EE-612: Lecture 33: Heterojunction Bipolar Transistors

Mark Lundstrom
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA
Fall 2006

www.nanohub.org
Outline

I) Introduction

II) BJT Review

III) The Widegap Emitter

IV) Modern HBTs

V) Summary

Reference:
pn heterojunction with no band spike

\[J_n = q \left(\frac{n_{ip}^2}{N_A} \right) \frac{D_n}{W_P} \left(e^{qV_A/k_B T} - 1 \right) \]

\[J_p = q \left(\frac{n_{iN}^2}{N_D} \right) \frac{D_P}{W_N} \left(e^{qV_A/k_B T} - 1 \right) \]
pn heterojunction with CB band spike

\[J_n = q \left(\frac{n_{ip}^2}{N_A} \right) \frac{\nu_T}{2} \left(e^{\frac{qV_A}{k_BT}} - 1 \right) \times e^{-\frac{\Delta E_C}{k_BT}} \]

\[J_p = q \left(\frac{n_{iN}^2}{N_D} \right) \frac{D_P}{W_N} \left(e^{\frac{qV_A}{k_BT}} - 1 \right) \]

Lundstrom EE-612 F06 4
bipolar transistors

double diffused BJT
bipolar transistors: I-V

normal, active region
EB: forward biased
BC: reverse biased

Early effect

$\beta = \frac{I_C}{I_B}$

high-level injection
series resistance etc.

60 mV/decade
heterojunction bipolar transistors

i) wide gap emitter HBT

ii) double heterojunction bipolar transistor
mesa HBTs

$E_{G1} > E_{G2}$

$p^+ base$

n emitter

n collector

n^+

semi-insulating substrate

mesa HBT
applications

1) optical fiber communications
 -40Gb/s……..160Gb/s

2) Wideband, high-resolution DA/AD converters and digital frequency synthesizers
 -military radar and communications

3) Monolithic, millimeter-wave IC’s (MMIC’s)
 -front ends for receivers and transmitters

future need for transistors with 1 THz power-gain cutoff freq.
outline

I) Introduction

II) BJT Review

III) The Widegap Emitter

IV) Modern HBTs

V) Summary
minority carrier injection

base diffusion current

\[
J_n = -qD_n \frac{dn(x)}{dx} = qD_n \frac{n(0)}{W_B}
\]

\[
n(0) = \left(\frac{n_i^2}{N_{AB}} \right) e^{qV_{BE}/k_B T}
\]

\[
J_n = q \left(\frac{n_i^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{qV_{BE}/k_B T}
\]
\[J_n = q \left(\frac{n_i^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{qV_{BE}/k_BT} \]

\[J_p = q \left(\frac{n_i^2}{N_{DE}} \right) \frac{D_p}{W_E} e^{qV_{BE}/k_BT} \]

\[\beta = \frac{I_C}{I_B} = \frac{J_n}{J_p} = \frac{N_{DE}}{N_{AE}} \frac{D_n}{D_p} \frac{W_E}{W_B} \]
ac model

\[I_C = \beta_{DC} I_B \]

\[i_c = \beta_{ac} i_b \]

\[I_C = q A_E \left(\frac{n_i^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{qV_{BE}/k_B T} \]

\[g_m = I_C / (k_B T / q) \]

\[r_\pi = \beta / g_m \]
\[i_c = g_m v_\pi = g_m \frac{i_b}{1/r_\pi + j\omega C_\pi} \]

\[\beta(\omega) = \frac{\beta_{DC}}{1 + j\omega/\omega_\beta} \]

\[\omega_\beta = \frac{1}{r_\pi C_\pi} \]

\[|\beta(\omega)| = \frac{\beta_{DC}}{\sqrt{1 + \left(\frac{\omega}{\omega_\beta}\right)^2}} \]
\[|\beta(\omega)| = \frac{\beta_{DC}}{\sqrt{1 + (\omega/\omega_T)^2}} \]

