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Abstract: We present a detailed theoretical description of a broadband 

omnidirectional light concentrator and absorber with cylinder geometry. 

The proposed optical “trap” captures nearly all the incident light within its 

geometric cross-section, leading to a broad range of possible applications – 

from solar energy harvesting to thermal light emitters and optoelectronic 

components. We have demonstrated that an approximate lamellar black-

hole with a moderate number of homogeneous layers, while giving the 

desired ray-optical performance, can provide absorption efficiencies 

comparable to those of ideal devices with a smooth gradient in index. 
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1. Introduction 

Recent advances in the development of optical metamaterials, artificial structures with the 

desired local electromagnetic response determined by artificial subwavelength patterning of 

the media, have opened a wide range of new concepts and applications, from super-resolution 
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imaging to optoelectronics and photovoltaics [1–8]. In particular, the recently proposed [8] 

“optical black hole”, an omnidirectional light concentrator and absorber, could significantly 

enhance the performance of solar energy harvesting systems and lead to novel nonlinear-

optical devices. In this work, we present a detailed theoretical description of this device, and 

develop appropriate numerical methods, which – in addition to the accurate analysis of the 

optical black hole, - could be applied to a broad range of metamaterial-based optical systems 

with centrally symmetric gradient index. We note that in the context of this paper, the term 

“black hole” simply refers to the highly efficient “capture” of the light incident on the device, 

and does not imply any profound analogy to General Relativity. 

The remaining part of the paper is organized as follows. In Section 2, we introduce the 

initial assumptions, state the geometry of the cylindrical optical system with an axially 

symmetric graded index, and show basic examples of ray-tracing inside such devices, 

including the fundamental optical black-hole [8]. Section 3 deals with the ray optical 

description of the system followed by its full-wave description in Section 4. The analytical 

and numerical apparatus for approximating the ideal fundamental black-hole with concentric 

lamellar systems of uniform isotropic layers is then discussed in Section 5. Section 5 also 

covers derivations of the scattering and absorption cross-sections, which are then compared 

with their semiclassical approximations in Section 6. Finally, we summarize our work in 

Section 7. 

 

Fig. 1. (a) the schematics of the system; panels (b), (c), (d), and (e) show light ray trajectories 

for p equal to −1, 1, 2, and 3 respectively, where core radius rc much smaller than shell radius 

rs (rc = rs). 

2. The system 

In its original proposal [8], the optical “black hole” (see Fig. 1(a)) consists of the “payload” 

core with the radius 
c

r , supporting the desired functionality (such as e.g. a solar cell for 

concentrated photovoltaics applications), surrounded by the concentrating shell of radius 

s
r with an axially symmetric dielectric function, ( )rε , changing in the radial direction as 

 ( ) ( )s
r rε ε ε≡ ∆   (1) 

where 
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and 0p >  is a constant. In order to match the real parts of relative permittivity at the 

interface 
c

r r=  the radius of the core is defined by the ratio of the permittivity of the 

surrounding medium (
s

ε ) to that of the core (
c

ε ), 

 ( )1
.

p

c s s c
r r ε ε=   (3) 

Note that we assume that the metamaterial forming the shell, is essentially non-magnetic, so 

that the refractive index is n ε= . 

3. Ray-optical description 

In the semi-classical limit, the radial variation of the refractive index of the shell (where 

n ε= ) corresponds to the effective potential 

 ( ) ( ) ( )21

2
,eff sV r c rω ε ε= −     (4) 

which for the dielectric permittivity defined by (2) with 2p ≥  traps all the incident light 

trajectories – see Figs. 1(b)-1(e). For these ray trajectories, a straightforward integration of the 

Hamiltonian equations with the effective potential defined by (4) yields in the polar 

coordinates 

 
( )

0
2

0

( ) ,

s

m

r
m

r

d
r

C m

ξ
φ φ

ε ξ ξ
= +

−
∫   (5) 

where m  is the (conserved) angular momentum, ( )2

0 0 s
C m y ε=  (with 

0
y  being 

0
sin

s
r φ ), 

and the constants 
s

r  and 
0

φ  are set by the initial conditions of the given trajectory. In 

particular, for the permittivity defined in the shell (2), Eq. (5) after integration gives 

 ( ) ( )
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  (6) 

where 
p

φ is yet another constant defined by ( )2
0 2 2

1
p p p

πφ φ − −= − + . 

Case 1p =  corresponds to the gravitational potential (or electrostatic potential) and 

emulates the motion of a non-accelerated particle in central gravitational field; so that the 

parabolic trajectories (Fig. 1c) are expected. Case 2p =  gives the potential of fatal attraction 

[9]. In fact for all 2p ≥  (6) corresponds to the ray trajectories “falling” into the core of the 

“black hole” – see Fig. 1(b). Figures 1(b)-1(e) show the traces of light rays for p  equal to −1, 

1, 2, and 3 respectively; the trivial case of the beam propagating in free-space ( 0p = ) is 

omitted. 

This concept can be realized in both the spherical and cylindrical geometries, with the 

latter suitable for optoelectronic devices where the light propagation is generally realized in a 
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waveguide geometry. In the present paper we will focus on this cylindrical realization of the 

optical black hole, leaving its spherical counterpart to a forthcoming work. 

4. The wave optical description 

In the present section of the paper, we develop the wave-optical description of the “black 

hole” light concentrator. We define a given monochromatic electromagnetic vector field by 

the vectors of electric field ( )exp tιω−E  and magnetic field ( )exp tιω−H , and by its angular 

frequency ω . We start with the monochromatic Maxwell’s equations ιω∇× =E B , 

ιω∇× = −H D  arriving first at [10]: 

 2

0
ln ,k εµ ε= ∇×∇ × − ∇ ×∇×H H H   (7) 

 2

0
ln .k εµ µ= ∇×∇ × − ∇ ×∇×E E E   (8) 

Getting ln µ∇ ⋅ = −∇ ⋅H H , ln ε∇ ⋅ = −∇ ⋅E E  from 0∇ ⋅ = ∇ ⋅ =B D , we then rewrite (7)-(8) 

as 

 ( )2 2
ln ln ,k µ ε+ ∇ = −∇ ∇ ⋅ − ∇ ×∇×H H H H   (9) 

 ( )2 2
ln ln .k ε µ+ ∇ = −∇ ∇ ⋅ − ∇ ×∇ ×E E E E   (10) 

here 2 2

0
k kε= , 2 2 2

0
k cω= , and 2

0 0
1/ ( )c ε µ= , where ( ),x yε ε=  is a smooth spatially-

dependent dielectric function, the free-space parameters 
0

k , c , 
0

ε , and 
0

µ  respectively 

denote the wavenumber, the velocity of light, the permittivity, and the permeability. 

Here we assume only transverse electric (TE, ˆ ( , )e x y=E z ) and transverse magnetic (TM, 

ˆ ( , )h x y=H z ) waves within a nonmagnetic medium ( 1µ = ), so we reduce the above vector 

equations and use in-plane scalars e  and h , which are further on collectively denoted as f . 

4.1 Scalar wave equations and separation of variables 

Hence, both TE and TM wave Eqs. (9) and (10) reduce to a common scalar wave equation 

 2 2 0.f k f Lf∇ + + =   (11) 

For any TM-wave ( f h= ) the operator L  is given by lnL ε= −∇ ⋅∇ and does not vanish for 

spatially dispersive ε , while it vanishes for any TE-wave ( f e= ). 

The cylindrical symmetry of the device allows a straightforward separation of radial and 

angular variables in the cylindrical coordinates, ( r , φ , z ), linked to the Cartesian 

coordinates ( x , y , z ) through cosx r φ= , siny r φ= . Exploiting the cylindrical symmetry 

of the dielectric function, ( )rε ε= , and decomposing the solution of (11) into the cylindrical 

waves, ( )expmm
f f r mι φ

+∞

=−∞
= ∑ , we arrive at equation for scalar modes 

m
f  

 ( )2 2 2 2
0,m m mr f r q r f k r m f′′ ′  + + + − =       (12) 

where the prime denotes the radial derivative, and ( ) 0q r =  or ( ) 2
lnq r r ε′= −  for TE or TM 

modes respectively. 
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4.2 TE and TM solutions for ( ) constrε =  

The solvable cases that we are using here include the trivial instance of ( ) constrε =  for both 

TE and TM modes. In this case, (12) reduces to the Bessel equation for r kr= , and the 

general solution is a linear combination of two linearly independent Bessel functions [11]. 

In most of the cases it is more convenient to use the following combination 

 ( ) ( ) ( ) ,
m m m m m

f r a J r b H r
+= +   (13) 

since it represents the unique decomposition (usually found in scattering problems) into the 

incident and scattered field if the domain is infinite. On the other hand if the solution is 

written in the domain, which contains the origin, then the additional boundary condition 

should be provided to avoid singularity ( 0
m

b = ). 

For simulations we use the normalized variant of (13), which improves the condition 

number of the linear system matrix (Section 5.1): 

 ( ) ( ) ( ) ( ) ( ).
m m m m s m m m s

f r J r J r H r H rτ ρ + += +   (14) 

However in some applications, including the calculation of cross sections, a better option is 

an equivalent combination of the Hankel functions ( ) ( ) ( )m m m
H r J r Y rι± = ±  

 ( ) ( ) ( ) ,
m m m m m

f r c H r c H r
− − + += +   (15) 

which gives expressions that are easier to handle for mathematical analyses (Section 5.3). 

Back and forth translations between formulas (13) and (15) are performed by 1

2
,

m m
c a

− =  

( )1

2
2 ,

m m m
c a b

+ = + and 2 ,
m m

a c−=  .
m m m

b c c+ −= −  

4.3 TE and TM solutions for the ‘quadratic decay’ of permittivity, ( )2
constr rε =  

For the cylindrical realization of the black hole, which in its simplest form corresponds to an 

infinite cylinder with a radial distribution of the dielectric permittivity given 

by ( )2
constr rε = or 2 2 2 =constk r ν= , all optical modes of the system can also be separated 

into the TE and TM categories. For the TM wave 2( ) ln 2q r r rε′= − = , while for TE we 

always have ( ) 0q r = . 

