ME 517: Micro- and Nanoscale Processes

Lecture 28: Molecular Dynamics - I

Steven T. Wereley

Mechanical Engineering Purdue University West Lafayette, IN USA

Molecular Interaction Forces: Lennard-Jones 6-12 Potential

$$V_{ij}(r) = 4\varepsilon \left[c_{ij} \left(\frac{r}{\sigma} \right)^{-12} - d_{ij} \left(\frac{r}{\sigma} \right)^{-6} \right]$$

$$V_{ij}(r) = 4\varepsilon \left[c_{ij} \left(\frac{r}{\sigma} \right)^{-12} - d_{ij} \left(\frac{r}{\sigma} \right)^{-6} \right]$$

$$F_{ij}(r) = -\frac{\partial V_{ij}}{\partial r} = \frac{48\varepsilon}{\sigma} \left[c_{ij} \left(\frac{r}{\sigma} \right)^{-13} - \frac{d_{ij}}{2} \left(\frac{r}{\sigma} \right)^{-7} \right]$$

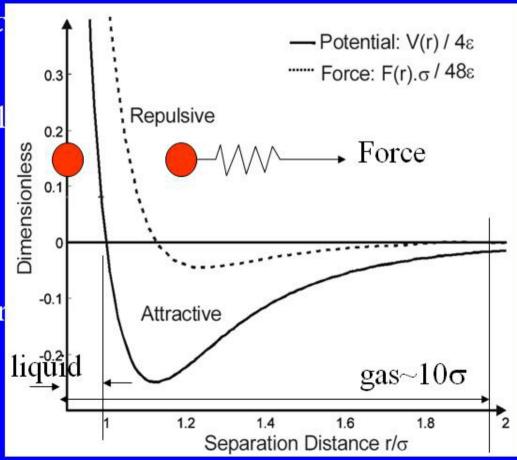
V_{ii}=potential energy between t molecules i and j

F_{ii}=force between two molecul i and i

c_{ij} and d_{ij} are parameters for chosen molecules

ε,σ are characteristic energy ar length scales respectively

r is the separation distance



Lennard Jones Constants

$\varepsilon/K(K)$	σ (nm)
97	0.362
91.5	0.368
190	0.400
113	0.343
124	0.342
	97 91.5 190 113

Phases	Intermolecular Forces	Ratio of Thermal Vibration Amplitude Compared to σ	Approach Needed
Solid	Strong	« 1	Quantum
Liquid	Moderate	~ 1	Quantum/classical
Gas	Weak	» 1	Classical

Molecular Dynamics Governing Equations

$$m\frac{d^{2}\mathbf{r}_{i}}{dt^{2}} = \sum_{j \neq i} \frac{\partial V_{ij}}{\partial \mathbf{r}_{i}} - \frac{m}{\tau} \frac{d\mathbf{r}_{i}}{dt} + \eta_{i}$$

$$\tau = \sqrt{\frac{\sigma^{2}}{\varepsilon}}$$

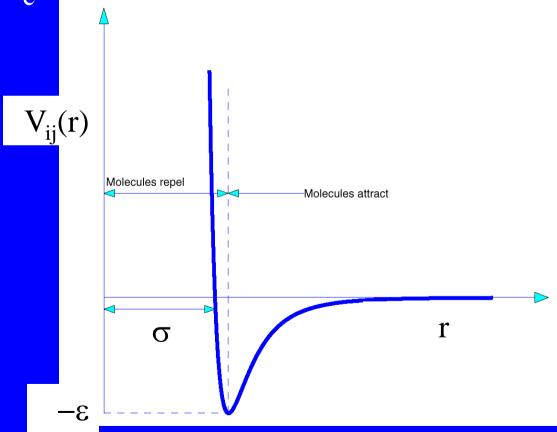
$$\tau = \sqrt{\frac{\sigma^2 m}{\varepsilon}}$$

- where $\mathbf{r_i}$ is the position vector, V_{ij} is the potential energy between any two molecules, τ is characteristic time scale, m is atomic mass
- Last two terms on RHS couple the particle dynamics with thermodynamics
 - Velocity term governs heat exchange with reservoir
 - η_i term is a Gaussian stochastic force with variance $2mk_b/\tau$
- For liquid argon, $\tau=2.2^{-12}$ sec
- Evolve the position of every molecule forward in time using Newton's 2nd Law

Shifted Lennard-Jones Potential

$$V_{ij}(r) = 4\varepsilon \left[c_{ij} \left(\frac{r}{\sigma} \right)^{-12} - d_{ij} \left(\frac{r}{\sigma} \right)^{-6} - \left(c_{ij} \left(\frac{r_c}{\sigma} \right)^{-12} - d_{ij} \left(\frac{r_c}{\sigma} \right)^{-6} \right) \right]$$

• r_c is cut-off radius, typically 2.2σ<r_c<2.5σ



Lennard-Jones Potential

- Works reasonably well for electrically neutral,
 non polarizable, spherical molecules
 - Dynamics for immiscible liquids $(d_{12}=d_{21})$
 - d₁₂=0 implies pure short-range repulsion
 - d₁₂=1 implies symmetric interaction -> single species
 - d₁₂> implies enhanced attraction
 - Dynamics of wall boundaries can be simulated with same L-J approach but different constants
 - Complicated molecules require complicated potentials, e.g. polymer chains can have a potential between all monomers plus a strongly attractive potential when all monomers in neighboring molecules line up