\[|\beta(\omega_T)| = 1 = \beta_{DC} \frac{\omega_T}{\omega} \]

\[\omega_T = \beta \omega_T = \frac{\beta}{r_\pi C_\pi} = \frac{g_m}{C_\pi} \]

\[(\omega_T = 1/r_\pi C_\pi) \]

\[\omega_T = 2\pi f_T = \frac{g_m}{C_\pi} \]

\[\tau = \frac{1}{\omega_T} = \frac{1}{2\pi f_T} = \frac{C_\pi}{g_m} \]
high frequency metrics

\[
\tau = \frac{C_\pi}{g_m} = \frac{\Delta Q_B / \Delta V_{BE}}{\Delta I_C / \Delta V_{BE}} = \frac{\Delta Q_B}{\Delta I_C} \equiv \tau_b \quad \left(\tau_b = \frac{W_B^2}{2D_n} \right) \quad \left(\tau_c = \frac{W_c}{2\nu_{eff}} \right)
\]

(current-gain cutoff frequency, \(f_T\))

\[
\tau = \frac{1}{2\pi f_T} = \tau_b + \tau_c + \frac{k_B T}{q I_C} \left(C_{je} + C_{cb} \right) + \left(R_{ex} + R_c \right) C_{cb}
\]

(power-gain cutoff frequency, \(f_{\text{max}}\))

\[
f_{\text{max}} = \sqrt{\frac{f_T}{8\pi R_{bb} C_{cb}}}
\]
BJT design

1) thin base for high speed

2) heavily doped base to prevent punch through, reduce Early effect, and lower R_{ex}

3) even more heavily doped emitter for gain (increase C_{je})

$$\beta = \frac{N_{DE} D_n W_E}{N_{AE} D_p W_B}$$
I) Introduction

II) BJT Review

III) The Widegap Emitter

IV) Modern HBTs

V) Summary
\[
J_n = q \left(\frac{n_{iB}^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{q V_{BE}/k_B T}
\]

\[
J_p = q \left(\frac{n_{iE}^2}{N_{DE}} \right) \frac{D_p}{W_E} e^{q V_{BE}/k_B T}
\]

\[
\beta = \frac{N_{DE}}{N_{AE}} \frac{D_n}{D_p} \frac{W_E}{W_B} \frac{n_{iB}^2}{n_{iE}^2}
\]

\[
n_i = \sqrt{N_C N_V} e^{-E_G/2k_B T}
\]

\[
\beta \approx \frac{N_{DE}}{N_{AE}} \frac{D_n}{D_p} \frac{W_E}{W_B} e^{\Delta E_G/k_B T}
\]
inverted base doping

\[\beta \approx \frac{N_{DE}}{N_{AE}} \frac{D_n}{D_p} \frac{W_E}{W_B} \ e^{\Delta E_G / k_B T} \]

1) thin base for high speed

2) very heavily doped base to prevent punch through, reduce Early effect, and to lower \(R_{ex} \)

3) moderately doped emitter (lower \(C_{je} \))

“inverted base doping” \(N_{AB} \gg N_{DE} \)
graded bases

intrinsic compositionally graded

uniformly p-doped compositionally graded
graded base HBTs

\[J_n = q \left(\frac{\bar{n}_{iB}^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{qV_{BE}/k_BT} \]

\[J_p = q \left(\frac{\bar{n}_{iE}^2}{N_{DE}} \right) \frac{D_p}{W_E} e^{qV_{BE}/k_BT} \]

\[\beta = \frac{N_{DE}}{N_{AE}} \frac{D_n}{D_p} \frac{W_E}{W_B} \frac{\bar{n}_{iB}^2}{n_{iE}^2} \]

\[\tau_b = \frac{W_B}{\mu_n \mathcal{E}_{\text{eff}}} \]

