Online simulations via nanoHUB: Molecular dynamics simulation of melting

In this tutorial:

- Setup an MD simulation for bulk Aluminum
- Increase the system temperature with time to study melting
- Explore melting in an Al nanoparticle

Ale Strachan <u>strachan@purdue.edu</u> School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA

STEP 1: launch the nanoMATERIALS tool

From your *My HUB* page launch nanoMATERIALS

קוק

NANOHUB

PURDUE

STEP 2: setup the atomistic simulation cell

STEP 2: setup the atomistic simulation cell

- Al unit cell
 - 4-atom cubic fcc cell:

- Supercell:
 - Replicate 5 times in each direction
 - Total number of atoms: 4x5x5x5 = 500

One large cell with 500 atoms (no internal boundaries)

Simulation cell will be infinitively periodic with no free surfaces

© Alejandro Strachan – Online simulations: melting of Al

STEP 3: setup the run parameters

From the Driver Specification tab of the tool

- NPT ensemble
 - Control temperature & pressure
- Timestep to solve equations of motion: 0.002 ps (2 fs)
- Number of MD steps 30,000
 - Total simulation time: 30,000x0.002ps=60 ps
- Temperature
 - Start simulation at room temp
- Temperature increment
 - 30 K/ps
 - Temperature increase during run: 60ps x 30K/ps = 1800
 - Final temperature: 1200 K + 300 K = 2100K

nano-Materials Summation Toolkit
Input Model Energy Expression Driver Specification Advanced Opt
Ensemble: NVT
MD time step: 0.002ps
Number of steps: 30000
Temperature: 👝 300K
Temperature increment (K/ps): 30
Strain per MD step
X direction: 0
Y direction: 0
Z direction: 0
Periodic tasks
Write to energy file (steps): 25
Write to trajectory (steps): 1000
Atomic structural analysis: • m no
Cutoff distance: 3.4
Update neighbor list (steps): 10

STEP 3 (cont.): setup the run parameters

From the Driver Specification tab of the tool

- Do not strain the simulation cell
 - Barostat will take care of thermal expansion and keep pressure at 1 atm.
- Periodic tasks:
 - Write thermodynamic info every 25 steps
 - Write atomic snapshot for viz. every 1000 steps
- Run the simulation

Simulate

- Simulation will take approximately 10 mins
- Think about what you expect to obtain

- 1	nano-Materials Simulation Toolkit	
	Input Model Energy Expression Driver Specification Advanced C	pt∆
	Ensemble: NVT	Ĩ
	MD time step: 0.002ps	
	Number of steps: 30000	
\mathbf{N}	Temperature: 👝 300K	
	Temperature increment (K/ps): 30	
	Stain per MD step	
	X direction: 0	
	Y direction: 0	
	Z direction: 0	
	Periodic tasks	
	Write to energy file (steps): 25	
	Write to trajectory (steps): 1000	
	Atomic structural analysis: 💿 페 🔄 no	
1	Cutoff distance: 3.4	
	Update neighbor list (steps): 10	∇

new input parameters

About this tool

Questions?

STEP 4: explore the results interactively

Temperature vs. time shows expected increase

Potential energy and volume jump up right after 40 ps (T~1500 K)

STEP 4: explore atomic configurations

You can also visualize an animation of the trajectory

© Alejandro Strachan – Online simulations: melting of Al

Discussion and assignment – Part 1

- Melting is marked by an abrupt increase in potential and total energy (this is due to the latent heat of fusion)
- Estimate the temperature at which the system melts and compare it with the experimental melting temperature of Al (930 K)
- Discuss possible origins for any discrepancy you find
 - Think about equilibrium melting temperature and the temperature at materials melt and solidify
- Now we will study the melting of an Al nanoparticle

STEP 5: create a spherical nanoparticle

We will *carve* a sphere out of a larger simulation cell

NANOHUB

PURDUE

- Previous simulation volume: (4.02 x 5 Å)³
- Sphere radius (equivalent volume): 12.47 Å

STEP 5: create a spherical nanoparticle

Input Model Tab Start with 10x10x10 supercell

Input Model	Energy Expression Drive	r Specification	Advanced Option Δ		
Input model: A	I_unitcell.bgf				
. ,	-				
Create Supercell					
a direction: 1	D				
b direction: 1	D				
c directions 1	D				

Advanced Options Tab Energy Expression Driver Specification Advanced Options Input Model Add the following to Advanced Script Advanced Script text box Commands: # # Define a sphere of radius 12.47 Angstroms # Select the atoms within the sphere # Invert the selection (all atoms outside the sphere) # Delete selected atoms SELECT/SPHERE/RAD OUT 12.47 SELECT/SELECT SELECT/INV SELECT/DEL האה PURD NANOHUB © Alejandro Strachan

STEP 5: create a spherical nanoparticle

- Run is the same as before except for:
 - The simulation cell volume will be kept constant
 - Select NVT in Ensemble

NANOHUB

Input Model Energy Expression Driver Specification Advanced Option
Ensemble: NVT
MD time step: 0.002ps
Number of steps: 30000
Temperature: 👝 300K
Temperature increment (K/ps): 30
Strain per MD step
X direction: 0
Y direction: 0
Z direction: 0
Periodic tasks

- We have a sphere inside a large simulation box
- The size (volume) of the simulation box will be constant
- The sphere can expand inside the box

Run the simulation with the new setup

STEP 6: analyze nano particle melting

STEP 6: melting of a nano particle

- 20 ps 300 K + 30 K/ps x 20ps = 900 K
- Still solid but it has transformed in shape
- Facetted shape

- 28 ps 300 K + 30 K/ps x 28ps = 1140 K
- Particle has melted

Discussion and assignment – Part 2

- At what temperature does the nano particle melt?
- Compare the melting of the nanoparticle with the bulk. Explain any differences.
- Why does the nanoparticle transform in shape before melting
- Open question: Does the decrease of melting temperature in nanoparticles have practical implications? Think about sintering

With the tool you can create models for other materials and geometries and study their melting

