

Purdue University Seminar - 10th June 2014 -

Impedance spectroscopy methods applied to thermoelectric materials and devices

Jorge García-Cañadas

Cardiff School of Engineering Cardiff University (United Kingdom) jorge.garcia.canadas@gmail.com

<u>Outline</u>

- 1. Introduction
- 2. Impedance spectroscopy fundamentals
- 3. Theoretical background
- 4. Experimental validation
- 5. Physical meaning
- 6. Acknowledgements

Most of the **energy** produced in our society is **lost as heat.** Two examples:

Application	Waste heat
Electrical consumption in our houses from power plants	60% during generation 8 – 15% in transport and transformation ~70% Total losses
In transportation (cars)	40% of energy generated 30% used to cool the engine 70% Total losses (+CO ₂ emissions)

Thermoelectrics have the ability to **convert temperature differences** into **electricity,** i. e., obtain power from wasted heat.

They are called to have a **role in the improvement of the efficiency of** the current **energy system** by harvesting wasted heat.

M. Martín-González, O.Caballero-Calero, P. Díaz-Chao, Renewable and Sustainable Energy Reviews 24 (2013) 288. "Nanoengineering thermoelectrics for 21st century:Energy harvesting and other trends in the field"

Applications

Industries (furnace waste heat), Aerospace (radioisotope), Wireless sensors (ambient heat), Vehicles (exhaust heat), Solar Energy (TE solar devices)

<u>The figure of merit (Z)</u>

The efficiency of a thermoelectric material is given by:

$$\eta = \frac{P_{\max}}{Q_{in}} = \frac{(T_H - T_C)}{T_H} \frac{\sqrt{1 + Z\overline{T}} - 1}{\sqrt{1 + Z\overline{T}} + T_H / T_C}$$

ZT is the figure of merit and indicates **how efficient is a thermoelectric material.**

- High S provides higher open-circuit voltage (charge separation)
- High σ provides higher currents
- Low λ provides higher ΔT

Properties interrelated, difficult to achieve efficient materials

<u>Materials</u>

Thermoelectric materials are typically **highly-doped semiconductors**. A lot of materials are being explored (silicies, skutterudites, oxides, SiGe, Bi₂Te₃, conducting polymers, etc.)

J. R. Sootsman et al. Angew. Chem. Int. Ed. 48 (2009) 8616. New and Old Concepts in Thermoelectric Materials

The task of characterisation

It requires measuring the **variation with T of 3 parameters**: *S*, σ and λ

- Usually **3 different equipments** are required.
- A variety of **home-made techniques** are frequently used, no standard methods are followed.
- **ZT** is usually obtained from the measurement of S, σ and λ and **collects the errors** of all these 3 measurements.
- Thermal conductivity is difficult to measure and involves very expensive equipments.

Home-made hot-probe (Seebeck coeffcient)

4-probe (electrical resistivity, sheet resistance)

Impedance spectroscopy

- A small amplitude sinusoidal voltage wave of certain frequency is applied
- The system responds with a current wave **proportional** to the voltage that can be shifted in time (phase)

The impedance spectrum

Z is obtained for a **range of frequencies** (1 MHz to 10 mHz), obtaining one point in the spectrum per each frequency

Equivalent circuits

The impedance results can be modelled by means of equivalent circuits:

Impedance spectroscopy use

Is a very powerful characterisation technique used in a lot of fields:

solar cells batteries fuel cells supercapacitors corrosion

It allows **separation** and **direct determination** of different **processes** occurring in the devices and under actual **operating conditions**:

Electron/hole transport Lifetime, Recombination Charge transfer reactions Accumulation of charge Diffusion of ions ...

Impedance results for a dye-sensitised solar cell. Fabregat-Santiago et al. ChemPhysChem 13 (2011) 9083

Impedance spectroscopy in thermoelectrics (I)

In the thermoelectric field it has hardly been explored

The work by **Downey et al.** relates the impedance response with equivalent thermal circuits. Reported a **Resistance** (R_1 =2.56 Ω) and **Capacitance** (C_1 =1.72 F) **in parallel** as the main feature of the thermoelectric response.

R₁ and C₁ relate with the **thermal capacitance** and **thermal resistance** of the module respectively.

A.D. Downey, T.P. Hogan, B. Cook, Review of Scientific Instruments, 78 (2007) 93904

Impedance spectroscopy in thermoelectrics (II)

In two papers from **Giaretto et al.** a physical and mathematical description in the context of a **thermal impedance** is provided. They developed a method to **accurately** evaluate the **ZT** in modules.

A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 34901 A. De Marchi, V. Giaretto, Review of Scientific Instruments, 82 (2011) 104904

Motivation for our research

Literature reported is mainly **focused on** the calculation of **ZT** and despite of the previous studies impedance is **not used** as a characterization tool by the thermoelectric community.

