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Part I : Introduction 

A crystal or crystalline solid is a solid material whose constituent atoms, molecules or ions et 

cetera are arranged in an ordered pattern extending in all three spatial dimensions. In addition 

to their microscopic structure, large crystals are usually identifiable by their macroscopic 

geometrical shape, consisting of flat faces with specific, characteristic orientations. 

Crystals actually have a huge number of uses in science. The biggest application of crystals in 

science is the basis for all microelectronics. Nowadays, every chip contains about one billion 

transistors which are all made from crystal materials. Besides, crystals are also very important 

in biological science, material science, optics and so on. 

In order to explore various properties of crystal materials, it is essential to have a clear 

understanding of the crystal structure, and other basic concepts like unit cell, Bravais vector, 

miller plane et cetera. The Crystal Viewer tool is developed exactly for this purpose. The version 

3.0 has a significant upgrade based on the 2.3.4 version and hopefully it can become a useful 

tool for your study and research. 

 

Part II : Preparation 

Unit cell 

Simply stated, a unit cell is a small portion of any given crystal that can be used to reproduce 

the crystal. To help establish the unit cell concept, let us consider the two-dimensional lattice 

shown in Fig 1. In order to describe this lattice or to totally specify the physical characteristics of 

this lattice, one need only provide the unit cell shown in Fig 2. As indicated in Fig 3, the original 

lattice can be readily reproduced by merely duplicating the unit cell and stacking the duplicates 

next to each other in an orderly fashion.  

 

 

a)   

Figure 1                                   Figure 1                               Figure 3                                          Figure 4 

 
 

http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Ion
http://en.wikipedia.org/wiki/Order_and_disorder_(physics)
http://en.wikipedia.org/wiki/Spatial_dimensions
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The relationship between a given unit cell and the lattice it characterizes can be more precisely 

described in terms of basis vectors. If  ⃗ vector of length a parallel to the a-side of the unit cell, 

and  ⃗⃗ is a vector of length b parallel to the b-side of the unit cell (see Fig 4), then equivalent 

points of a two-dimensional lattice will be separated by   ⃗ =   ⃗ +   ⃗⃗  where h and k are integers. 

Hence, the lattice can be constructed by duplicating the unit cell and translating the duplicates   

 ⃗ =  ⃗,  ⃗ =  ⃗⃗,  ⃗ =  ⃗ +  ⃗⃗  etc., relative to the original. Note that unit cells are not necessarily unique 

and a unit cell need not to be primitive (the smallest unit cell possible). 

Semiconductor crystals are usually three-dimensional and are therefore described in terms of 

three-dimensional (3-D) unit cells. In Fig 5, we have pictured the simplest of all 3-D unit cells-

namely, the simple cubic unit cell. It should be noted that only 1/8 of each corner atom is 

actually inside the cell, as pictured in Fig 6 (since the repetition of the unit cell cannot overlap). 

One could of course construct the lattice using the translation vectors  ⃗ =   ⃗ + k ⃗⃗ +   ⃗, where   ⃗, 

  ⃗⃗, and  ⃗ are basis vectors and h, k, and I are integers. 

 

 

 

 

 

 

 

The Lattice and the basis 

The crystal can be thought of as consisting of two separate parts: the lattice and the basis. The 

lattice is an ordered arrangement of points in space, while the basis consists of an arrangement 

of atoms which is repeated at every point in the lattice to build up the crystal structure. A good 

analogy is patterned wallpaper. The basis is like a motif on the wallpaper and the lattice would 

be periodic pattern of points on which of the motif is repeated. In Figure 7, the lattice points 

correspond with the center of the basis, but this does not have to be the case. 

 

 

 

 

 

a) AC analysis: Performs time-dependent small-signal dynamic simulation on the actuator. There are a total  

 

Figure 5                                                                                           Figure 6 

 
 

Figure 7                                                                                            
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The Fourteen Bravais Lattices 

The ways in which we can specify the lattice points in space and keep translational symmetry is 
limited. In 1848, Auguste Bravais demonstrated that there are in fact only fourteen possible 
point lattices and no more. For his efforts, the term Bravais lattice is often used in place of point 
lattice. 