\[\mathcal{E}_{\text{eff}} = \frac{\Delta E_G / q}{W_B} \]
abrupt junction HBTs

\[J_n = q \left(\frac{n_{iB}^2}{N_{AB}} \right) \nu_{Rp} e^{-\Delta E_C / k_B T} e^{qV_{BE} / k_B T} \]

\[J_p = q \left(\frac{n_{iE}^2}{N_{DE}} \right) \frac{D_p}{W_E} e^{qV_{BE} / k_B T} \]

\[\beta = \frac{N_{DE}}{N_{AE}} \left(\frac{D_p}{W_E} \right) \frac{\nu_{Rp} n_{iB}^2}{n_{iE}^2} e^{-\Delta E_C / k_B T} \]

\[\beta = \frac{N_{DE}}{N_{AE}} \left(\frac{D_p}{W_E} \right) e^{\Delta E_V / k_B T} \]
double HBJT

- symmetrical operation
- no charge storage when the b-c junction is forward biased
- reduced collector offset voltage
- higher collector breakdown voltage
does $I_C = 0$ at $V_{CE} = 0$?
offset voltage

\[J_1 = q \left(\frac{n_{iB}^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{\frac{q(V_B - V_E)}{k_BT}} \]

\[J_2 = q \left(\frac{n_{iB}^2}{N_{AB}} \right) \frac{D_n}{W_B} e^{\frac{q(V_B - V_C)}{k_BT}} \]

\[J_3 = q \left(\frac{n_{iC}^2}{N_{DC}} \right) \frac{D_p}{W_C} e^{\frac{q(V_B - V_C)}{k_BT}} \]

\[J_C = J_1 - J_2 - J_3 \]

set \(J_C = 0 \), assume \(V_E = 0 \), solve for \(V_C = V_{OS} \)
offset voltage result

\[V_{OS} = \frac{k_B T}{q} \ln\left(1 + \frac{1}{\gamma_R}\right) \]

\[\gamma_R = \frac{J_2}{J_3} = \left(\frac{n_{iB}^2}{N_{AB}}\right)\left(\frac{D_n}{W_B}\right) \left(\frac{n_{iC}^2}{N_{DC}}\right)\left(\frac{D_p}{W_C}\right) \] (reverse emitter injection efficiency)

Want a large \(\gamma_R \). Wide bandgap collector helps.

Exercise: show how \(V_{OS} \) depends on \(\Delta E_C \) and junction area differences.
offset voltage reason
outline

I) Introduction

II) BJT Review

III) The Widegap Emitter

IV) Modern HBTs

V) Summary
modern HBTs

The following slides are courtesy of Professor Mark Rodwell, UCSB
epitaxial layer design

DHBT: Graded InAlAs emitter and InGaAs base

InAlAs emitter
InAlAs/InGaAs CSL grade
bandgap-graded InGaAs base
InAlAs/InGaAs CSL grade
InP collector
epitaxial layer design (ii)

DHBT: Abrupt InP emitter, InGaAs base, InAlGaAs C/B grades

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Thickness (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InGaAs 3E19</td>
<td>Si 400</td>
</tr>
<tr>
<td>InP 3E19</td>
<td>Si 800</td>
</tr>
<tr>
<td>InP 8E17</td>
<td>Si 100</td>
</tr>
<tr>
<td>InP 3E17</td>
<td>Si 300</td>
</tr>
<tr>
<td>InGaAs 8E19</td>
<td>→ 5E19 C 300</td>
</tr>
<tr>
<td>Setback 3E16</td>
<td>Si 200</td>
</tr>
<tr>
<td>Grade 3E16</td>
<td>Si 240</td>
</tr>
<tr>
<td>InP 3E18</td>
<td>Si 30</td>
</tr>
<tr>
<td>InP 3E16</td>
<td>Si 1030</td>
</tr>
<tr>
<td>InP 1.5E19</td>
<td>Si 500</td>
</tr>
<tr>
<td>InGaAs 2E19</td>
<td>Si 125</td>
</tr>
<tr>
<td>InP 3E19</td>
<td>Si 3000</td>
</tr>
<tr>
<td>SI-InP substrate</td>
<td></td>
</tr>
</tbody>
</table>

