Impedance spectroscopy methods applied to thermoelectric materials and devices

Jorge García-Cañadas

Cardiff School of Engineering
Cardiff University
(United Kingdom)
jorge.garcia.canadas@gmail.com
Outline

1. Introduction
2. Impedance spectroscopy fundamentals
3. Theoretical background
4. Experimental validation
5. Physical meaning
6. Acknowledgements
Most of the energy produced in our society is lost as heat. Two examples:

<table>
<thead>
<tr>
<th>Application</th>
<th>Waste heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical consumption in our houses from power plants</td>
<td>60% during generation, 8 – 15% in transport and transformation, ~70% Total losses</td>
</tr>
<tr>
<td>In transportation (cars)</td>
<td>40% of energy generated, 30% used to cool the engine, 70% Total losses (+CO₂ emissions)</td>
</tr>
</tbody>
</table>

Thermoelectrics have the ability to convert temperature differences into electricity, i.e., obtain power from wasted heat.

They are called to have a role in the improvement of the efficiency of the current energy system by harvesting wasted heat.

1. Introduction

Applications

Industries (furnace waste heat), Aerospace (radioisotope), Wireless sensors (ambient heat), Vehicles (exhaust heat), Solar Energy (TE solar devices)
1. Introduction

The figure of merit (Z)

The efficiency of a thermoelectric material is given by:

\[
\eta = \frac{P_{\text{max}}}{Q_{\text{in}}} = \frac{(T_H - T_C)}{T_H} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_H / T_C}
\]

ZT is the figure of merit and indicates **how efficient is a thermoelectric material.**

- High *S* provides higher open-circuit voltage (charge separation)
- High *\(\sigma\)* provides higher currents
- Low *\(\lambda\)* provides higher *\(\Delta T\)*

Properties interrelated, difficult to achieve efficient materials
1. Introduction

Materials

Thermoelectric materials are typically **highly-doped semiconductors**. A lot of materials are being explored (silicides, skutterudites, oxides, SiGe, Bi$_2$Te$_3$, conducting polymers, etc.)

![Graph showing ZT vs Temperature for various materials](image)

1. Introduction

The task of characterisation

It requires measuring the variation with T of 3 parameters: S, σ and λ

• Usually 3 different equipments are required.
• A variety of home-made techniques are frequently used, no standard methods are followed.
• ZT is usually obtained from the measurement of S, σ and λ and collects the errors of all these 3 measurements.
• Thermal conductivity is difficult to measure and involves very expensive equipments.

Home-made hot-probe (Seebeck coefficient) 4-probe (electrical resistivity, sheet resistance)
2. Impedance spectroscopy fundamentals

Impedance spectroscopy

- A **small amplitude** sinusoidal voltage wave of certain frequency is applied.
- The system responds with a current wave proportional to the voltage that can be shifted in time (phase).

\[
|Z| = \sqrt{Z'^2 + Z''^2} = \frac{V_{ac}}{I_{ac}}
\]

\[
\phi = \arctan\left(\frac{Z''}{Z'}\right)
\]
2. Impedance spectroscopy fundamentals

The impedance spectrum

Z is obtained for a range of frequencies (1 MHz to 10 mHz), obtaining one point in the spectrum per each frequency.
2. Impedance spectroscopy fundamentals

Equivalent circuits

The impedance results can be modelled by means of equivalent circuits:

$$Z = R$$
2. Impedance spectroscopy fundamentals

Equivalent circuits

\[Z = R + \frac{1}{j\omega C} \]
2. Impedance spectroscopy fundamentals

Equivalent circuits

\[Z = R_1 + \frac{R_2}{1 + j\omega CR_2} \]

\[\omega_{\text{max}} = \frac{1}{R_2 C} \]

- \(R_1 = 100 \, \Omega \)
- \(R_2 = 400 \, \Omega \)
2. Impedance spectroscopy fundamentals

Impedance spectroscopy use

Is a very powerful **characterisation technique** used in a lot of fields:

- solar cells
- batteries
- fuel cells
- supercapacitors
- corrosion

It allows **separation** and **direct determination** of different **processes** occurring in the devices and under actual **operating conditions**:

- Electron/hole transport
- Lifetime, Recombination
- Charge transfer reactions
- Accumulation of charge
- Diffusion of ions ...

2. Impedance spectroscopy fundamentals

Impedance spectroscopy in thermoelectrics (I)

In the thermoelectric field it has **hardly been explored**

The work by **Downey et al.** relates the impedance response with equivalent thermal circuits. Reported a **Resistance** \(R_1 = 2.56 \, \Omega \) and **Capacitance** \(C_1 = 1.72 \, \text{F} \) **in parallel** as the main feature of the thermoelectric response.

