Introduction to molecular dynamics

nano101 Lectures – Network for Computational Nanotechnology

Ale Strachan

strachan@purdue.edu School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA

Materials are everywhere

Structural materials *http://www.boeing.com/commercial/*787family/

Pharmaceuticals

Kwong, Kauffman, Hurter & Mueller Nature Biotechnology, 29, 993 (2011)

Nanoelectronics "The High-k Solution", Bohr, Chau, Ghani, and Mistry http://www.spectrum.ieee.org/oct07/5553

Ale Strachan – Introduction to MD simulations

Molecular materials

Ceramics & semiconductors

		*********	********	*******	********

			*******	*******	*******
********				*******	
*********	*********			*******	*******
********	**********			1 a a 1 a 6 a a	*******
********				********	******

********	*********			******	*******
********				*******	

*********			********		*******
				*******	********
		********	*******	********	

Metals

- Late 1500's to early 1800's: Classical mechanics Galileo, Newton, Legendre, Hamilton, ...
- Second half of 1800's: Statistical mechanics Gibbs, Maxwell, Boltzmann, ...
- 1905-1926: Quantum mechanics
 Plank, Bohr, Dirac, Schrödinger, Dirac, ...

Maxwell

Boltzmann

Schrödinger

Dirac

- 1957: Molecular dynamics Alder and Wainwright
- 1964-1965: Density functional theory Kohn, Hohenberg, Sham: density functional theory
- 1980's-present: Predictive simulations
 Extensions to classical mechanics
 Accurate approximations for DFT
 Accurate interatomic potentials for large-scale MD

Basic physics & approximations

Dynamics of atoms: Classical (Newton's) mechanics

$$F_i = m_i a_i$$

Force between atoms originates from the electronic structure Time independent Schrodinger Eq.

$$H\psi = E\psi$$

Electronic and atomic processes

Initial condition $\{R_i\} \ \{V_i\}$

Time evolution

 $\hat{R}_i = V_i$ $\dot{V}_i = \frac{F_i}{M_i}$

Energy & forces

 $H\psi = E\psi$

 $F_i = -\nabla_{R_i} E(\{R_i\})$

Molecular dynamics

So ... what is MD?

Follow the dynamics (motion) of all the atoms in your material

Numerically solve classical equations of motion (Newton's):

Approximation

$$\vec{F}_i = m_i \vec{A}_i$$
 or $\begin{cases} \vec{R}_i = V_i \\ \dot{\vec{V}_i} = \frac{\vec{F}_i}{M_i} \end{cases}$

Forces on atoms come from the interaction with other atoms:

Total potential energy

- Eigenvalue in the time-independent Schrodinger Eq.
- An empirical potential energy function

•

Predicting the future with MD

$$R_{i}(t + \Delta) = R_{i}(t) + V_{i}(t)\Delta t$$

$$V_{i}(t + \Delta t) = V_{i}(t) + \frac{F_{i}(t)}{M_{i}} \Delta t$$
Euler method

Verlet algorithm: Taylor expansion of positions with time

$$R_{i}(t + \Delta t) = R_{i}(t) + \dot{R}_{i}(t)\Delta t + \frac{1}{2}\ddot{R}_{i}(t)\Delta t^{2} + \frac{1}{6}\ddot{R}_{i}(t)\Delta t^{3} + O(\Delta t^{4})$$
$$R_{i}(t - \Delta t) = R_{i}(t) - \dot{R}_{i}(t)\Delta t + \frac{1}{2}\ddot{R}_{i}(t)\Delta t^{2} - \frac{1}{6}\ddot{R}_{i}(t)\Delta t^{3} + O(\Delta t^{4})$$

Sum two equations:

$$R_{i}\left(t+\Delta t\right) = 2R_{i}\left(t\right) - R_{i}\left(t-\Delta t\right) + \ddot{R}_{i}\left(t\right)\Delta t^{2} + O\left(\Delta t^{4}\right)$$

Simple MD simulations

Ale Strachan – Introduction to MD simulations

Nano-engineering to control thermal transport

Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).

입다

NANOHUB

Role of size and interfaces

Role of superlattice period

- Decreasing SL period reduced thermal conductivity up to a minimum size
- Further reduction increases k (phonons see material as homogeneous)
 Role of specimen length
- Reducing specimen length affects the thin film SL's more dramatically
- For small specimens thin film SL's can have lower thermal conductivity of their nanowire counterparts

Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).

Nano-engineering for mechanical response

Deformation of a polycrystalline metal

Platinum yield stress vs. grain size

Hojin Kim and A. Strachan, unpublished

Ale Strachan – Introduction to MD simulations

Nano-engineering energetic materials

Highly reactive composite materials

Attractive properties

- High-energy density
- Significant ability to tune properties via micronano-structure
- Potential for multifunctionalty

Al

k3000 μμμ Challenges

- Role of nano- and micro-structure on sensitivity, exorthemicity under different insults
- Processing routes to tune performance

Ni

Co-Pls: Son, Cuitiño,

Mukasyan

Nanostructure role on chemical reactions

Nanolaminates

Free surfaces

Reactions in bulk nanolaminates

- Rapid heating of samples to ignition temperature (900 to 1400 K)
- Constant enthalpy simulations of chemical reaction
- Ni/Al EAM potential from Mishin et al. Phil. Mag. 89, 3245 (2009)

Cherukara, Guda & Strachan, Phys. Rev. B (2012)

Role of extended defects

NANOHUB

Role of extended free-volume defects

Explore novel device concepts

Conductive bridging RAM devices

Polymer composite projects

NSF: cyber-enabled predictive models for polymer nanocomposites: multiresolution simulations and experiments

Ultimate mechanical properties of nanocomposites
Poly-imides and PMMA with CNTs and graphne

Boeing – Purdue: atoms to aircraft

Prediction of onset of irreversible deformation and damage propagation in epoxy formulations
Continuous carbon fiber reinforced composites

Co-PIs: Pipes, Koslowski, Raman, Caruthers

www.newairplane.com

Molecular structure of thermoset polymers

Create simulation cell with desired number of epoxy and curing agent molecules MD procedure to mimic the curing process

Properties vs. conversion degree

Rate effects in polymer properties

BGEBA/3,3DDS

Chunyu Li et al. Polymer (2012)

Processing and properties of thin films

NANOHUB

Polymer/graphite nanocomposites

C. Li, A. Browning, S. Christensen, and A. Strachan, Composites Part A (2012)

Ale Strachan – Introduction to MD simulations

Additional resources online

- nanoHUB topics page on MD
 - https://nanohub.org/topics/MD
- Short and full courses on predictive simulations and MD
 - nanoHUB-U course "Atoms to Materials": <u>https://nanohub.org/groups/u</u>
 - Lecture series on MD simulations: <u>http://nanohub.org/resources/5838</u>
- Online MD simulations
 - nanoMATERIALS simulation tool: <u>https://nanohub.org/tools/matsimtk</u>
 - PolymerModeler: https://nanohub.org/tools/polymod
 - nanoMATERIALS nanoscale heat transport: <u>https://nanohub.org/tools/nmstthermal</u>

Online simulations at nanoHUB

Ale Strachan – Introduction to MD simulations

Thanks

National Science Foundation

NANOHUB

PURDUE