In this seminar I will present our research to try to advance this method, focused on:

- The **theoretical models** for **electrical impedance**
 - Analysis of results in the **complex plane**
- Exploitation as a method able to provide **complete TE characterisation** and **quantify** the **losses** of the system

<u>Considerations</u>

- Thermoelectric element with certain area A and length L contacted by metallic contacts of length L_M .
- Adiabatic conditions (no heat exchanged with surroundings).
- All thermal and TE parameters independent on temperature.
- System is **initially at thermal equilibrium** with temperature T_i .
- Joule effect is neglected.

(Blue line indicates T profile of n-type thermoelement at a certain moment in time under an applied positive current)

Impedance function

$$V = IR + S[T(L) - T(0)]$$
$$Z(t) = \frac{V}{I} = R + \frac{S[T(L) - T(0)]}{I}$$
time domain (t)

$$\mathcal{L}{\Delta T} = \theta \quad \mathcal{L}{I} = i_{\theta}$$
$$T(L) - T(0) \rightarrow -2\theta(0)$$

$$Z(j\omega) = R - \frac{S2\theta(0)}{i_0}$$

frequency domain (
$$j\omega$$
)

Т

To know the impedance function we **need to know the T difference** at x=0 as a function of frequency

Solve heat equation

R=ohmic resistance, $\omega = 2\pi f$, *f* is the frequency, $j = \sqrt{-1}$

1. Heat equation with no contact influence

Very thin contact considered ($L_M \rightarrow 0$)

In the thermoelectric material:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha_{TE}} \frac{\partial T}{\partial t} \quad \text{at } 0 < x < L$$

Boundary conditions:

$$-\frac{\pi_0 I_0}{A} + \lambda_{TE} \left(\frac{\partial T}{\partial x}\right)_0 = 0 \quad \text{at x=0 (adiabatic)}$$

 $T(L/2,t) = T_i$ at x=L/2 (heat sink)

 α_{TE} =thermal diffusivity, λ_{TE} =thermal conductivity

1. Heat equations with no contact influence

Equations converted to the frequency domain

1. Heat equations with no contact influence

Solution to the differential equation

After applying the boundary conditions:

$$\theta(0) = -\frac{\pi_0 i_0 L_H}{\lambda_{TE} A} \left(\frac{j\omega}{\omega_{TE}}\right)^{-0.5} \tanh\left\{ \left(\frac{j\omega}{\omega_{TE}}\right)^{0.5} \right\}$$

1. Heat equation with no contact influence

The impedance function after using $T(x=0) \approx T_i$ and $\pi_0 = ST_i$ is given by:

$$Z(j\omega) = R + \frac{S^2 T_i L}{\lambda_{TE} A} \left(\frac{j\omega}{\omega_{TE}} \right)^{-0.5} \tanh\left\{ \left(\frac{j\omega}{\omega_{TE}} \right)^{0.5} \right\}$$
• at $\omega >> \omega_{TE}$

$$Z = R + \frac{S^2 T_i L}{\lambda_{TE} A} \left(\frac{j\omega}{\omega_{TE}} \right)^{-0.5} \text{ (1-slope, Warburg)}$$
• at $\omega << \omega_{TE}$ and R=0
$$Z^{-1} = \frac{1}{R_{TE}} + \frac{1}{3} \frac{j\omega}{R_{TE} \omega_{TE}} \text{ (semicircle)}$$
It can provide all thermal constants If S is known
(simulation for Bi₂Te₃ element 1 mm² area and 1.5 mm length)

2. Heat equation with contact influence

Heat conduction and absorption by the metallic contacts have to be considered

In the metal:

 α_{M} =thermal diffusivity, λ_{M} =thermal conductivity

2. Heat equations with contact influence

Solution to the differential equations

Impedance function given by

$$Z = R + \frac{2S^2 T_i}{A} \left(\frac{1}{Z_{th,TE}^{-1} + Z_{th,M}^{-1}} \right)$$

2. Heat equation with contact influence

The impedance function assuming no heat conduction in TE element $\lambda_{TE} \approx 0$

$$Z = R + \frac{2S^2T_i}{A} \frac{L_M}{\lambda_M} \left(\frac{j\omega}{\omega_M}\right)^{-0.5} \operatorname{coth}\left\{ \left(\frac{j\omega}{\omega_M}\right)^{0.5} \right\}$$

• at $\omega >> \omega_M$ and R=0

$$Z = \frac{2S^2T_i}{A} \frac{L_M}{\lambda_M} \left(\frac{j\omega}{\omega_M}\right)^{-0.5}$$
 (1-slope, Warburg)

• at $\omega << \omega_M$ and R=0

$$Z = \frac{1}{3}R_{M} + \frac{R_{M}\omega_{M}}{j\omega} \qquad \text{(vertical line)}$$

16

(simulation for Cu contact with 1 mm² area and 0.2 mm length)

2. Heat equation with contact influence

Impedance spectroscopy

- An impedance analyser equipment (potentiostat) was used.
- The sample is suspended by **Cu probes** to provide adiabatic conditions and a thin **contact** is formed with **Ag paint**.