For a TM mode, (12) can be therefore reduced as 

 2 2 23 [ ] 0,
m m m

r f rf m fν′′ ′+ + − =   (16) 

and for a TE mode as 

 2 2 2[ ] 0.
m m m

r f rf m fν′′ ′+ + − =   (17) 

Both (16) and (17) are the Euler differential equations, which are solved by substitution 

lns r= . Then, since 2 2

s
r f rf f′′ ′+ = ∂  and 

s
rf f′ = ∂  we arrive at the characteristic equation 

for (exp )f s  with roots 
1,2

ξ , where the general solution reads 

 
( )

1 2

1

1 2
, if

( )
ln , otherwise

m m

m

m m

a r b r
f r

a b r r

ξ ξ

ξ

  ξ ξ + ≠
= 

+
  (18) 

and the characteristic roots 
1,2

ξ  in (18) are 
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( )
( )

2 2

1,2
2 2

1 1, TE

, TM

m

m

ι ν
ξ

ι ν

− ± − −
= 

± −
  (19) 

or equivalently, 
1,2 m

ξ α ιβ= − ± , where 1α =  for TM, or 0α =  for TE, and 

2 2

m
mβ ν α= − − in both cases. 

4.4 Boundary conditions and the mode matching 

In previous sections the general analytical solutions were written in the domains, where the 

dielectric function ( )rε  is defined by either the Bessel equation or the Euler equation. At 

each interface between such domains, the electromagnetic field should satisfy the standard 

boundary conditions for the continuity of the tangential components of the magnetic and 

electric fields. Furthermore, the physical requirement for the behavior at the infinity and at the 

origin, introduce additional constrains to the solution, as described earlier in Section 4.2 

In particular for a nonmagnetic, cylindrically symmetric medium without any free charges 

the condition of continuity of electromagnetic fields at a given interface 0
i

r r= >  reads 

TE: 

 [ ] [ ] 0,
i ir r r re e= =′= =   (20) 

TM: 

 
1

[ ] [ ] 0,
i ir r r rh hε −

= =′= =   (21) 

where 
0 0

[ ( )] lim ( ) lim ( )
ir r i i

a a
f r f r a f r a= → →

= + − − . Since we assume that both the inner and outer 

sub-domains are of constant permittivity, with the general solution given by Eq. (13), which 

should have a physical solution at 0r = , then 0
m

b =  and 

 ( ) ( ).
m m m

f r a J kr=   (22) 

If the function f  describes the scattered field (i.e. does not include the incident wave), it 

should obey the Sommerfeld radiation condition, lim ( ) 0
r

r f kfι
→∞

′ − = . The asymptotic 

behavior of the Hankel functions 1/2( ) kr

m
H kr r e ι± − ±

∼  for r → ∞  forces us to choose only one 

term in (13); hence, for the scattered field we have 

 ( ) ( ).
m m m

f r b H kr+=   (23) 

4.5 Incident light: the Gaussian beams and plane wave 

While the angular momentum formalism introduced above, represents the “natural” choice for 

a system with rotational symmetry, to complete the description of the scattering problem, we 

also need to develop the angular momentum expansion of the incident field. Here, we will 

consider the most common examples of the illumination field: the plane wave and the 

Gaussian beam. 

Starting from the classical generating function for the Bessel functions [12]: 

 ( ) ( )exp cos ,
m m

m
z e J z

ι ϕι ϕ ι= ∑   (24) 

for the incident plane wave we obtain ( m

m
a ι= ) 
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 ( , ) ( ) .
kx m

m m

m

f x y e a J kr e
ι ι ϕ

+∞

=−∞

= = ∑   (25) 

While plane wave illumination represents perhaps the most common setup of a scattering 

problem, it does not convey the case when the target is illuminated by a focused beam. The 

latter is generally adequately described by the Gaussian beam [13], which yields an accurate 

description of the beam focused by linear optical elements. However, one needs to keep in 

mind that the Gaussian beam in its standard form is not an exact solution of Maxwell’s 

equations in the free space, but instead corresponds to the paraxial approximation [13]. To 

avoid the approximate nature of this approach and resulting inaccuracy, we consider that the 

field, while following the Gaussian profile at the waist cross section, is in fact the exact 

solution of the Helmholtz wave equation with the given direction of propagation [14]: 

 
( ) ( )

2 2

2

0

0, exp

f k f

f y y w

∇ + =
  = −  

  (26) 

The resulting solution of (26) in each of half-spaces 0y ≤ , 0y ≥  can be written as a 

composition of y-plane waves 

 ( ) ( )
1

2 2

1 | | 1

, exp 1 exp 1 ,
q q

q

f x y a k qy q x dq a kqy k q x dqι ι
− >

   = + − + − −    ∫ ∫  (27) 

where the amplitudes ( )21 1

42
exp

q
a kw kwq

π
 = −   satisfy the condition 

2 2
/y w kyq

q
e a e dqι∞−

−∞
= ∫ . Here, the field is separated into the contributions of the propagating 

(the first integral in (27)) and the evanescent waves (the second term in (27)). The 

contribution of evanescent waves, can be estimated as 

 ( )
2 2 21

42 1

2

| | 1 1

exp 1 erfc .
k w q

q

q

kw
a kqy k q x dq e dq kwσ ι

π

+∞
−

>

 = − − ≤ =
 ∫ ∫   (28) 

As a result of (28), for a Gaussian beam with waist 2w λ≥  propagating in media with 1ε ≥  

neglecting the evanescent waves integral in (27) gives a reasonable approximation, since the 

relative error of the field magnitude is less than ( ) ( ) 191

2
erfc erfc 2 6 10kw π −≤ ≈ × . 