Table 1 lists all 14 Bravais lattices and their restrictions. Note that for 2-dimensional, there are 5 
possible lattices. Note again that every blue dot here is not necessarily an atom; in fact it can 
also be any possible arrangement of multiple atoms. 

 
    

 

                 

  

 

Table 1                                                                                           

 

http://britneyspears.ac/physics/crystals/bravais.htm
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Miller Indices and Notation 

Miller Indices are used to identify planes of atoms within a crystal structure. Miller indices are 
written as three digits between brackets, (100) for example. Given the intercepts of the plane 
with the crystallographic axes, (directions of the lattice vectors), joining the intercepts with lines 
defines a plane which cuts through the crystal. The Miller indices are then calculated by taking 
the reciprocal of the intercepts and multiplying them by their highest common factor. Negative 
numbers are represented by placing a bar over the top of the digit. If this sounds at all 
complicated, it is easily illustrated with a few examples. If the intercept is at infinity, then the 
plane is parallel to that axis and the Miller index is zero, since, 1/      =0. 

 

 

 
 
 

 

The diligent reader may have noticed that due to the symmetry of the unit-cell of the lattice, 
certain planes are equivalent. In the cubic lattice, for example, (100) is equivalent to five other 
planes, (010), (001), (100), (010), (001) and to acknowledge this, the set of Miller indices is 
written {100} which means the set of (100) planes equivalent by virtue of symmetry. The 
beauty of this system is that similar planes can be identified in any of the Bravais lattice point 
groups. The Miller indices are also similar in the way in which planes are described in 
mathematical terms. 

A common shorthand notation to show the lattice vector directions is to write the three vector 
components coefficients in square brackets [uvw] where u, v, and w are integers. It is 
important not to confuse these with Miller indices. The direction is then 

 ⃗⃗ =   ⃗ + v ⃗⃗ +   ⃗ 

Equivalent directions are designated using angled brackets <uvw>. 

  

Figure 8                                                                                         
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Part III : Tool usage 

View a material 

To view an available material, first select “view a material” and then select one of the available 
crystal structures in the Crystal structure section (as in Fig 9).  When the crystal structure is 
selected, go down to the Material section and select a material in the list (as in Fig 10). 

 

 

 

 

 

 

Specify the dimension of the crystal lattice and the Bravais vector (as in Fig 11). 

  

 

 

 

 

 

The option “Use primitive Bravais vector ” remains off in default which means the conventional 
Bravais vector is used. Toggle it on to use the primitive Bravais lattice. Both conventional and 
primitive Bravais vectors are shown for every material in the picture in the Bravais vector 
section. Figure 12 gives an example for GaAs. 

 

 

 
 
 
 
 
 
 
 
  
  

Figure 9                                                                                       Figure 10                                                                    

 

Figure 12                                                                                                                                       

 

Figure 11                                                                                                                                         
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For Graphene/Graphite and carbon nano tube, the dimension setting is different from other 
materials.  

 

Graphene/Graphite 

  

 

  

 

  

 

Here Lx and Ly are the translation along X and Y axis. 

 

CNT 

 

 

 

 

 

Here one needs to set the chiral vector. We provide a detailed explanation right below for 

people who don’t know what the chiral vector is. 

 

 

 

 

 

 

 

Figure 13                                                                                                                                      

 

Figure 14                                                                                                                                      

 

Figure 15                                                                                                                                     
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Example  

Let’s view a 3 by 3 by 3 AlP using conventional Bravais vector. After the simulation is finished, 
the tool will show the basis and the lattice grid. You can view each of them by selecting in the 
Result list. 

 

 

 

 

 

 

 

 

 

 

 

   

Click to open the menu 

Figure 17 

 

Figure 16                                                                                                                                     
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By opening the menu on the right, you can zoom in and out, show atom labels. You can also 
change the atom scale and the bond scale and the opacity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 

 

Moreover, you can choose different representation.  

 

 

 

                                                                             Figure 19    

For example, the space filling model 
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Besides, you can also choose different atom radii model.  