4. Experimental validation

<u>Bi₂Te₃ thermoelement (1.4 x 1.4 mm², 1.6 mm length)</u>

Parameter calculation using S=175 μ V/K (hot-probe)

$$\lambda_{TE} = \frac{S^2 T_i L}{R_{TE} A} = 1.27 \ W / mK$$

$$\alpha_{TE} = \frac{(L/2)^2}{\omega_{TE}} = 0.013 \ cm^2 / s$$

$$C_{pTE} = \frac{\lambda_{TE}}{d\alpha_{TE}} = 0.13 \ J / gK$$

Low since contains wires and contact resistances

(Impedance spectrum from 70 to 0.04 Hz)

 $ZT = \frac{R_{TE}}{2}$

It can provide all thermal constants in a ~5 min measurement If S is known

4. Experimental validation

Bi₂Te₃ thermoelement with Cu/ceramic contacts

(Impedance spectrum from 100 to 0.01 Hz)

- Cu effect can be neglected (very small thickness) and ceramic is 1 mm thick.
- In agreement with shape predicted.
- High frequency part is noisy due to $\mu\Omega$ variations, close to equipment limitation.
- Not possible to fit to equivalent circuit.
- Improvement can be gained by increasing ceramic thickness or using lower thermal conductivity contacts.

4. Experimental validation

Thermoelectric module (254 legs, 1 x 1 mm², 1.5 mm length)

J. García-Cañadas, G. Min, Impedance spectroscopy models for the complete characterization of thermoelectric materials, *J. Appl. Phys.* (Submitted)

The thermoelement at steady state

For a thermoelement (same assumptions) but **now considering Joule effect**, the solution to the steady-state heat balance equation at the cold side is given by:

Thermoelectric resistance

We define a thermoelectric resistance as

It matches the impedance function at steady-state when Joule effect is neglected:

The **applied voltage** generates a **drift current** given by the ohmic resistance (R) of the system

Due to **Peltier a T difference** appears and carriers redistribute generating the opposed **Seebeck voltage**

 R_{TE} accounts for the losses of the system introduced by the thermoelectric effects

Thermoelectric capacitance

Can be defined using the Seebeck voltage definition $(dV_s = Sd(T_H - T_C))$

$$C_{TE} = I \frac{dt}{dV_S} = \frac{I}{S} \left(\frac{d(T_H - T_C)}{dt} \right)^{-1}$$

Using the definition of the **thermal diffusivity** $\alpha = \frac{\lambda}{\rho C_n}$

and inserting λ and C_p from the heat conduction ($dQ/Adt = -\lambda dT/dx$) and specific heat ($C_p = dQ/pALdT$) definitions respectively

$$dt = \frac{-L}{\alpha} dx \quad \longrightarrow \quad C_{TE} = \frac{-IL}{S\alpha} \left(\frac{d(T_H - T_C)}{dx} \right)^{-1}$$

Finally, since $d(T_H - T_C) = -2dT_c$, and using the heat balance at the cold side we obtain:

Thermoelectric capacitance

It also appears in the impedance function:

Thermoelectric capacitance

The C_{TE} gives information about the **charge separation** (reorganisation) process and the **Seebeck current** appearing in the system

The physical origin is not well understood yet

<u> Time constant (τ)</u>

From the impedance analysis:

$$R_{TE} = \frac{S^{2}L}{\lambda A}T$$

$$C_{TE} = \frac{\rho C_{p}AL}{4S^{2}T}$$

$$\tau = R_{TE}C_{TE} = \frac{(L/2)^{2}}{\alpha}$$

Related with time that heat flow takes to diffuse in the thermoelement

It can also be directly obtained from $\omega_{\mbox{\tiny TE}}$

$$\tau = \frac{1}{\omega_{TE}}$$

J. García-Cañadas and G. Min. *Low frequency impedance spectroscopy analysis of thermoelectric modules.* Journal of Electronic Materials 43, 2411-2414 (2014).

<u>Summary</u>

- Theoretical **models** for **electrical impedance** have been **presented** and analysed in the **complex plane**.
- Experimental validation has been provided, showing that complete characterisation of the materials can be obtained.
- In addition, the different contributions to the losses in the system can be separated and quantified.
- The **physical meaning** of parameters obtained from the impedance (R_{TE} , C_{TE} and τ) has been analysed.

Future work

- Develop theoretical **models** for characterisation under operating conditions (include Joule effect, heat inputs, heat sinks, convection, etc.).
- Further understanding of the **thermoelectric capacitance**.
- Apply method to nanostructured materials and thin films.

6. Acknowledgements

- European Commission and European Space Agency for financial support under Accelerated Metallurgy project (AccMet NMP4-LA-2011-263206).
- Dr. Gao Min for his support and contribution.
- Dr. Upul Wijayantha and Dr. Matt Carnie to allow initial experimental measurements in their labs.
- European Thermodynamics Ltd as module and materials provider

Cardiff School of Engineering Cardiff University (United Kingdom) jorge.garcia.canadas@gmail.com Personal website www.jgarciacanadas.blogspot.com

Thank you.