Adding the arbitrary shift of the focus location by straightforward translation, 

0 0
,x x x y y y  → − → − , the final expression of a focused beam in Cartesian coordinates is 

 
2 2 2 21

0 04

1
( ) 1 ( )

1

( , ) ,
2

k w q k q y y q x xkw
f x y e dq

ι

π

 − + − + − −  

−

= ∫   (29) 

or (29) can be equivalently written in the cylindrical coordinates with cosx r φ=  and 

siny r φ=  giving 

 
[ ]( )2 2 2 21

0 04

1
1 cos ( )

1

( , ) ,
2

k w q k qy q x r qkw
f r e dq

ι φ ψ
φ

π

− − + − − −

−

= ∫   (30) 

where 1( ) sinq qψ −= . 
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Using the generating function (24) for z kr=  and ( )qϕ φ ψ= −  we obtain from (30) the final 

series 

 ( , ) ( ) ,
m

m m

m

f r a J kr e
ι φφ

+∞

=−∞

= ∑   (31) 

where ( )1
2 2 2 2 11

0 041
exp 1 sin

2

m

m

kw
a k w q k qy q x m q dqι ι ι

π
−

−

 = − − + − −  ∫ . 

5. Layered Systems 

Practical realizations of concentric cylinder optical and optoelectronic devices often involve a 

design that includes a number of (homogeneous) layers. In particular, external layers may be 

incorporated as a protective cover, while an internal layer between the absorber and the shell 

of the optical concentrator provides additional mechanical support or works as a channel for a 

liquid absorber. In this Section, we develop the theoretical description of light scattering and 

absorption by such layered systems. 

5.1 Cascading the cylindrical layers 

The boundary value problem of the scattered cylindrical modes inside a set of concentric 

cylindrical layers leads to a system of linear equations. Utilizing a direct linear algebra 

method for obtaining the scattered cylindrical modes inside layers with losses or axially 

symmetric distribution of the dielectric function could be problematic due to typically large 

condition numbers of the system matrices. The algorithm that we use includes a normalization 

step, making it possible to improve poor conditioning. However, if the algorithm were used 

for getting analytical formulae the normalization would not be necessary. 

We consider a concentric cylindrical device having 1l −  layers, 
1i i

r r r +< < , 1, 1i l= − , 

with the “outer” (
s

r r> ) layer l  filled with a host media, as shown in Fig. 2. 

 

Fig. 2. Schematic geometry of the layered structure. 

The general solution of the wave equation in i
th

 layer can be represented as a sum of 

angular harmonics, ( , ) ( ) exp
i i

mm
f r f r mφ ι φ

+∞

=−∞
= ∑  where the radial part ( )i

m
f r consists of 

two partial solutions ( )i

m
R r  and ( )i

m
T r with yet undefined coefficients. These coefficients can 

be obtained from appropriate 2l  boundary conditions. All cylindrical modes are linearly 

independent, thus each of the boundary conditions can be separated into the individual 

equations for each m
th

 mode, similar to that shown in (14) presented in a more general form, 
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( ) 1 2

( ) ( ) ( ) ( ) ( ) , 1, , ,i i i i i i i

m i i
f r T r T r R r R r i l r rτ ρ= + = =    (32) 

where for the simplicity of notation (and from now on in this section) we suppress the index 

m . To satisfy the condition (22) in the core layer we put 1 0ρ =  and 
1

( ) 1
( ) ( )

m m
T r J k r= . 

Furthermore, the total field in the “outer” layer can be separated into the “incident” and 

“scattered” parts. The Sommerfeld radiation condition 
( ) 0

( ) ( )
l

m m
R r H k r

+=  is imposed on the 

scattered field (cf. Eq. (23)), while for the incident wave 
( )

( )
l

m m m s
a J rτ = , with the values of 

the coefficients 
m

a  taken from the expansion of the incident wave (25), (31). 

To obtain the rest of 2 2l −  equations we use the standard boundary condition (20), (21) 

for TE polarization at each interface 
1i

r r += , 

 
1

,1 ,1 ,0 ,01

1 1 1 1
diag( , ) ,

i i

i i

T Ri i i ii i
T R T R

F F
L L L L

τ τ
      

ρ ρ

+

+

      
=      

      
  (33) 

where 1
( )

,
( )

i

i i

X i

i

X r
F

X r

+=  ( ),

1 ,
i q

i q

X ii q

X
L r

X

+

++

′
=

′
 , ,X R T=  0,1.q =  

For the TM polarization the only change is that ( )( ),0 ,0

1 1

i i

X i i i X
L r Lε ε+ +→ . Inverting the 

matrix at the left-hand-side of (33) and evaluating its determinant as 

( )
1 1

1 ,1 ,1

11 1

[ , ]
i i

i i i

R T ii i

W T R
d L L r

T R

+ +
+

++ +
= − =  we obtain 

 
1

1
, 1, 1,

i i

i

mi i
w i l

τ τ
ρ ρ

+

+

   
= = −   

   
   (34) 

where 

 
( ) ( )
( ) ( )