$V_{be} = 0.75 \text{ V}$, $V_{ce} = 1.3 \text{ V}$
epitaxial layer design (iii)

InGaAs/InGaAsP/InP grade

InP/InGaAs DHBTs with 341-GHz f_T at high current density of over 800 kA/cm2

Minoru Ida, Kenji Kurishima, Noriyuki Watanabe, and Takatomo Enoki

- does not need B/C grading
- E/B band alignment through GaAsSb alloy ratio (strain) or InAlAs emitter
- somewhat poorer transport parameters to date for GaAsSb base

InP/GaAsSb/InP DHBT

InP/GaAsSb/InP DOUBLE HETERJUNCTION BIPOLAR TRANSISTORS WITH HIGH CUT-OFF FREQUENCIES AND BREAKDOWN VOLTAGES

Device Performance: ~400 GHz \(f_\tau \) and ~500 GHz \(f_{\text{max}} \)

Has enabled 150 GHz digital clock rate (static dividers)

Should enable 300 GHz power amplifiers (175 GHz realized with 300 GHz \(f_{\text{max}} \))

Emitter: 500 nm width, 15 \(\Omega \cdot \mu \text{m}^2 \) contact resistivity

Base contact: 300 nm width, 20 \(\Omega \cdot \mu \text{m}^2 \) contact resistivity

Collector: 150 nm thick, 5.1 V breakdown (BVCEO) 5 mA/\(\mu \text{m}^2 \) current density 10 mW/\(\mu \text{m}^2 \) power density @ 2V 15 K/(mW/\(\mu \text{m}^2 \)) thermal resistance
modern HBTs

Key scaling challenges:

- emitter & base contact resistivity
- current density \rightarrow device heating
- collector-base junction width scaling

& Yield!
InP DHBT results

InP DHBT: 600 nm lithog., 120 nm thick coll., 30 nm thick base

\[\beta \approx 40, \ V_{BR,CEO} = 3.9 \ \text{V}. \]
Emitter contact \(R_{cont} < 10 \ \Omega \times \mu \text{m}^2 \)
Base: \(R_{\text{sheet}} = 610 \ \text{W/sq}, \ R_{\text{cont}} = 4.6 \ \Omega \times \mu \text{m}^2 \)
Collector: \(R_{\text{sheet}} = 12.1 \ \Omega/\text{sq}, \ R_{\text{cont}} = 8.4 \ \Omega \times \mu \text{m}^2 \)

Courtesy Mark Rodwell, UCSB
high-frequency performance

InP DHBT: 600 nm lithog., 120 nm thick coll., 30 nm thick base

\[U_{\text{ajbe}} = 0.6 \times 4.3 \, \text{um}^2 \]
\[I_c = 20.6 \, \text{mA}, \quad V_{ce} = 1.53 \, \text{V} \]
\[J_e = 8.0 \, \text{mA/um}^2, \quad V_{cb} = 0.6 \, \text{V} \]
\[f_t = 450 \, \text{GHz}, \quad f_{\max} = 490 \, \text{GHz} \]
I) Introduction

II) BJT Review

III) The Widegap Emitter

IV) Modern HBTs

V) Summary
1) The use of a wide bandgap emitter has two benefits:
 - allows heavy base doping
 - allows moderate emitter doping

2) The use of a wide bandgap collector has benefits:
 - symmetrical device
 - reduced charge storage in saturation
 - reduced collector offset voltage
 - higher collector breakdown voltage

3) Bandgap engineering has potential benefits:
 - heterojunction launching ramps
 - compositionally graded bases
 - elimination of band spikes

4) HBTs have the potential for THz cutoff frequencies
The idea of the wide bandgap emitter dates to the 1950’s, but the modern story begins with:

For an update on current practice, see: