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Predictive science & materials modeling 
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• Predict materials performance from first principles 
• Design and optimize new materials, understand their behavior under 

conditions where experiments are difficult to perform 
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Materials are everywhere 
Structural materials 
http://www.boeing.com/commercial/787family/ 

Nanoelectronics “The High-k Solution”, Bohr, Chau, Ghani, 
and Mistry http://www.spectrum.ieee.org/oct07/5553 

Pharmaceuticals 
Kwong, Kauffman, Hurter & Mueller 
Nature Biotechnology, 29, 993 (2011) 

http://www.spectrum.ieee.org/oct07/5553
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Materials at molecular scales 

Molecular materials 
Ceramics & semiconductors Metals 
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Fundamental theory 

• Late 1500’s to early 1800’s: Classical mechanics 
Galileo, Newton, Legendre, Hamilton, … 

 
• Second half of 1800’s: Statistical mechanics 

Gibbs, Maxwell, Boltzmann, … 
 

• 1905-1926: Quantum mechanics 
Plank, Bohr, Dirac, Schrödinger, Dirac, … 

 

Hamilton Maxwell Boltzmann Schrödinger Dirac 
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Predictive simulations 

• 1957: Molecular dynamics 
Alder and Wainwright 
 

• 1964-1965: Density functional theory 
Kohn, Hohenberg, Sham: density functional theory 

 
• 1980’s-present: Predictive simulations 

Extensions to classical mechanics 
Accurate approximations for DFT 
Accurate interatomic potentials for large-scale MD 

 



Basic physics & approximations 
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Force between atoms originates from the electronic structure 
Time independent Schrodinger Eq. 

Dynamics of atoms: 
Classical (Newton’s) mechanics 



Electronic and atomic processes 
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Initial condition 

Time evolution 

Energy & forces 



Molecular dynamics 
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Initial conditions 

Compute energy & forces 

Integrate Eqs. of Motion 



So … what is MD? 
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Follow the dynamics (motion) of all the atoms in your material 

Numerically solve classical equations of motion (Newton’s): 
Approximation 

Forces on atoms come from the interaction with other atoms: 

Approximated  
(in almost all cases) 

Total potential energy 
• Eigenvalue in the time-independent Schrodinger Eq. 
• An empirical potential energy function 

or 



Predicting the future with MD 
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Euler method 

Verlet algorithm: Taylor expansion of positions with time 

Sum two equations:  



 
 

Simple MD simulations 
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Nano-engineering to control thermal transport 
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Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).  
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Role of size and interfaces 
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Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).  
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Role of superlattice period 
• Decreasing SL period reduced thermal conductivity up to a minimum size 
• Further reduction increases k (phonons see material as homogeneous) 
Role of specimen length 
• Reducing specimen length affects the thin film SL’s more dramatically 
• For small specimens thin film SL’s can have lower thermal conductivity of 

their nanowire counterparts  

Specimen length 
105.87 nm 
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Nano-engineering for mechanical response 
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Deformation of a polycrystalline metal 

Hojin Kim and A. Strachan, unpublished grain size (nm)
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Platinum yield stress vs. grain size 



Nano-engineering energetic materials 

Attractive properties 
• High-energy density 
• Significant ability to tune properties via micro- 

nano-structure 
• Potential for multifunctionalty 

x3000 

10µm 

Ni 

Al 
Challenges 
• Role of nano- and micro-structure on sensitivity, exorthemicity 

under different insults 
• Processing routes to tune performance 
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Highly reactive composite materials 
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Co-PIs: Son, Cuitiño, 
Mukasyan 



Nanostructure role on chemical reactions 
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Free surfaces Nanolaminates 

Metallic glass laminates Porous samples 
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• Rapid heating of samples to ignition temperature (900 to 1400 K) 
• Constant enthalpy simulations of chemical reaction 
• Ni/Al EAM potential from Mishin et al. Phil. Mag. 89, 3245 (2009) 

Reactions in bulk nanolaminates 
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Cherukara, Guda & Strachan, Phys. Rev. B (2012) 
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Role of extended defects 
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Cherukara, Guda and Strachan, Phys. Rev. B (2012) 
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Role of extended free-volume defects 
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Explore novel device concepts 

21 

Conductive bridging RAM devices 
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NSF: cyber-enabled predictive models for polymer nanocomposites: multiresolution 
simulations and experiments 

•Ultimate mechanical properties of 
nanocomposites 
•Poly-imides and PMMA with CNTs and 
graphne 

•Prediction of onset of irreversible deformation and 
damage propagation in epoxy formulations 
•Continuous carbon fiber reinforced composites 

Boeing – Purdue: atoms to aircraft 

www.newairplane.com Co-PIs: Pipes, Koslowski, Raman, Caruthers 

Polymer composite projects 
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NPT MD 50 ps 

End of simulation? 
Multistep MD 

relaxation 

Create bonds 
between pairs 

Reactive pairs? 

STOP 
Y 

N 

N Y 

Li & Strachan, Polymer (2010) 

Molecular structure of thermoset polymers 
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DGEBA 

33DDS 

Simulations with Dreiding  
+ charge-equilibration 

Create simulation cell with desired number 
of epoxy and curing agent molecules 
MD procedure to mimic the curing process  



300 350 400 450 500 550 600 650
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

20%

55%
40%

71%Tg=377 K

System: (256, 128)
Cooling: 10K/200ps

De
ns

ity
 (g

/cm
3 )

Temperature (K)

Tg=450 K

86%

0 20 40 60 80 100
300

350

400

450

500

550

27

350

400

177

500

277

227  

127  

 T
g ( 0C)Tg

 (K
)

Conversion (%)

Adjusted experimental data

77  

0 20 40 60 80 100
0

1

2

3

4

Yo
un

g's
 m

od
ul

us
 (G

Pa
)

Conversion (%)

Experimental

Young’s modulus 

Glass transition temperature 

0 20 40 60 80 100
0

50

100

150

200

250

Fl
ow

 s
tre

ss
 (M

Pa
)

Conversion (%)

Cooling rate:10K/200ps
Strain rate: 5x108 s-1

Present

Experimental ultimate 
strength(static)

Flow stress 

Li and Strachan, Polymer 2010, 2011 

Properties vs. conversion degree 
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EPON862/DETDA 
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Chunyu Li et al. Polymer (2012) 

BGEBA/3,3DDS 

Rate effects in polymer properties 
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Li and Strachan, Macromol. 44, 9448–9454 (2011). 
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Processing and properties of thin films 
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C. Li, A. Browning, S. Christensen, and A. Strachan, Composites Part A (2012)  

Polymer/graphite nanocomposites 
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Additional resources online 
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• nanoHUB topics page on MD 
• https://nanohub.org/topics/MD  

 
• Short and full courses on predictive simulations and MD 

• nanoHUB-U course “Atoms to Materials”: https://nanohub.org/groups/u  
• Lecture series on MD simulations:  http://nanohub.org/resources/5838 

 
• Online MD simulations 

• nanoMATERIALS simulation tool: https://nanohub.org/tools/matsimtk  
• PolymerModeler: https://nanohub.org/tools/polymod  
• nanoMATERIALS nanoscale heat transport: https://nanohub.org/tools/nmstthermal  

https://nanohub.org/topics/MD
https://nanohub.org/groups/u
http://nanohub.org/resources/5838
https://nanohub.org/tools/matsimtk
https://nanohub.org/tools/polymod
https://nanohub.org/tools/nmstthermal


 
 

Online simulations at nanoHUB 
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Thanks 
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