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Most of the energy produced in our society is lost as heat. Two examples: 

Application Waste heat 

Electrical consumption in our 
houses from power plants 

60% during generation 
8 – 15% in transport and transformation 
∼70% Total losses 

In transportation (cars) 40% of energy generated 
30% used to cool the engine 
70% Total losses (+CO2 emissions) 

Thermoelectrics have the ability to convert temperature differences into electricity, i. e., 
obtain power from wasted heat.  

 
They are called to have a role in the improvement of the efficiency of the current energy 

system by harvesting wasted heat. 

M. Martín-González, O.Caballero-Calero, P. Díaz-Chao, Renewable and Sustainable Energy Reviews 24 (2013) 288. 
“Nanoengineering thermoelectrics for 21st century:Energy harvesting and other trends in the field” 
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Industries (furnace waste heat), Aerospace (radioisotope), Wireless sensors (ambient 
heat), Vehicles (exhaust heat), Solar Energy (TE solar devices) 

Applications 

1. Introduction 



The efficiency of a thermoelectric material is given by: 

The figure of merit (Z) 
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ZT is the figure of merit and indicates how efficient is a thermoelectric material.  

• High S provides higher open-circuit voltage 
(charge separation) 
 

• High σ provides higher currents 
 

• Low λ provides higher ∆T  

1. Introduction 

Properties interrelated, difficult to achieve 
efficient materials 



Thermoelectric materials are typically highly-doped semiconductors. A lot of materials are 
being explored (silicies, skutterudites, oxides, SiGe, Bi2Te3, conducting polymers, etc.) 

Materials 

J. R. Sootsman et al. Angew. Chem. Int. Ed. 48 (2009) 8616. New and Old Concepts in Thermoelectric Materials 
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The task of characterisation 

It requires measuring the variation with T of 3 parameters: S, σ and λ 
 

• Usually 3 different equipments are required.  
• A variety of home-made techniques are frequently used, no standard methods are 
followed. 
• ZT is usually obtained from the measurement of S, σ and λ and collects the errors of 
all these 3 measurements.  
• Thermal conductivity is difficult to measure and involves very expensive equipments. 

Home-made hot-probe (Seebeck coeffcient) 4-probe (electrical resistivity, sheet resistance) 

1. Introduction 



• A small amplitude sinusoidal voltage wave of certain frequency is applied 
• The system responds with a current wave proportional to the voltage that can be 
shifted in time (phase) 

Vac Vdc 

Iac 
Vdc, Idc 

time 

voltage 

Voltage or 
current 

time 

φ 

Impedance spectroscopy 
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Z is obtained for a range of frequencies (1 MHz to 10 mHz), obtaining one 
point in the spectrum per each frequency 

The impedance spectrum 

Impedance spectrum (Nyquist plot) Parameters vs frequency (Bode plots) 

frequencies 
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The impedance results can be modelled by means of equivalent circuits: 

Equivalent circuits 

RZ =
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Equivalent circuits 
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Is a very powerful characterisation technique used in a lot of fields: 
solar cells  
batteries 
fuel cells  
supercapacitors 
corrosion 

Impedance spectroscopy use 

It allows separation and direct determination  
of different processes occurring in the devices 
and under actual operating conditions: 

Electron/hole transport 
Lifetime, Recombination 
Charge transfer reactions 
Accumulation of charge 
Diffusion of ions … 

Impedance results for a dye-sensitised solar cell. 
Fabregat-Santiago et al. ChemPhysChem 13 

(2011) 9083 
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In the thermoelectric field it has hardly been explored 

Impedance spectroscopy in thermoelectrics (I) 

The work by Downey et al. relates the impedance response with 
equivalent thermal circuits. Reported a Resistance (R1=2.56 Ω) and 

Capacitance (C1=1.72 F) in parallel as the main feature of the 
thermoelectric response. 

 
R1 and C1 relate with the thermal capacitance and thermal resistance of 

the module respectively. 

A.D. Downey, T.P. Hogan, B. Cook, Review of Scientific Instruments, 78 (2007) 93904 
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Impedance spectroscopy in thermoelectrics (II) 

In two papers from Giaretto et al. a physical and mathematical description 
in the context of a thermal impedance is provided. They developed a 

method to accurately evaluate the ZT in modules. 

A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 34901 
A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 104904 

2. Impedance spectroscopy fundamentals 

Literature reported is mainly focused on the calculation of ZT and despite of the 
previous studies impedance is not used as a characterization tool by the 

thermoelectric community. 
 

In this seminar I will present our research to try to advance this method, focused on: 
• The theoretical models for electrical impedance  

• Analysis of results in the complex plane  
• Exploitation as a method able to provide complete TE characterisation  

and quantify the losses of the system 

Motivation for our research 



Considerations 
• Thermoelectric element with certain area A and length L contacted by 
metallic contacts of length LM. 
• Adiabatic conditions (no heat exchanged with surroundings). 
• All thermal and TE parameters independent on temperature. 
• System is initially at thermal equilibrium with temperature Ti. 
• Joule effect is neglected. 

3. Theoretical background 

(Blue line indicates T profile of n-type thermoelement at a 
certain moment in time under an applied positive current) 

TTT i ∆=− )(

( ) dTTd =∆

T 

Ti 

metallic 
contact 

metallic 
contact 

thermoelectric 
element 

ΔT  

-LM L LH 0 
x 



time domain (t) 
frequency domain (jω) 

Impedance function 

To know the impedance function we need to know the T 
difference at x=0 as a function of frequency 

3. Theoretical background 

R=ohmic resistance, ω=2πf, f is the frequency,  j= 
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1. Heat equation with no contact influence  

3. Theoretical background 

αTE=thermal diffusivity, λTE=thermal conductivity 

Very thin contact considered (LM → 0) 
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at x=L/2 (heat sink) 

In the thermoelectric material: 

Boundary conditions: 

at x=0 (adiabatic) 

T 

x 



1. Heat equations with no contact influence  

3. Theoretical background 
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1. Heat equations with no contact influence  

3. Theoretical background 

at 0<x<L 

Solution to the differential equation 
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After applying the boundary conditions: 
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The impedance function after using T(x=0)≈Ti and π0=STi is given by: 

3. Theoretical background 

1. Heat equation with no contact influence  
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2. Heat equation with contact influence  

In the metal: 

3. Theoretical background 
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2. Heat equations with contact influence  

3. Theoretical background 

Solution to the differential equations 
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The impedance function assuming no heat conduction in TE element λTE≈0 

3. Theoretical background 

• at ω>>ωM and R=0 
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The complete impedance function is given by: 

3. Theoretical background 

ωM 

(simulation for 1 mm2 and 1.5 mm length Bi2Te3 thermoelement 
contacted with Cu contacts 0.2 mm length) 

2. Heat equation with contact influence  
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Impedance spectroscopy 
• An impedance analyser equipment (potentiostat) was used. 
 

• The sample is suspended by Cu probes to provide adiabatic conditions and a thin 
contact is formed with Ag paint. 

4. Experimental validation 

Ag painted  
contacts 

Cu probes 
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Bi2Te3 thermoelement with Cu/ceramic contacts 

4. Experimental validation 

• Cu effect can be neglected (very small 
thickness) and ceramic is 1 mm thick. 
• In agreement with shape predicted. 
• High frequency part is noisy due to µΩ 
variations, close to equipment limitation. 
• Not possible to fit to equivalent circuit. 
• Improvement can be gained by increasing 
ceramic thickness or using lower thermal 
conductivity contacts. 

(Impedance spectrum from 100 to 0.01 Hz) 

R WCT 

Wa 



Thermoelectric module (254 legs, 1 x 1 mm2, 1.5 mm length) 

4. Experimental validation 
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J. García-Cañadas, G. Min, Impedance spectroscopy models for the complete characterization of 
thermoelectric materials, J. Appl. Phys. (Submitted) 



For a thermoelement (same assumptions) but now considering Joule effect, the 
solution to the steady-state heat balance equation at the cold side is given by: 

The thermoelement at steady state 
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We define a thermoelectric resistance as 

Thermoelectric resistance 

It matches the impedance function at steady-state when Joule effect is neglected: 
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The applied voltage generates a 
drift current given by the ohmic 

resistance (R) of the system 
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RTE accounts for the losses of the system introduced by the thermoelectric effects 
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Can be defined using the Seebeck voltage definition (dVS=Sd(TH-TC)) 
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Thermoelectric capacitance 

TETE
TE R

C
ω
1

=

5. Physical meaning 

It also appears in the impedance function: 
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The CTE gives information about the charge separation (reorganisation) process 
and the Seebeck current appearing in the system 

5. Physical meaning 
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The physical origin is not well understood yet 

Thermoelectric capacitance 



Related with time that heat flow takes to 
diffuse in the thermoelement 
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Time constant (τ) 

It can also be directly obtained from ωTE 
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J. García-Cañadas and G. Min. Low frequency impedance spectroscopy analysis of 
thermoelectric modules. Journal of Electronic Materials 43, 2411-2414 (2014). 

From the impedance analysis: 



Summary and future work 

• Theoretical models for electrical impedance have been presented and analysed 
in the complex plane. 
• Experimental validation has been provided, showing that complete 
characterisation of the materials can be obtained. 
• In addition, the different contributions to the losses in the system can be 
separated and quantified. 
• The physical meaning of parameters obtained from the impedance (RTE, CTE and 
τ) has been analysed. 

Summary 

Future work 

• Develop theoretical models for characterisation under operating conditions 
(include Joule effect, heat inputs, heat sinks, convection, etc.). 
• Further understanding of the thermoelectric capacitance. 
• Apply method to nanostructured materials and thin films. 
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