Micro/Nanoscale Physical Processes

Temporal Evolution

- Equations of motions can be integrated forward in time by typical predictor-corrector scheme
 - typical time step size $\Delta t=0.005\tau$
 - for liquid Ar, $\Delta t=1.1e-14$ sec
- Another commonly used discretization called Verlet integration rule is

$$\boldsymbol{r}^{n+1} = 2\boldsymbol{r}^n - \boldsymbol{r}^{n-1} + \Delta t^2 \boldsymbol{a}(t) + \mathcal{O}(\Delta t^4)$$

Imposing External Forces

- Most flows driven by some external force
 - e.g. vibrating wall, pressure gradient, body force
- Need some way to couple in those forces
- Eulerian velocity computed as time average of N_i molecules according to

$$oldsymbol{v}(oldsymbol{x}) = rac{1}{N_i} < \sum_j rac{doldsymbol{x}_j}{dt} >$$

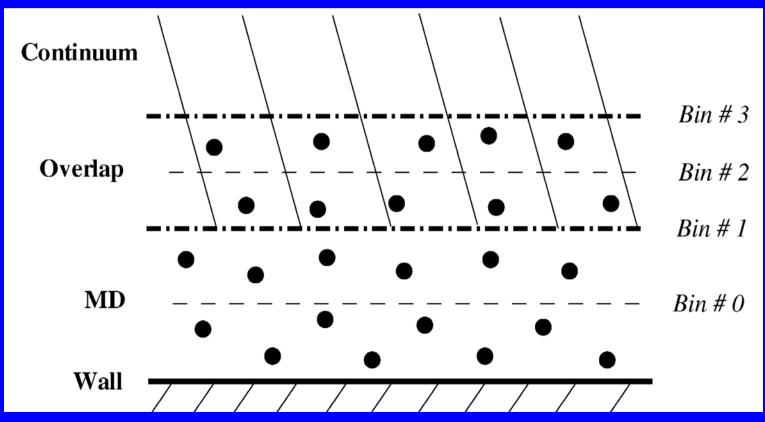
$$au(oldsymbol{x}) = rac{1}{V_i} < \sum_j \left[rac{doldsymbol{x}_j}{dt} - oldsymbol{v}(oldsymbol{x})
ight] \left[rac{doldsymbol{x}_j}{dt} - oldsymbol{v}(oldsymbol{x})
ight] + \sum_{j < i} oldsymbol{r}_{ij} oldsymbol{f}_{ij} >$$

Computational Complexity

- Have to sum over all pairs of molecules so order N²
- Cut-off distance reduces computational complexity somewhat
- Pairs of interacting molecules stored in Verlet list
 - For each molecule a=1,2,...N create a list of neighbors that are within a distance r_c+r_s where r_c is the cut-off distance and r_s is called a *skin thickness*
 - r_s is chosen such that in a time interval of S~20 Δt , no molecules from outside the skin enter the interaction range of molecule a
- Computational intensity reduced somewhat to $(order\ N) + S^{-1} (order\ N^2)$

MD/Continuum Approach

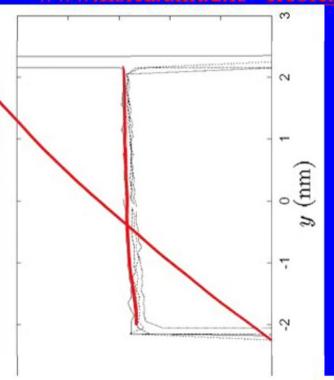
- Occasionally desirable to combine MD and Continuum approach (e.g. N-S)
 - For example external flow over a body



MD: Water Flow between Graphite Sheets

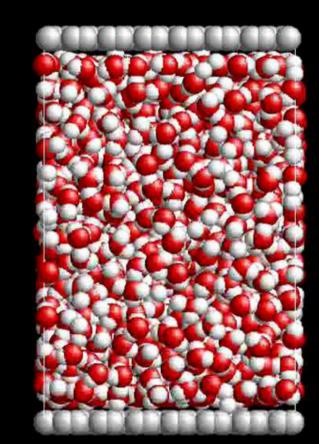
- ETH-Zurich simulated flows in and around CNTs and graphite sheets (Nanotech 2003)
- Exploring validity of no-slip assumption

www.fisica.uniud.it/~ercolessi/md/; www.icos.ethz.ch.

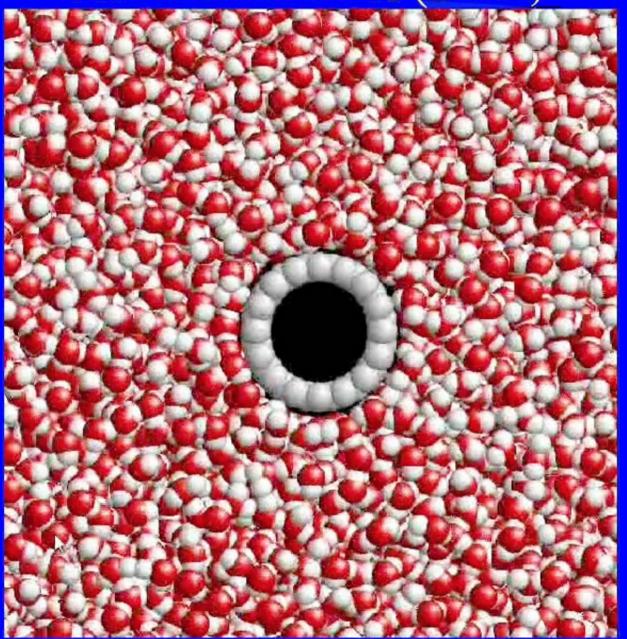


Slip lengths of 14-63 nm

→No-slip violated



Flow Around CNTs (ETHZ)



Flow Around CNTs (ETHZ)

- Flow agrees quite well with continuum theory
- Slip length less than a single molecular diameter
- Considerable variations in fluid density near CNT