,1 ,0 ,1 ,0

1 ,1 ,0 ,1 ,0

1
,

i i i i i i

T R T R R Ri

m i i i i i i i

T T T R T R

F L L F L L
w

d F L L F L L
+

 − −
 =
 − − − − 

  (35) 

and [ , ]W T R TR T R′ ′= −  is the Wronskian [12],  which is taken for the partial solutions of the 

1i +  layer. In particular, for homogeneous layers we exploit the known value of the 

Wronskians for the Bessel functions [15], 

 

[ , ]( ) 2 ;

[ , ]( ) 2 ;

[ , ]( ) 4 .

m m

m m

m m

W J Y x x

W J H x x

W H H x x

π

ι π

ι π

±

+ −

=

= ±

= −

  (36) 

For a layer with the inverse-square radial dependence of the dielectric we have mT r
α ιβ− += , 

mR r
α ιβ− −=  which yields ( )1

[ , ] 2
m

TRW T R rι β− = . This approach is also known as the 

‘cascading layers’ method [16],  since the solution in each layer (34) is then a composition of 

transfer matrices applied to the first layer ( )11 1 1 1
[ , ] [ , ]

i i T k T

k i
wτ ρ τ ρ+ +

=
= ∏ ) [13]. 

The resulting system obtained after stating all 2l boundary conditions has the form: 
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( )

( )

1

1

11 12

1

21 22

( )

0

, 1, 1

known, e.g.,

i i i i i

i i i i i

l inc

m m l

w w
i l

w w

a J r

ρ

τ τ ρ
ρ τ ρ

τ   

+

+

 =


= +
∈ −

= +
 −

   (37) 

The system (37) can be solved in two sweeps, similar to the standard Thomas algorithm 

[17]. In this approach, the auxiliary normalized coefficients 1i i iτ τ τ+= , and i i iρ ρ τ= , 

( )1, 1i l∈ −  are calculated by forward sweep using the recurrence (38) 

 

( )
( )

1

11 12

1

21 22

0

, 1, 1
i i i i

i i i i i

w w i l

w w

ρ

τ ρ

ρ ρ τ+

 =


= + ∈ −


= +

      (38) 

followed by the backward sweep of the reflection and transmission coefficients (39), while 

using the initial condition at the external interface: 

 ( )
1

, 1, 1

i i i

i i i
i l

τ τ τ

ρ ρ τ

+ =
∈ −

=
   (39) 

where lτ  is known and l l lρ ρ τ= . 

The above algorithm includes the normalization of the partial solution in each layer by its 

value on the inner interface (the field in the core layer is an exception and is normalized by its 

value on the outer interface 
2

r r= , the latter is achieved by substitution 
1 2
r r=  in Eq. (32)). 

The normalization significantly improves the accuracy of the mathematical operations, 

performed numerically with a limitation of floating-point representations and arithmetic. 

Finally, the procedure yields the m
th

 mode of the field by using (32); the solution to the entire 

problem in the i
th

 layer is given as a sum of the angular momentum modes, 

( ) ( ),
i i m

mm
f r f r e

ι φφ
∞

=−∞
= ∑ . 

5.2 Scattering and absorption efficiencies 

For any optical system, scattering and absorption efficiencies have the physical meaning of 

the relative size of the equivalent “black body” target which results in the same amount of 

scattered and absorbed power [18]. 

First, we recapitulate that the total field ˆf=E z  (TE) or ˆf=H z  (TM) outside the device 

at the external boundary of the shell, 
s

r r=  is defined as ( t
e

ιω−  is omitted) 

 ( )exp .m sm
f f r mι φ

+∞

=−∞
= ∑   (40) 

Then, we assume that the m
th

 mode of the total field is given by, 

 ,
m m m m

f H c H− + += +   (41) 

or 

 ( )2 1 ,m m m mf J c H
+ += + −   (42) 

so that the total field (40) is decomposed into a plane wave illumination source 
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 2 2 ,
ky

inc mm
f J e

ι= =∑   (43) 

and the scattered field 

 ( 1) exp ,sca m mm
f c H mι ϕ

∞ + +

=−∞
= −∑   (44) 

where coefficients 
m

c+  are determined from the boundary value problem. In (41)-(44) and 

further on we use abbreviations 
m

J , 
m

H ±  for ( )m s
J r , ( )m s

H r
±

. 

Equations (40)-(43) are used for the time-averaged Poynting vector ( )*1

2
Re

abs = ×S E H , 

and its normalized radial component ˆabs

r
S W= ⋅r S , where W  is the total power transmitted 

by the incident wave through 2
s

r –wide strip per its unit length: 

 ( )* *1 1

8 8
ˆ ˆ ˆRe Im ,

s s

abs

r r r

s

f
S f f f

r
ι

 ∂ = ⋅ × ∇ × =    ∂ 
r z z   (45) 

and since the absorption efficiency per unit length is taken as a normalized flux of power 

flowing into the device, 
2

0

abs abs

r s
Q S r d

π
φ= −∫ , /

m m s
f df dr′ = we arrive at 

 ( )*
Im .

4

abs

m m

m

Q f f
π ∞

=−∞

′= − ∑   (46) 

After applying (41) to (46), we note that ( )*
Im m mf f ′  includes a vanishing sum of a 

complex number with its conjugate, ( )
*

Im 0
m m m m m m

c H H c H H
+ + + + + + ′ ′+ =  

, and another term, 

( ) ( ) ( )
* 2 2

Im 1 Im
m m m m m m m m

H H c H H c H H
− + + − + + − + ′ ′ ′+ = − −  

, so that 

 ( )21
1 ;

2

abs

m

ms

Q c
r

∞
+

=−∞

= −∑   (47) 

which is obtained by substituting ( ) ( )Im ,
m m m m

H H W J Y
− +′ =  with ( )2

s
rπ  (cf. Eq. (36)). 

Similarly the scattering efficiency per unit length is calculated by taking the flux of 

normalized power of the scattered field (44) moving away from the device, 

2

0

sca sca

r s
Q S r d

π
φ= ∫ , where likewise (45), *1

8
Im

s

sca sca

r scar

s

f
S f

r

 ∂
=  

∂ 
; and we obtain 

 
21

1 .
2

sca

m

ms

Q c
r

∞
+

=−∞

= −∑   (48) 

Note that if the solution of the same scattering problem is given for an arbitrary source of 

illumination as 
m m m m m

f c H c H− − + += +ɶ ɶ , then due to the linearity of the problem the coefficients 

relate to those from (41) as /
m m m

c c c+ + −= ɶ ɶ . In particular this gives immediate expressions for the 

absorption and scattering efficiencies, if the total field is given as 
m m m m m

f a J b H += +  for 

which 1 1

2 2
,

m m m m m
c a c b a

− += = +ɶ ɶ ; then substitution 1/ 1 2
m m m m m

c c c a b+ + − −= = +ɶ ɶ  and the use of 

m

m
a ι=  gives 
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 ( )22
Re ,

abs m

m m

ms

Q b b
r

ι
∞

−

=−∞

 = − + ∑   (49) 

 
22
.

sca

m

ms

Q b
r

∞

=−∞

= ∑   (50) 

5.3 The ideal electromagnetic black hole 

We consider the ideal “fundamental” (p = 2) electromagnetic black hole, see (1), (2), (3). It is 

a three layered system with a gradient-index shell and absorbing core, for which the 

formalism of Section 5.1 can be applied to calculate the exact full-wave solution. Fig. 3 

shows an example simulation of an ideal black hole with 2.1
s

ε = , 20 m
s

r µ = , 

and 8.367 m
c

r µ= . The device is illuminated with a Gaussian beam (free-space wavelength 

1.5 mµλ = and full width 2w λ= ), which is focused at fixed 
0

x , and different 
0

y  (where 

0
0x = , and 

0
1.5, 1, 0.75

s
y r     = , and 0). 

 

Fig. 3. (Media 1) Ideal black hole with εs = 2.1, εc = 12, γc = 0.7, rs = 20 µm, and rc = rs(εs/εc)
½ 

= 8.367 µm. The Gaussian beam with free-space wavelength λ = 1.5µm and full width w = 2λ 

is focused at x0 = 0, and (a) y0 = 1.5rs; (b) y0 = rs; (c) y0 = 0.75rs, and (d) y0 = 0. Range of 

modes used in series from (a) to (d): [-50;50], [-140;-40], [-170;-70], [-230;-130] 

Furthermore the approach is also used to determine the final form of the absorption 

efficiency. For this we use Eqs. (47), (48) and derive the scattering coefficients. We write the 

total field outside the device 

as ( ) ( ) ( ) ( ) ( )3 3 3

m m m m m m m m m m
f r H r c H r H r H H r Hτ ρ− + + − − + += + = + , where 3

m m
Hτ −= , 

3

m m m
c Hρ + += . Then the exact formula for the scattering coefficients is given as 

 ( ) ( ) ( )
3

2 1 2 1 2 1 2 1

21 11 22 21 11 11 12 21 .m

m m m
m

m

c H H w w w w w w w w
H

ρ+ − +
+

 = = + +    (51) 

The coefficients 
k

ij
w  are readily available from (35), then writing the explicit expressions 

for the matrix elements to (51) we obtain: 

 ,m mm

m

mm mH H
c

H Hη
η

− −
+

+ +

′ +
′

=
+

−   (52) 

where 

 
1

1
,m

s m

m

X

r X

β α
ι

β
η

− 
=  + 

 
−  

2

1
,

1

m

c

s

rY

Y r
X

ι β
ι
ι

 +
 

−  
=  

( )
( )

.
c m c

m m m c

r J r
Y A

J r

α
β β

′
= +   

The coefficients 
m

α ιβ− ± are the characteristic roots of the Euler equation (cf. Eq. (19)), and 

factor A  is obtained from the boundary conditions, 
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( )

2 2

2 2

TE 0 1

TM 1 1

m

s

s c c c

A

r m

r m

α β

ε ε ιγ

−

− − +

  (53) 

For reshaping 
m

η  we use the identity ( ) ( ) ( )2
tan ln1 1X X Xιι =− − + . Similarly in the 

expression for X , we use the identity ( ) ( ) ( )1
1 exp 2 tan1 Y YY ι ιι −=+ −  so that coefficients 

m
η  can be written for both polarizations as 

 
( )
( )

1
tan tan .ln

c m cm c

m

s m s m m m c

m

r J rr
A

r r J r
η

β α α
β

β β β
−

 ′
− + +  

 

  
=   

    
  (54) 

5.4 The lamellar electromagnetic black hole 

The formalism of a layered system for example can be used to study a non-ideal lamellar 

“black hole” optical concentrator and absorber, which approximates an ideal device ( 2.1
s

ε = , 

20 m
s

r µ = , and 8.367 m
c

r µ= ) with a different number of homogeneous layers, l. The device 

is illuminated by a plane wave with free-space wavelength 1.5 mµλ = ; for l equal to 3, 5, 9, 

and 17. Scattering and absorption efficiencies are given in (49)-(50), the latter, absQ , yields 

72%, 84%, 90%, and 94% respectively. Fig. 4(e) depicts the field map of the ideal black hole 

with smooth gradient, where 99% absorption efficiency is achieved. 

 

Fig. 4. Simulated field maps for a lamellar “black hole” optical concentrator and absorber (εs = 

2.1, rs = 20 µm, and rc = 8.367 µm) vs. the total number of layers, l. The device is illuminated 

by a plane wave with free-space wavelength λ = 1.5µm. (a) l = 3, and 72% absorption 

efficiency, (b) l = 5, and 84% absorption efficiency, (c) l = 9, and 90% absorption efficiency, 

(d) l = 17, and 94% absorption efficiency. Panel (e) depicts the reference case of the ideal 

black hole with smooth gradient, and 99% absorption efficiency. 

6. Semiclassical description 

The primary objective of the present section is the derivation of the semiclassical expansion 

( 1
s

r ≫ ) of the scattering and absorption cross sections of the “fundamental” (p = 2) 

electromagnetic black hole, introduced in Section 2. 

Intuitively, from the ray dynamics of Section 2, we expect the absorption cross section to 

be close to the “geometrical” limit, so that 1absQ → . The ray-optical treatment of Section 5 

however gives no quantitative measure of how closely this limit is actually approached in a 

practical device. On the other hand, the exact description of Section 5, while giving a precise 

quantitative account, provides no compact lucid description of the system behavior. In 

contrast to this behavior, the semiclassical approach, mathematically corresponding to taking 

the formal limit 1
s

r ≫  of the exact solution, combines the clear physical picture of the actual 

dynamics in terms of the underlying ray trajectories, with the quantitative description of the 

interference and diffraction in the system. 
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The semiclassical approximation for the reflection coefficients and the absorption cross-

section can be obtained by taking the limit 1
s

r ≫  in (52) and (54). Mathematically, this 

corresponds to the famous Debye expansion [12] of the Bessel functions 

 ( ) ( )
2 2 2 2

2 1
1 exp ,

m m
x O xH

x m x m
ισ

π
±

  
= + ±      − −   

  (55) 

where the “phase” ( ) ( )2 2 1
cos 4

m
x x m m m xσ π−= − − − . 

Physically, the angular momenta summation in absorption efficiency (47) can be 

separated into two parts – the sum over 
s

m r<  and the sum over 
s

m r> . As the 

dimensionless angular momentum m  has physical meaning of the product of the (fixed) 

wavenumber and the impact parameter – see Fig. 2 – the sum over 
s

m r<  corresponds to the 

rays that actually hit the target and as a result experience strong scattering. On the other hand, 

the sum for 
s

m r>  takes into account the rays that miss the object. In the geometrical-optics 

limit, those rays experience no scattering and thus do not contribute to the cross-section. 

Beyond ray optics, the waves with 
s

m r> , do experience some amount of scattering 

normally associated with diffraction, however in the limit 1
s

r ≫  the resulting contribution is 

exponentially small. Therefore, in the semiclassical limit 1
s

r ≫ the sum over large angular 

momenta (
s

m r> ) can be neglected, and we obtain 

 ( )2
1

2
1 .

s

s

abs

mr

m r

Q c+

≤

≈ −∑   (56) 

Furthermore, for 1
s

r ≫  the relative change in mc
+

, when one goes from m  to 1m + , is 

reasonably small – leading to the relative error 1
s

r∼ – and thus the summation in Eq. (56) 

can be approximated by the integral 

 ( )2
1

2
1 .

s

s

s

r

abs

mr

r

Q dm c+

−

≈ −∫   (57) 

Note that in this approximation the values of the parameter 
m

β  that are different for the 

TE and TM polarization (cf. Eq. (53)), should be considered equal, i.e. 

2 22 2
1

s s
r mrm− − ≈ − , then, applying Debye approximation to (52) and using identity 

( ) ( ) ( )1
1 exp 2 tan1 Y YY ι ιι −=+ −  we obtain, 

 ( )1

2

3

1
exp 2 tan .

