Structure and Morphology of Silicon-Germanium Thin Films

B. G. Demczyk-Air Force Research Laboratory SUNY, Stony Brook

Collaborators:

D. Bliss – Air Force Research Laboratory A. King - SUNY, Stony Brook

Island Formation

- Significance:
 - Critical to growth of multilayer stacks
 - Of interest as self-assembling arrays

Island Formation

- Interest Areas:
 - Growth under tensile and compressive strain
 - Growth on (Si, Ge) (001) and (111)
 - Local lattice deformation in film

SiGe Strained Layer

Planar w/dislocations. h_c = critical thickness for dislocation formation =(b/f)[ln(hc/b) + 1], (b = Burger's vector)

Band Offset

Thin Film Growth: UHVCVD

 $Z_{i} = N_{a}/2\pi M_{i} \text{ kbT}^{-1/2} p_{I}$

 $Z_i =$ flux of species, i, $p_i =$ partial pressure $M_i =$ molar mass of species, i $N_a =$ Avogadro's number $k_b =$ Boltzman's constant T = absolute temperature

Depositions Made:

substrates: Si and Ge (100) and (111) compositions: Si, Ge and Si 0.5Ge 0.5 substrate Ts = 600 C thickness ~ 100 nm

Alloy Thin Film Synthesis: Kinetics

Fluxes, Z: Z _{SiH4} = A(M _{SiH4} T)^{-1/2} p _{SiH4}

N = active site density, k = decomposition rate constant M_i = molar mass p = partial pressure A = constant

 $Z_{GeH4} = A(M_{GeH4} T)^{-1/2} p_{GeH4}$

Growth rate, R: R ~ N(k_{Si} Z _{SiH4} + k_{Ge} Z _{GeH4})

 $\begin{aligned} & \text{Germanium fraction, x:} \\ x = R_{Ge} / (R_{Ge} + R_{Si}) = [1 + ((M_{GeH4} / M_{SiH4})^{1/2} (s_{SiH4} / s_{GeH4}) (p_{SiH4} / p_{GeH4}))]^{-1} \\ & = 1 / [(1 + 1.545) (s_{SiH4} / s_{GeH4}) (p_{SiH4} / p_{GeH4})]^{-1} \\ & 1.545 = (M_{GeH4} / M_{SiH4})^{1/2} \\ & \text{empirical, from Reference 4} \end{aligned}$

Technique Summary

Sampling Regime:	~1 µm	100 nm	1-10 nm
Technique:	AFM	RHEED	EM/HREM
Gauges:	3D asperity size	Crystal "quality"	Character of interface
via:	Surface roughness	In-plane spacing	Local lattice parameters

RHEED Basics

(Si,Ge) Surface- (001)

-"smoother" (streaks) along <110> - spacings: <110> "symmetric" a/4, <100> asymmetric √2/2 - Si/Si(001): less rough

Si/Si(001)

Ge/Ge(001)

- Si/Ge(001): <110> elongated spots
- Ge/Si(001): maxima more discrete than Ge/Ge(001)
 - Alloy films: elongated spots

Ge/Si(001) → Si/Ge(001)

<001> <110>

SiGe/Si(001) \rightarrow SiGe/Ge(001)

HREM Fundamentals

		In-Situ
	0	F (specimen periodic potential)
Min A	Specimen	\downarrow
	Objective	diffraction pattern
	Lens	
		Inverse F
N Y Y Y Y	Diffraction	\downarrow
NMM	Pattern	structure (atomic) image
1 XXXXX VI		
		Ex-Situ
	Atomic in	hage \rightarrow CCD Camera \rightarrow Diffraction pattern
		(Fis Fourier transform)
	Image	
Schematic Represen after Reference 8	ntation	

AFM Basics

(Si,Ge) Morphology- (001)

Interface-Zero Strain-(001)

defect-free

Interface-Maximum Strain-(001)

films in compression \rightarrow surface undulations

films in tension \rightarrow more defects-

Details of Strained (001) Interface

Roughness related to the presence of dislocation structures.

Interface-SiGe- (001)

steeply faceted islands

(Si,Ge) Surface-(111)

Ge/Ge(111): streaked RHEED maxima

Si/Si(111): general surface roughness

Ge/Ge(111): large scale mesa coverage

- R_a larger since RHEED samples the smooth <u>mesa</u> surface

(Ge/Si (111)): smoother than Si/Ge(111)

- Ge/Si(111) consists of large scale plateaus,
- Si/Ge(111) displays general surface roughness

<110> <112>

SiGe/Si(111) ← SiGe/Ge(111)

Alloy films on Si (111) and Ge(111)) are virtually indistinguishable

(Si,Ge) Morphology–(111)

(111) Substrates

HREM Film-Substrate Mismatch of (Si,Ge) Films

lattice parameter ↑ from substrate to bulk deposit value within islands

	(001) Substrates	<u>(111) Substrates</u>
Zero Strain Samples		
Ge/Ge	.007	
Maximum Strain Samples		
Ge/Si	.045	
Si/Ge	.032	
<u>Alloys</u>		
SiGe/Si	.041	.035
SiGe/Ge	.012	.011

Summary of Observations: Substrate Mismatch of (Si,Ge) Films

Ge/Si(001): higher strain (4.5%) than the Si/Ge(001) (3.2%) → tetragonal strain (film constrained to match the substrate along the interface.

