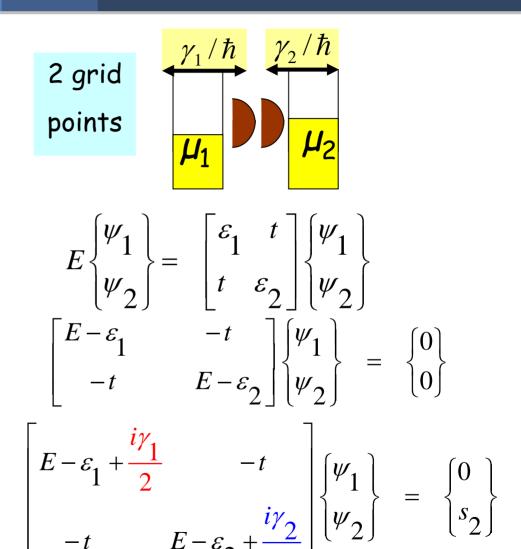
$$N_1 = \int \frac{dE}{2\pi} n_1(E) = \frac{\gamma_2 f_2}{\gamma_1 + \gamma_2}$$

# The "wavefunction" with 2 grid points



$$\begin{bmatrix} E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2} \end{bmatrix} \psi_1 = s_2$$

$$s_2 s_2^* = \gamma_2 f_2$$



# The "wavefunction" with multiple grid points

1 grid point  $\frac{\gamma_1}{\mu_1}$ 

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2$$

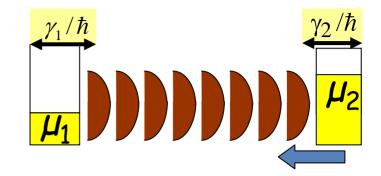
$$s_2 s_2^* = \gamma_2 f_2$$

Broadening matrices

$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[ \Sigma_2 - \Sigma_2^+ \right]$$

Multiple grid points



$$E\{\psi\} = [H]\{\psi\}$$

$$[EI - H] \{\psi\} = \{0\}$$

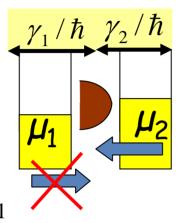
$$[EI - H - \Sigma_1 - \Sigma_2] \{\psi\} = \{S_2\}$$

$$\begin{bmatrix} -i\gamma_1/2 & 0 & \cdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -i\gamma_2/2 \end{bmatrix}$$

"Self-energy" matrices

$$n_1 = \psi_1 \psi_1^*$$

1 grid point



$$s_1s_1*=\gamma_1f_1$$

$$s_2s_2*=\gamma_2f_2$$

$$\left[E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}\right] \psi_1 = s_2 + s_1$$
Source

$$\psi_1 = \frac{s_2}{E - \varepsilon + \frac{i\gamma_1}{2} + \frac{i\gamma_2}{2}}$$

$$n_{1}(E) = \frac{s_{2}s_{2}* + s_{1}s_{1}* + s_{2}s_{1}* + s_{1}s_{2}*}{(E - \varepsilon)^{2} + \left(\frac{\gamma_{1}}{2} + \frac{\gamma_{2}}{2}\right)^{2}}$$

$$n_1(E) = \frac{s_2 s_2 * + s_1 s_1 *}{(E - \varepsilon)^2 + \left(\frac{\gamma_1}{2} + \frac{\gamma_2}{2}\right)^2}$$

$$N_1 = \int \frac{dE}{2\pi} n_1(E) = \frac{\gamma_2 f_2 + \gamma_1 f_1}{\gamma_1 + \gamma_2}$$

Wavefunctions excited by uncorrelated sources cannot be added ... but wavefunction correlations can be ..

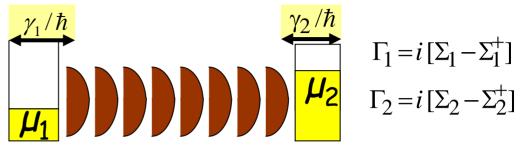
#### From "wavefunction" to Green function

online simulations and more

#### Correlation function

$$G^{n} (\equiv -iG^{<})$$
$$= \{\psi\} \{\psi\}^{+}$$

$$\left\{egin{array}{c} \psi_1 \ dots \ \psi_N \end{array}
ight\} \left\{m{\psi}_1^* \quad \cdots \quad m{\psi}_N^* 
ight\}$$