2
m m s

m m

s s

m
c

r
r

r
ι η σ

β β
+ −

    
= − −   

     
  (58) 

Furthermore, for 1
s

r ≫  the term 
2 31

2 s m
r β−  can be neglected, in addition, from (54) we have 

 
1 ( )

ltan tan
( )

n ,c c m c

m

m s m mm m c

s

m

r r J r
A

r

r

J r
η

α α
β

β ββ β
−  

=  


 ′
− + +  

 
  (59) 
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and since the fraction 
m

α β  is very small for the TM polarization and is exactly equal to zero 

for TE polarization, using the Debye expansion for Bessel function in the limit 1
s

r ≫  and 

low losses in (59) we obtain, 

 1 1tan ta
( )

ln
( )

n .c c m c

m

m

s

m c

m

m s

r r J r
A

r r

r

J
β

β
η

β
− −   

= −  
 

′


 
−   (60) 

Using a similar approximation for ( ) ( )
2 2

1
cos

2
mm c

c

c
r

r m
J r σ

π
≈   

−
in (60) we write, 

 

( )

1

2

1

2

22

2

ln

1
tan

tan

t
2 ( )

an ,

c

m

s

m

s

mm

m

cc

m c

c

r

rr
r

r

r

r

m
A

m

η β

β

β

σ
β

−

−

 
= 

 

 
  

−

 −
 − − +
 


− 

 

  (61) 

where phase factor ( )m c
rσ  is already defined in (55), and 

c c c
r k r= . 

Then, dropping the small term 
21

2

2 2
( )c cmr r mβ −   and taking 

22
1

c m
A mr β− ≈  (due 

to small losses) in (61), we are back to (58) and obtain, 

 ( ) ( )exp ln2 ,c

m m m c m s

s

r
r r

r
c β σ σι+

   
= −  

   
− +   (62) 

with the magnitude of (62) being 

 2 2exp ,
c

m

c

s
c r m

γ
ε

+  
= − − 

 
  (63) 

where we used, ( ) ( ) 2 2

2 sm

c

c m s

c

r rr mι γ
ε

σ σ ≈ −− . 

For the absorption efficiency (57) after substitution (63) we then obtain, 

 1 2 2

2
1 exp ,2

s

s

s

r

bs

r

c

r c

a

s
mQ r dm

γ
ε−

  
≈ −    

− −


∫   (64) 

and after variable substitution (64) can be written as a standard integral 

 
1 1

1 2 2 2 ,
2

abs c c c

s s s

c c c

Q F r I r L r
γ γπ
ε ε

γ
ε

      
= − = −      

       
  (65) 

where 
1

I  and 
1

L  are the modified Bessel and Struve functions of the first order, and 
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( ) ( )

[ ]
( )

2

0

21

2

1 1

2 4

cos exp cos

1 , 1

1 ( ) ( ) 1 12 , 1

F x x d

x O x x

I x L x
O x

x x

π

θ θ θ

π

= −

 − +


= − − =   +  
 

∫

≪

≫

  (66) 

Equations (65) and (66) finalize the derivation of the semiclassical expansion ( 1
s

r ≫ ) of 

the scattering and absorption cross sections of the “fundamental” ( 2p = ) electromagnetic 

black hole, which is the specific aim of this Section. As expected, for both polarizations in the 

absence of losses we find zero absorption cross-section. However, even for moderate losses 

1
c c s

rγ ε ∼  the absorption efficiency is close to one. Thus, as predicted by the semiclassical 

theory, the device does indeed absorb nearly all the incident light from every direction. 

To further illustrate our results we first qualitatively portray the decay of performance as 

we move away from the semiclassical limit. Fig. 5 shows field patterns of the black hole 

device ( 2.1
s

ε = ,  20 m
s

r µ= , rs = 20 µm, and 8.367 m
c

r µ= ) illuminated by a TE-polarized 

plane wave for a free-space wavelength changing from 1.5 to 6.0 µm, where increasing 

scattering is observed with increase of wavelength. Then, we perform a quantitative 

comparison of the absorption efficiency, absQ , versus the ratio 
s

rλ . 

 

Fig. 5. Field patterns of the black hole device (εs = 2.1, rs = 20 µm, and rc = 8.367 µm) 

illuminated by a TE-polarized plane wave with a free-space wavelength of (a) 1.5 µm, (b) 3.0 

µm, (c) 4.5 µm, and (d) 6.0 µm. 

The efficiencies, shown in Fig. 6a, are separately calculated for the TE- and TM-polarized 

plane wave using the exact method of Section 5, and the semiclassical result of Section 6, 

which is valid for both polarizations. Figures 6a also indicates good quality of the 

semiclassical approximation of the absorption cross-section even far beyond the semiclassical 

limit. Figure 6b depicts a more detailed plot for 
s

rλ changing from 0.075 to 0.15. 
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Fig. 6. (a) Absorption efficiency Qa vs. the ratio λ/rs obtained for the TE- and TM-polarized 

plane wave; (b) a more detailed plot for the ratios from 0.075 to 0.15. 

7. Summary 

In summary, we have developed a theoretical description of wave propagation in 

cylindrically-symmetric gradient-index systems, and applied this approach to light “trapping” 

in the recently proposed electromagnetic black hole concentrator and absorber. 

In particular we have demonstrated that an approximate lamellar black-hole with a 

relatively limited number of homogeneous layers, while giving the desired ray-optical 

performance, can provide absorption efficiencies comparable with those of ideal devices with 

smooth gradients in index. It is forecasted that the use of non-uniform layers could further 

improve the performance of the lamellar device with a given number of homogeneous layers. 

The numerical validation of the mathematical apparatus for designing the black-hole devices 

opens the path for the development of test beds that could further advance the application of 

this light-trapping technique into a viable commercial option. 
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