\(R_1 \) and \(C_1 \) relate with the **thermal capacitance** and **thermal resistance** of the module respectively.

2. Impedance spectroscopy fundamentals

Impedance spectroscopy in thermoelectrics (II)

In two papers from Giaretto et al., a physical and mathematical description in the context of a **thermal impedance** is provided. They developed a method to **accurately** evaluate the **ZT** in modules.

A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 34901
A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 104904

Motivation for our research

Literature reported is mainly **focused on** the calculation of **ZT** and despite of the previous studies impedance is **not used** as a characterization tool by the thermoelectric community.

In this seminar I will present our research to try to advance this method, focused on:

- The **theoretical models** for **electrical impedance**
- Analysis of results in the **complex plane**
- Exploitation as a method able to provide **complete TE characterisation** and **quantify** the **losses** of the system
3. Theoretical background

Considerations

- **Thermoelectric element** with certain area A and length L contacted by **metallic contacts** of length L_M.
- **Adiabatic conditions** (no heat exchanged with surroundings).
- All thermal and TE **parameters independent on temperature**.
- System is **initially at thermal equilibrium** with temperature T_i.
- **Joule effect** is neglected.

\[(T - T_i) = \Delta T\]
\[d(\Delta T) = dT\]

(Blue line indicates T profile of n-type thermoelement at a certain moment in time under an applied positive current)
3. Theoretical background

Impedance function

\[V = IR + S[T(L) - T(0)] \]
\[Z(t) = \frac{V}{I} = R + \frac{S[T(L) - T(0)]}{I} \]

Time domain \((t)\)

\[\mathcal{L}\{\Delta T\} = \theta \quad \mathcal{L}\{I\} = i_0 \]
\[T(L) - T(0) \to -2\theta(0) \]

Frequency domain \((j\omega)\)

\[Z(j\omega) = R - \frac{S2\theta(0)}{i_0} \]

To know the impedance function we **need to know the T difference** at \(x=0\) as a function of frequency.

\(R=\)ohmic resistance, \(\omega=2\pi f, f\) is the frequency, \(j=\sqrt{-1}\)
3. Theoretical background

1. Heat equation with no contact influence

Very thin contact considered \((L_M \to 0)\)

In the thermoelectric material:

\[
\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha_{TE}} \frac{\partial T}{\partial t}
\]

at \(0<x<L\)

Boundary conditions:

\[
-\frac{\pi I}{A} + \lambda_{TE} \left(\frac{\partial T}{\partial x} \right)_0 = 0 \quad \text{at } x=0 \text{ (adiabatic)}
\]

\[
T(L/2,t) = T_i \quad \text{at } x=L/2 \text{ (heat sink)}
\]

\(\alpha_{TE}=\)thermal diffusivity, \(\lambda_{TE}=\)thermal conductivity
3. Theoretical background

1. Heat equations with no contact influence

Equations converted to the frequency domain

In the time domain (t):

\[
\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha_{TE}} \frac{\partial T}{\partial t} \\
- \frac{\pi_0 I_0}{A} + \lambda_{TE} \left(\frac{\partial T}{\partial x} \right)_0 = 0 \\
T(L/2, t) = T_i
\]

at 0<x<L, at x=0, at x=L/2

In the frequency domain (j\omega):

\[
\frac{d(\Delta T)}{dt} = \Delta T \\
\mathcal{L}\{\Delta T\} = \theta \\
\frac{\partial^2 \theta}{\partial x^2} = \frac{j \omega}{\alpha_{TE}} \theta \\
- \frac{\pi_0 i_0}{A} + \lambda_{TE} \left(\frac{\partial \theta}{\partial x} \right)_0 = 0 \\
\theta(L/2, \omega) = 0
\]
3. Theoretical background

1. Heat equations with no contact influence

Solution to the differential equation

\[\frac{\partial^2 \theta}{\partial x^2} - \frac{j \omega}{\alpha_{TE}} \theta = 0 \]

at \(0 < x < L \)

\[\omega_{TE} = \frac{\alpha_{TE}}{(L/2)^2} \]

Characteristic frequency

\[\theta(x, j \omega) = C_1 \sinh \left(\frac{x}{L_H} \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right) + C_2 \cosh \left(\frac{x}{L_H} \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right) \]

\[\frac{\partial \theta}{\partial x}(x, j \omega) = \frac{1}{L_H} \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \left\{ C_1 \cosh \left(\frac{x}{L_H} \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right) + C_2 \sinh \left(\frac{x}{L_H} \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right) \right\} \]

After applying the boundary conditions:

\[\theta(0) = -\frac{\pi_0 i_0 L_H}{\lambda_{TE} A} \left(\frac{j \omega}{\omega_{TE}} \right)^{-0.5} \tanh \left(\left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right) \]
3. Theoretical background

1. Heat equation with no contact influence

The impedance function after using \(T(x=0) \approx T_i \) and \(\pi_0 = S T_i \) is given by:

\[
Z(j \omega) = R + \frac{S^2 T_i L}{\lambda_{TE} A} \left(\frac{j \omega}{\omega_{TE}} \right)^{-0.5} \tanh \left\{ \left(\frac{j \omega}{\omega_{TE}} \right)^{0.5} \right\}
\]

- at \(\omega >> \omega_{TE} \)

 \[
 Z = R + \frac{S^2 T_i L}{\lambda_{TE} A} \left(\frac{j \omega}{\omega_{TE}} \right)^{-0.5}
 \]
 (1-slope, Warburg)

- at \(\omega << \omega_{TE} \) and \(R=0 \)

 \[
 Z^{-1} = \frac{1}{R_{TE}} + \frac{1}{3 \, R_{TE} \omega_{TE}}
 \]
 (semicircle)

It can provide all thermal constants if \(S \) is known

(simulation for Bi\(_2\)Te\(_3\) element 1 mm\(^2\) area and 1.5 mm length)
2. Heat equation with contact influence

Heat conduction and absorption by the metallic contacts have to be considered.

In the metal:

\[
\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha_M} \frac{\partial T}{\partial t}
\]

at \(-L_M<x<0\)

Boundary conditions:

\[
-\frac{\pi I}{A} - \lambda_M \left(\frac{\partial T}{\partial x} \right)_{0,M} + \lambda_{TE} \left(\frac{\partial T}{\partial x} \right)_{0,TE} = 0 \quad \text{at } x=0
\]

\[
\left(\frac{\partial T}{\partial x} \right)_{-L_M} = 0 \quad \text{at } x=-L_M \text{ (adiabatic)}
\]

\[
T(0)_M = T(0)_{TE} \quad \text{at } x=0 \text{ (T continuity)}
\]

\(\alpha_M=\text{thermal diffusivity, } \lambda_M=\text{thermal conductivity}\)
3. Theoretical background

2. Heat equations with contact influence

Solution to the differential equations

\[\theta(0) = -\frac{\pi_0 i_0}{A} \left(\frac{1}{Z_{th,TE}^{-1} + Z_{th,M}^{-1}} \right) \]

\[Z_{th} = \text{Thermal impedance} \]

\[Z_{th,TE} = \frac{L/2}{\lambda_{TE}} \left(\frac{j\omega}{\omega_{TE}} \right)^{-0.5} \text{tanh}\left(\left(\frac{j\omega}{\omega_{TE}} \right)^{0.5} \right) \]

\[Z_{th,M} = \frac{L_M}{\lambda_M} \left(\frac{j\omega}{\omega_M} \right)^{-0.5} \text{coth}\left(\left(\frac{j\omega}{\omega_M} \right)^{0.5} \right) \]

\[\omega_M = \frac{\alpha_M}{(L_M)^2} \]

Characteristic frequency in the metal

Impedance function given by

\[Z = R + \frac{2S^2 T_i}{A} \left(\frac{1}{Z_{th,TE}^{-1} + Z_{th,M}^{-1}} \right) \]
3. Theoretical background

2. Heat equation with contact influence

The impedance function assuming no heat conduction in TE element $\lambda_{TE} \approx 0$

$$Z = R + \frac{2S^2 T_i}{A} \frac{L_M}{\lambda_M} \left(\frac{j \omega}{\omega_M} \right)^{-0.5} \coth \left\{ \left(\frac{j \omega}{\omega_M} \right)^{0.5} \right\}$$

- at $\omega >> \omega_M$ and $R=0$

$$Z = \frac{2S^2 T_i}{A} \frac{L_M}{\lambda_M} \left(\frac{j \omega}{\omega_M} \right)^{-0.5}$$

(1-slope, Warburg)

- at $\omega << \omega_M$ and $R=0$

$$Z = \frac{1}{3} R_M + \frac{R_M \omega_M}{j \omega}$$

(vertical line)

(simulation for Cu contact with 1 mm² area and 0.2 mm length)
3. Theoretical background

2. Heat equation with contact influence

The complete impedance function is given by:

\[
Z = R + \frac{2S^2T_i}{A} \left(\frac{1}{Z_{th,TE}^{-1} + Z_{th,M}^{-1}} \right)
\]

At steady-state (\(\omega \to 0\)), the real impedance is:

\[
R_{dc} = R + R_{TE}
\]

Quantify all the losses of the system

(simulation for 1 mm\(^2\) and 1.5 mm length Bi\(_2\)Te\(_3\) thermoelement contacted with Cu contacts 0.2 mm length)
4. Experimental validation

Impedance spectroscopy

- An *impedance analyser* equipment (potentiostat) was used.