Si/Ge(001): high density of defects, which relieve a portion of the 4.5% strain

Alloy films: same mismatch on both (100) and (111)

Larger mismatches for alloys deposited on Si (3.5-4%), than Ge (~1%) →evidence for a Ge-rich alloy composition at start of growth (stress-driven diffusion)

Si/Si	Ge/Si (I)	Alloy/Si (I)
Si/Ge (P)	Ge/Ge	Alloy/Ge (I)
Si/Alloy (P)	Ge/Alloy (P)	Alloy/Alloy (I or P)
I-island formation P-planar layer		

RHEED Surface Mismatch (e) with Bulk of (Si,Ge) Films

 films adopt equilibrium spacings irrespective of substrate or orientation (completely relaxed)

	(001) Substrates		<u>(111) Substrates</u>	
	e _{Si}	e _{Ge}	e _{Si}	e _{Ge}
Zero Strain Samples				
Ge/Ge		009		010
<u>Maximum Strain</u> <u>Samples</u>				
Ge/Si	.052	007	.036	006
Si/Ge	012	052	006	047
<u>Alloys</u>				
SiGe/Si	.017	024	.036	006
SiGe/Ge	.026	015	.025	016

Photoluminescence

it in a state of compression and this is manifested in the PL spectrum

Morphologies Observed

Proposed SiGe Multilayer Quantum Dot

a		6
α.	Alloy	d. Alloy
	— i	—— p
	Si	Ge
	— р	— р
	Alloy	Alloy
	— i	— р
	Si	Ge
	— р	— р
	Alloy	Alloy
-		

Promote dislocation -free, island growth in materials with bandgaps of interest

Si Substrate

Si Substrate

Via a low σ deposit (Ge or a SiGe alloy) grown on Si (or alloy on Ge), forming islands – (σ is surface energy)

Figure References

1). R. Turton, The Quantum Dot, Oxford University Press, New York, 1995, pp. 136-154.

- 2). S. C. Jain, Germanium-Silicon Strained Layers and Heterostructures., Academic Press, New York, 1994, p. 8.\
- S. Christiansen, M. Albrecht, H. Michler and H. R. Strunk, in Strained Layer Epitaxy-Materials, Processing and Device Applications, Materials Research Society Symposium Proceedings, V. 379, E. A. Fitzgerald, J. Hoyt, K.-Y Cheng and J. Bean, eds., Materials Research Society, Pittsburgh, PA (1995), p. 357.
- 4). D. W. Greve, "GexSi1-x Epitaxial Layer Growth and Application to Integrated Circuits", in Physics of Thin Films, Vol. 23, pp. 1-82, M. Francombe, ed., Academic Press 1997.
 - 5). J. C. Bean, Proc. IEEEE. Kasper, J. Cryst. Gwth. 80, 571 (1992).
 - 6). S. Elagoz, PhD Dissertation, University of Michigan Department of Physics, 1993, p. 24.

7). ibid, p.31.

8) R. Gronsky, unpublished.

9). http://web.tiscali.it/decartes/phd_html/node5.html

10). R. Howland and L. Benatar, A Practical Guide to Scanning Probe Microscopy , Park Scientific Instruments, Sunnyvale, CA 1996, p. 6.

11). J. Hornstra, J. Phys. Chem. Sol. 5, 129 (1957).

12). P. M. Maree, J. C. Barbour, J. F. van der Veen, K. L. Kavanagh, C. W. T. Bulle-Lieuwma and M. P. A. Viegers, J. Appl. Phys.62(11), 4413 (1987).

13). http://www.cnx.org/contents/ba27839d-5042-4a40-afcf-c0e6e39fb454@20.16/Physical_Methods_in_Chemistry

Summary-SiGe Growth

 minimization of surface energy controls initial film coverage of substrate
→ (111) surface area maximized

-islands relieve strain → lattice parameters ↑ near top of island → compete with dislocation formation

- islands reduce surface energy → form even with zero strain

- tensile stress favors dislocations

- 2D to 3D growth transition depends on: energy difference, misfit & modulus

Acknowledgements

Air Force Research Laboratory:

Thin Film Growth – T. Crumbaker, L. Henry PL – K. Vaccaro AFM – P. Yip

MIT Lincoln Laboratory

HREM – P. Nitishin

This work was supported by a U.S. Air Force Palace Knight Fellowship.