ME 517: Micro- and Nanoscale Processes

Lecture 30: Electrokinetics - I

Steven T. Wereley

Mechanical Engineering Purdue University West Lafayette, IN USA

Spring 2014

Electrokinetics

> Charged particles

- can be manipulated with DC electric field according to Coulomb's law
- Electrophoresis or Capillary Electrophoresis
- > Uncharged particles
 - Spatially varying field
 - Dielectrophoresis
 - Uniform field, i.e. no spatial gradients
- > Optically defined electrodes

Electrokinetics Basics

- Most surfaces acquire surface charge in presence of polar liquid
 - e.g. glass-water
 - many polymers and water, too
 - Debye thickness generally order of nm
 - K = 1.3805×10-23 J/K, F = 9.65 × 10⁴ C mol⁻¹, z is valency of ion, c_∞ is bulk concentration, ε is permittivity (8.85418×10⁻¹² F/m for vacuum)

Electrokinetic Flow Classification

Name	Type of Movement	Electrokinetic Coupling
Electrophoresis	Charged surface moves relative to a stationary liquid	Use an applied electric field to induce movement
Electroosmosis	Liquid moves relative to a stationary charged surface	
Streaming Potential	Liquid moves relative to a stationary charged surface	Use movement to create and electric field
Sedimentation Potential	Charged surface moves relative to a stationary liquid	

DC Electroosmosis (EOF)

- > Apply electrical field across channel
- EDL drawn toward electrode pulling bulk along
- "Plug flow" if no pressure gradient

DC Electroosmosis

Backflow in the presence of pressure gradient
Zero mean flow in closed channel