- The sample is suspended by **Cu probes** to provide adiabatic conditions and a thin **contact** is formed with **Ag paint**.
4. Experimental validation

Bi₂Te₃ thermoelement (1.4 x 1.4 mm², 1.6 mm length)

Parameter calculation using S=175 µV/K (hot-probe)

\[
\lambda_{TE} = \frac{S^2T_iL}{R_{TE}A} = 1.27 \text{ W/mK}
\]

\[
\alpha_{TE} = \frac{(L/2)^2}{\omega_{TE}} = 0.013 \text{ cm}^2/s
\]

\[
C_{pTE} = \frac{\lambda_{TE}}{d\alpha_{TE}} = 0.13 \text{ J/gK}
\]

\[
\sigma = \frac{L}{RA} = 96.67 \text{ S/cm}
\]

\[
ZT = \frac{R_{TE}}{R}
\]

It can provide all thermal constants in a ~5 min measurement if S is known.

Low since contains wires and contact resistances.
4. Experimental validation

\(\text{Bi}_2\text{Te}_3\) thermoelement with Cu/ceramic contacts

- **Cu effect** can be neglected (very small thickness) and ceramic is 1 mm thick.
- In agreement with shape predicted.
- High frequency part is noisy due to \(\mu\Omega\) variations, close to equipment limitation.
- Not possible to fit to equivalent circuit.
- Improvement can be gained by increasing ceramic thickness or using lower thermal conductivity contacts.

(Impedance spectrum from 100 to 0.01 Hz)
4. Experimental validation

Thermoelectric module (254 legs, 1 x 1 mm², 1.5 mm length)

\[
Z(t) = R + 254 \frac{S[T(L) - T(0)]}{I}
\]

\[
Z(j\omega) = R + 254 \frac{2S^2 T_i}{A} \left(\frac{1}{Z_{th,TE}^{-1} + Z_{th,M}^{-1}} \right)
\]

- \(R_C = 254 \frac{2S^2 T_i L_C}{\lambda_C A} = 149 \text{ m}\Omega \)
- \(S = 191.5 \mu\text{V/K} \)
- \(\lambda_C = 30 \text{ W/mK} \)
- \(R_{TE} = 254 \frac{S^2 T_i L}{\lambda_{TE} A} = 2.585 \text{ \Omega} \)
- \(\lambda_{TE} = 1.60 \text{ W/mK} \)
- \(R = 254 \frac{L}{\sigma A} = 4.29 \text{ \Omega} \)
- \(\sigma = 888 \text{ S/cm} \)

Complete characterisation is achieved

J. García-Cañadas, G. Min, Impedance spectroscopy models for the complete characterization of thermoelectric materials, *J. Appl. Phys.* (Submitted)
The thermoelement at steady state

For a thermoelement (same assumptions) but now considering Joule effect, the solution to the steady-state heat balance equation at the cold side is given by:

\[
0 = \frac{\pi I}{A} + \frac{\lambda}{L} (T_H - T_C) + \frac{1}{2} \frac{I^2 R}{A}
\]

\[
(T_H - T_C) = \frac{-L}{\lambda A} \left(\pi I + \frac{1}{2} I^2 R \right)
\]

\[
V_S = S(T_C - T_H) = \frac{SL}{\lambda A} \left(\pi I + \frac{1}{2} I^2 R \right)
\]
5. Physical meaning

Thermoelectric resistance

We define a thermoelectric resistance as

\[R_{TE} = \frac{V_s}{I} \quad \rightarrow \quad R_{TE} = \frac{SL}{\lambda A} \left(ST + \frac{1}{2} IR \right) \]

It matches the impedance function at steady-state when Joule effect is neglected:

\[
Z(\omega) = \frac{S^2T_iL}{\lambda_{TE} A} \left(\frac{j\omega}{\omega_{TE}} \right)^{-0.5} \tanh \left\{ \left(\frac{j\omega}{\omega_{TE}} \right)^{0.5} \right\} \quad \rightarrow \quad Z(\omega = 0) = \frac{S^2T_iL}{\lambda_{TE} A}
\]
5. Physical meaning

Thermoelectric resistance

t≈0, no T difference

The **applied voltage** generates a **drift current** given by the ohmic resistance \((R)\) of the system.