  

 

 

 

Figure 21 

 

 

Figure 22 is atomic model and Figure 23 is VDW model 

 

 

 

 

 

 

 

Figure 22                                                                         Figure 23 

 

 

 

View a Bravais lattice 

To view one of the 14 3-dimensional Bravais lattice, first select “view Bravais lattice” and then 
choose one of the 7 crystal systems in the Crystal system section and then select the available 
Bravais lattice. 

 

 

 

 

 

Figure 24                                                                                     Figure 25 
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Then you need to set the parameters for this type of Bravais lattice and the dimension of the 
lattice grid. 

 

Example 

Let’s view a 3 by 3 by 3 hexagonal Bravais lattice. For hexagonal Bravais lattice, we need to set 
the length of a and c. 

 

 
 
 
 
 
 
 
 
 
 
  
 

Figure 25                                                           Figure 26                               
 
 
 

Creat your own material 

In “view a material”, there contains finite number of crystal materials. The idea of “user-defined 
crystal” aims to allow  
   1. viewing all materials which have periodical structure  
   2. building crystal structure even not exists in nature 
  

For doing that, you need to define: 
   1. The number of atom in the basis 
   2. Coordinate (x, y, z) for every atom in the basis 
   3. Material for every atom in the basis 
   4. Bravais vector a1, a2 and a3 
   5. Dimension of the lattice grid 
   6. Bond radius (the bond radius means the distance under which a covalent bond will be 

created between two atoms)                                                        
 
 
 
 

If your previous simulation was 
for viewing a material, you had 
two results which are the basis 
and the lattice grid. Then now 
you must choose Bravais 
lattice in the result list to view 
the bravais lattice because for 
a Bravais lattice simulation the 
basis and the lattice grid is 
empty. 
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Example 
Let’s view Polonium which is not contained in our material database. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 27 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 
  
 
Thus we created the Polonium lattice grid as in Fig 29. 
 
 
 
 
 
 
 
 
 
 
 
 

Polonium has a simple cubic crystal structure. 
Thus we set 1 basis atom number and set the 
position at (0, 0, 0). For atom type we choose 
Po in the periodic table. 

Then we set the Brvais lattice, the bond 
radius and the dimension. 
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You can use this option to create other materials that are not in our database. Besides, you are 
also allowed to create your own “crazy” crystal as long as you set the data properly. Fig. 30 
shows a user-defined crystal that does not exist in nature. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30 
 
 
 

 
 

Miller plane 

To draw miller planes, toggle on the option “Draw miller plane”. Note that miller plane is not 
allowed for Bravais lattice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31 
 



 
13 

When toggled on, the miller plane setting menu will automatically show up. 
 

 
 

 
 
 
 
 

      Figure 32 
 
You can set the miller indices (h, l, k) from 0 to 7. 
The size and the shape of the plane will change according to the size and the shape of the 
lattice grid. 
 
 
 
 
 
 
 
 
 
 

Figure 33                                            Figure 34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35                                                               Figure 36 
  
 
  
 

Plane size changed for 
different lattice grid size 

Plane shape 
changed for 
different miller 
indices 
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To shift the plane, toggle on the option “Manually set plane 1 intersection point”. The menu for 
setting the intercept points will pop up automatically 
 
 
 
 
 
 
 

 
 
 
 

Figure 37 
Select one of the 3 axes and then set the intercept point. The miller plane will cross the 
intercept point you set. 
 
If you want to draw more than one plane, simply go to menu Plane 2 and Plane 3. The Miller 
planes will be plotted in different colors. Fig 38 shows a (1, 1, 1) plane and a (1, 1, -1) plane in a 
silicon lattice grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 38   
 
Together with a miller plane, we also provide views for the crystal on only one side of the plane. 
To view it, select “Crystal on one (the other) side of plane 1” in the result list. 
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Figure 40 shows an example for the (1, 1, 1) plane in silicon lattice grid. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 40 
 
For every dangling bond cut by the plane, we use a hydrogen atom to terminate the bond. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 41                                                                                                     Figure 42 Hydrogen atom 