$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[ \Sigma_2 - \Sigma_2^+ \right]$$

$$\begin{bmatrix} EI - H - \Sigma_1 - \Sigma_2 \end{bmatrix} \{ \psi \} = \{ S_2 \}$$

Define Green function  $[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$ 

$$\{\psi\} = [G]\{S_2\}$$

$$G^{n} = \{\psi\} \{\psi\}^{+} = [G] \{S_{2}\} \{S_{2}^{+}\} [G]^{+}$$

Superpose contributions from different sources

to correlation function 
$$G^n = G\Gamma_2G^+ f_2 + G\Gamma_1G^+ f_1$$

# Spectral function

#### online simulations and more

# Correlation function

$$G^{n} (\equiv -iG^{<})$$
$$= \{\psi\} \{\psi\}^{+}$$

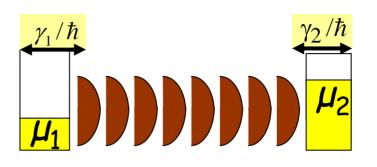
$$\begin{cases}
\vdots \\ \psi_{N}
\end{cases} \begin{cases}
\psi_{1}^{*} \cdots \psi_{N}^{*}
\end{cases}$$

$$= \begin{bmatrix}
\psi_{1}\psi_{1}^{*} \cdots \psi_{1}\psi_{N}^{*} \\
\vdots \cdots \vdots
\end{bmatrix}$$

$$\begin{bmatrix}
\psi_{N}\psi_{1}^{*} \cdots \psi_{N}\psi_{N}^{*}
\end{bmatrix}$$

Can show from (1) and (3):

$$A = i[G - G^+]$$



$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right]$$

(1) 
$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

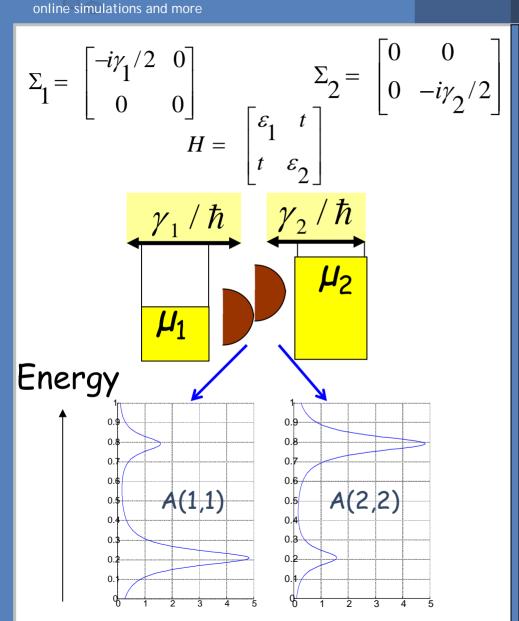
"Electron density"

(2) 
$$G^n = G\Gamma_2G^+ f_2 + G\Gamma_1G^+ f_1$$

"Density of states"

(3) 
$$A = G\Gamma_2G^+ + G\Gamma_1G^+$$

# 2 grid points: LDOS



$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right] \qquad \Gamma_2 = i \left[ \Sigma_2 - \Sigma_2^+ \right]$$

$$[G] = \left[ EI - H - \Sigma_1 - \Sigma_2 \right]^{-1}$$

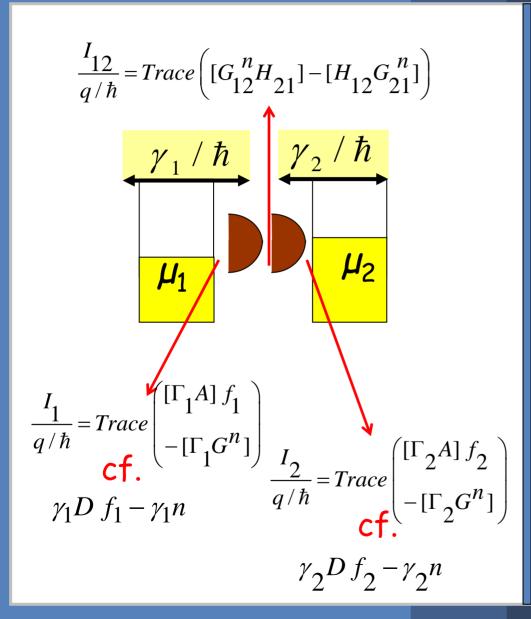
"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

$$A = i[G - G^+]$$

### Calculating the current



$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right]$$
  $\Gamma_2 = i \left[ \Sigma_2 - \Sigma_2^+ \right]$ 

$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

$$A = i[G - G^{+}]$$

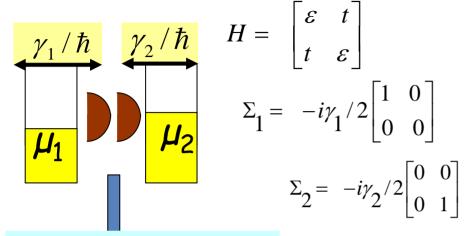
Coherent transport

$$I = \frac{q}{h} \int dE \ T(E) \left[ f_2 - f_1 \right]$$

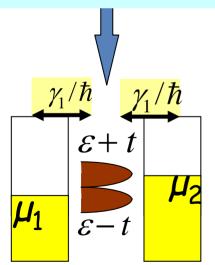
$$T(E) = Trace \left[ \Gamma_1 G \Gamma_2 G^+ \right]$$

#### Basis transformation

online simulations and more



Basis Transformation: new H = U' \* old H \* U



$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$\Gamma_{1} = i \left[ \Sigma_{1} - \Sigma_{1}^{+} \right] \qquad \Gamma_{2} = i \left[ \Sigma_{2} - \Sigma_{2}^{+} \right]$$

$$[G] = \left[ EI - H - \Sigma_{1} - \Sigma_{2} \right]^{-1}$$

"Electron density"

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$$

"Density of states"

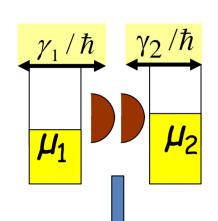
$$A = i[G - G^+]$$

Current

$$\frac{I_1}{q/\hbar} = Trace\left( [\Gamma_1 A] f_1 - [\Gamma_1 G^n] \right)$$

Trace is invariant with basis transformation

online simulations and more

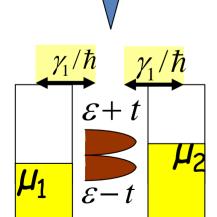


$$H = egin{bmatrix} arepsilon & t \ t & arepsilon \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

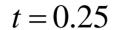
#### Basis Transformation: new H = U' \* old H \* U

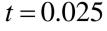


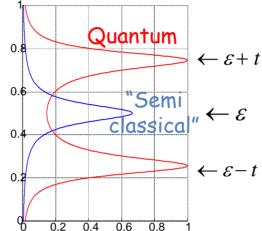
$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

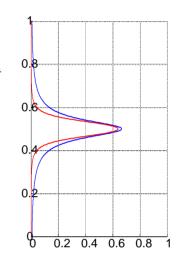
$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

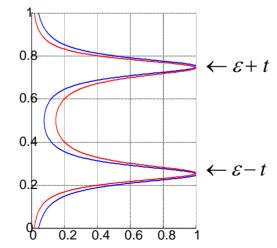
$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

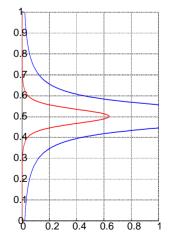




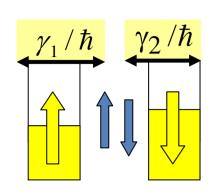








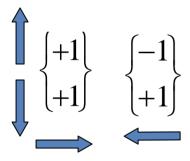
online simulations and more



$$H = \begin{bmatrix} \varepsilon & t \\ t & \varepsilon \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$



$$H = \begin{bmatrix} \varepsilon + t & 0 \\ 0 & \varepsilon - t \end{bmatrix}$$

$$\Sigma_{1} = -i\gamma_{1}/2 \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Sigma_2 = -i\gamma_2/2 \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$



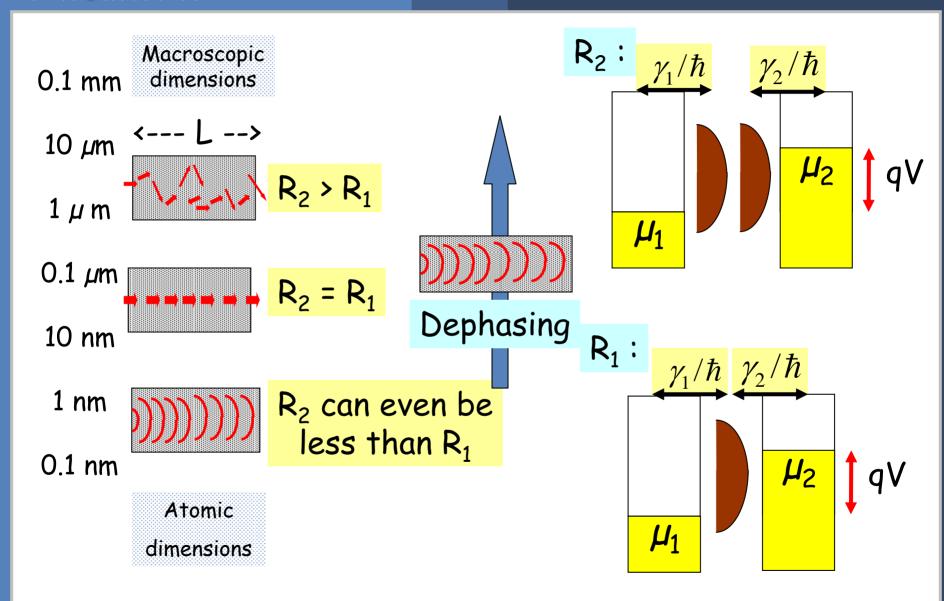
$$\theta = 0$$
:  $\begin{cases} 1 \\ 0 \end{cases}$  and  $\begin{cases} 0 \\ 1 \end{cases}$ 

$$\theta = \frac{\pi}{2}: \begin{cases} +1 \\ +1 \end{cases} and \begin{cases} +1 \\ -1 \end{cases}$$

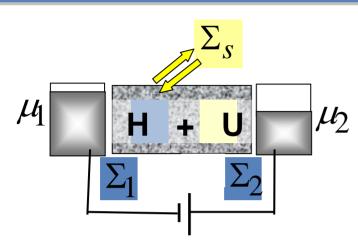


#### Introducing a Grid

online simulations and more



# From coherent to incoherent transport

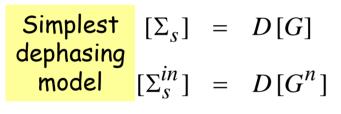


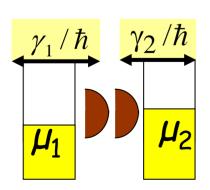
$$[G] = [EI - H - \Sigma_1 - \Sigma_2]^{-1}$$

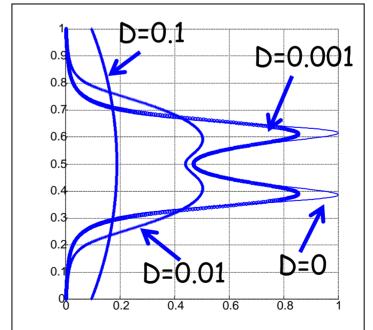
$$[G] = [EI - H - \Sigma_1 - \Sigma_2 - \Sigma_s]^{-1}$$

$$G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1 + G\Sigma_s^{in} G^+$$

 $G^n = G\Gamma_2 G^+ f_2 + G\Gamma_1 G^+ f_1$ 



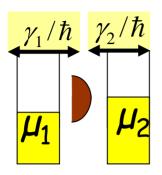




#### Equations for Quantum Transport

#### online simulations and more

#### 1-point:



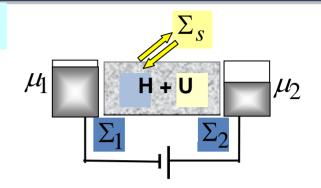
$$n = \int dE \ D(E - U) \left[ \frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right]$$

$$I = \frac{q}{\hbar} \int dE \ D(E - U) \, \gamma_1 \left[ f_1 - F \right]$$

#### N points, quantum

$$\Gamma_1 = i \left[ \Sigma_1 - \Sigma_1^+ \right]$$

$$\Gamma_2 = i \left[ \Sigma_2 - \Sigma_2^+ \right]$$



$$\varepsilon \rightarrow [H]$$

$$\gamma \rightarrow [\Gamma], [\Sigma]$$

$$U \rightarrow [U]$$

$$n \rightarrow [\rho]$$

$$n(E) \rightarrow [G^n(E)] \equiv -iG^{<}(E)$$

$$D(E) \rightarrow [A(E)]$$

#### Unified view of nanodevices

online simulations and more

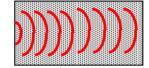
Macroscopic dimensions 0.1 mm

Diffusion equation

Boltzmann equation

"NEGF"

1 nm



 $R_2$  can even be less than  $R_1$ 

0.1 nm

Atomic dimensions