At steady-state

Due to **Peltier a T difference** appears and carriers redistribute generating the opposed **Seebeck voltage**.

\[R_{TE} \] accounts for the losses of the system introduced by the thermoelectric effects.
5. Physical meaning

Thermoelectric capacitance

Can be defined using the Seebeck voltage definition \((dV_S = Sd(T_H - T_C))\)

\[
C_{TE} = I \frac{dt}{dV_S} = \frac{I}{S} \left(\frac{d(T_H - T_C)}{dt} \right)^{-1}
\]

Using the definition of the **thermal diffusivity** \(\alpha = \frac{\lambda}{\rho C_p}\)

and inserting \(\lambda\) and \(C_p\) from the heat conduction \((dQ/Adt = -\lambda dT/dx)\) and specific heat \((C_p = dQ/\rho ALdT)\) definitions respectively

\[
dt = \frac{-L}{\alpha} \, dx \quad \Rightarrow \quad C_{TE} = \frac{-IL}{S\alpha} \left(\frac{d(T_H - T_C)}{dx} \right)^{-1}
\]

Finally, since \(d(T_H - T_C) = -2dT_c\), and using the heat balance at the cold side we obtain:

\[
\left(\frac{dT}{dx} \right)^{-1}_L = \frac{\lambda A}{I\pi}
\]

\[
C_{TE} = \frac{\rho C_p AL}{2S^2 T}
\]
5. Physical meaning

Thermoelectric capacitance

\[
C_{TE} = \frac{\rho C_p A L}{2 S^2 T}
\]

It also appears in the impedance function:

\[
Z(j\omega) = \frac{S^2 T_i L}{\lambda_{TE} A} \left(\frac{j\omega}{\omega_{TE}} \right)^{-0.5} \tanh \left\{ \left(\frac{j\omega}{\omega_{TE}} \right)^{0.5} \right\} \]

\[
\omega_{TE} = \frac{\alpha_{TE}}{(L/2)^2}
\]

For a p-type leg (1.4 x 1.4 mm\(^2\) and 1.6 mm length)

\[
C_{TE} = \frac{1}{R_{TE} \omega_{TE}}
\]

\[
C_{TE} = \frac{1}{5.83m\Omega \ 2 \text{rad} / \text{s}} = 86 \ F
\]

Far from electrical capacitance
5. Physical meaning

Thermoelectric capacitance

The C_{TE} gives information about the charge separation (reorganisation) process and the Seebeck current appearing in the system.

$$C_{TE} = I \frac{dt}{dV_S} = \frac{I}{S} \left(\frac{d(T_H - T_C)}{dt} \right)^{-1}$$

$$C_{TE} = \frac{\rho c_p A L}{2S^2 T}$$

The physical origin is not well understood yet.
5. Physical meaning

Time constant (τ)

From the impedance analysis:

\[
R_{TE} = \frac{S^2 L}{\lambda A} T
\]

\[
C_{TE} = \frac{\rho C_p A L}{4 S^2 T}
\]

\[
τ = R_{TE} C_{TE} = \frac{(L / 2)^2}{\alpha}
\]

Related with time that heat flow takes to diffuse in the thermoelement

It can also be directly obtained from \(ω_{TE}\)

\[
τ = \frac{1}{ω_{TE}}
\]

Summary and future work

Summary

- Theoretical models for electrical impedance have been presented and analysed in the complex plane.
- Experimental validation has been provided, showing that complete characterisation of the materials can be obtained.
- In addition, the different contributions to the losses in the system can be separated and quantified.
- The physical meaning of parameters obtained from the impedance (R_{TE}, C_{TE} and τ) has been analysed.

Future work

- Develop theoretical models for characterisation under operating conditions (include Joule effect, heat inputs, heat sinks, convection, etc.).
- Further understanding of the thermoelectric capacitance.
- Apply method to nanostructured materials and thin films.
6. Acknowledgements

• European Commission and European Space Agency for financial support under Accelerated Metallurgy project (AccMet NMP4-LA-2011-263206).
• Dr. Gao Min for his support and contribution.
• Dr. Upul Wijayantha and Dr. Matt Carnie to allow initial experimental measurements in their labs.
• European Thermodynamics Ltd as module and materials provider