You must login before you can run this tool.
Category
Published on
Abstract
Video Tutorial for nanoDDSCAT+
This tool creates a single workflow for creating and processing a custom shape in Draine and Flatau's DDSCAT (v7.3). The workflow is divided into three stages:
1.) The first stage of the process is to use an open source 3D graphics and animation software, Blender, in order to prepare object(s) and set incident light directions for the simulation. Blender has been modified for nanoDDSCAT+ in order to provide extra features/controls related to guaranteeing accuracy of the simulation's preparation such as: "Center Scene at Origin", "Rotate Lights", "Lock/Unlock Incident Light", and "Export .obj for DDAConvert".
2.) The second stage of the process is to run the DDAConvert tool within the same container. The tool automatically recognizes the latest file the user has exported from Blender for processing within their same session (when the option is selected). The DDAConvert tool populates the 3D system created in Blender with a point-in-polyhedron algorithm so that the system can be represented discretely by a number of points. Making use of the "Center Scene at Origin" feature in Blender is especially necessary for guaranteeing accuracy at this stage due to the fact that object systems being Input to DDAConvert are automatically centered before the algorithm is run. The point population created within the defined shapes is determined by a single user-input parameter defining the "Longest Dimension Span" of the System in points. This parameter is defined more specifically as the distance between the two farthest edges of the drawn system. Using too small of a value for the "Longest Dimension Span" will result in incomplete population of shapes.
3.) The third stage of the process is to run the nanoDDSCAT tool, powered by Draine and Flatau's DDSCAT (v7.3). There is an option within the selectable shape types to import the most recently designated shape from DDAConvert for the current simulation.
Users are also given full capability of saving their files at any stage of the workflow to their Nanohub storage space. These files can then be downloaded to a local desktop via the "Upload/Download" button provided at the end of the "DDA+ Tools" menu. Additionally, locally saved files can also be uploaded for use within this tool.
What's New since Version 2.0:
- Vector plot renderings of E-Field, B-Field, Poynting Vector results added
- Faster and more reliable volume-to-discrete conversions (DDAConvert)
- Support for prototype "Supertool" workflow working alongside the Functionalization Workbench Tool (See Supporting Docs for more info)
- Various bug and accuracy fixes throughout the workflow
Powered by
Bio
https://www.nanogold.org/prashant-jain
Sponsored by
NanoBio node, University of Illinois Champaign-Urbana. This node was funded by the NSF Network for Computational Nanotechnology.
References
- AbderRahman N Sobh, Sarah White, Jeremy Smith, Nahil Sobh, Prashant K Jain (2019), "nanoDDSCAT+," https://nanohub.org/resources/ddaplus. (DOI: 10.21981/7DWF-7S84).
- Prashant K Jain, Nahil Sobh, Jeremy Smith, AbderRahman N Sobh, Sarah White, Jacob Faucheaux, John Feser (2019), "nanoDDSCAT," https://nanohub.org/resources/dda. (DOI: 10.21981/RWF3-4T85).
- "Discrete Dipole Approximation." Wikipedia. Wikimedia Foundation, 27 Oct. 2013. Web. 27 Jan. 2014. (link)
- Draine, Bruce T., and Piotr J. Flatau. "Discrete-dipole Approximation for Scattering Calculations." Journal of the Optical Society of America A 11.4 (1994): 1491. Web. (pdf)
- Draine, Bruce T., and Piotr J. Flatau. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2. N.p., 2012. Web. (pdf)
- Jain, Prashant K., Kyeong Seok Lee, Ivan H. El-Sayed, and Mostafa A. El-Sayed. "Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine." The Journal of Physical Chemistry B 110.14 (2006): 7238-248. Web. (pdf)
- Jain, Prashant K. "Plasmons in assembled metal nanostructures: radiative and nonradiative properties, near-field coupling and its universal scaling behavior." (2008). (pdf)
Cite this work
Researchers should cite this work as follows:
-
If you use the tool for work in a publication, cite this tool as follows:
AbderRahman N Sobh, Sarah White, Jeremy Smith, Nahil Sobh, Prashant K Jain (2019), "nanoDDSCAT+," https://nanohub.org/resources/ddaplus. (DOI: 10.21981/7DWF-7S84).
Prashant K Jain, Nahil Sobh, Jeremy Smith, AbderRahman N Sobh, Sarah White, Jacob Faucheaux, John Feser (2019), "nanoDDSCAT," https://nanohub.org/resources/dda. (DOI: 10.21981/RWF3-4T85).
Other Source Citations:
Draine, B.T., & Flatau, P.J. 1994, "Discrete dipole approximation for scattering calculations", J. Opt. Soc. Am. A, 11, 1491-1499
Draine, B.T., & Flatau, P.J. 2012, "User Guide to the Discrete Dipole Approximation Code DDSCAT 7.2"
Draine, B.T., & Flatau, P.J., "Discrete-dipole approximation for periodic targets: theory and tests", J. Opt. Soc. Am. A, 25, 2593-2703 (2008)
Flatau, P.J., & Draine, B.T., "Fast near-field calculations in the discrete dipole approximation for regular rectilinear grids", Optics Express, 20, 1247-1252 (2012)