

Building College-University
Partnerships for Nanotechnology
Workforce Development

Nanoparticle Synthesis and Applications

Outline

- Nanoparticle Synthesis
 - Colloidal Chemical Methods
 - Attrition
 - Pyrolysis
 - RF Plasma
 - Thermal decomposition
 - Pulsed Laser Method
- Some Nanoparticle Applications

Colloidal Methods

- Colloidal chemical methods are some of the most useful, easiest, and cheapest ways to create nanoparticles.
- Colloidal methods may utilize both organic and inorganic reactants.
- Typically, a metal salt is reduced leaving nanoparticles evenly dispersed in a liquid.
- Aggregation is prevented by electrostatic repulsion or the introduction of a stabilizing reagent that coats the particle surfaces.
- Particle sizes range from 1-200nm and are controlled by the initial concentrations of the reactants and the action of the stabilizing reagent.

Colloidal Methods

Examples: Gold

- A common method for preparing colloidal gold nanoparticles involves combining hydrogen tetrachloroaurate (HAuCl₄) and sodium citrate (Na₃C₆H₅O₇) in a dilute solution.
- Upon dissociation, the citrate ions (C₆H₅O₇³⁻) reduce Au³⁺ to yield 30-40 nm gold particles.

Half reaction equations:

- $Au^{3+(aq)} + 3e^{-} \rightarrow Au(s)$
- $C_6H_5O_7^{3-}(aq) + H_2O(I) \rightarrow C_5H_4O_4^{2-}(aq) + CO_2(g) + H_3O(aq) + 2e^-$

Example: Formation of Gold Nanoparticles

- Heat a solution of chloroauric acid (HAuCl₄) up to reflux (boiling). HAuCl₄ is a water soluble gold salt.
- 2. Add trisodium citrate, which is a reducing agent.
- 3. Continue stirring and heating for about 10 minutes.
 - During this time, the sodium citrate reduces the gold salt (Au³⁺) to metallic gold (Au⁰).
 - The neutral gold atoms aggregate into seed crystals.
 - The seed crystals continue to grow and eventually form gold nanoparticles.

Example: Formation of Gold Nanoparticles

Reduction of gold ions: $Au(III) + 3e^- \rightarrow Au(0)$

Colloidial Methods

- Examples: Molybdenum
 - 1-5 nm molybdenum nanoparticles can be created at room temperature by reducing MoCl₃ in a toluene solution in the presence of sodium triethylborohydride (NaBEt₃H).
 - Reaction equation:

$$MoCl_3 + 3NaBEt_3H \rightarrow Mo + 3NaCl + 3BEt_3 + (3/2)H_2$$

Colloidal Methods

Examples: Iron

- The TEM image to the right shows 3nm Fe nanoparticles produced by reducing FeCl₂ with sodium borohydride (NaBH₄) in xylene.
- Trioctylphosphine oxide (TOPO) was introduced as a capping agent to prevent oxidation and aggregation

TEM image of Fe nanoparticles

Colloidal Methods

Examples: Silver

- The reduction of AgNO₃ by NaBH₄ in aqueous solution can produce small diameter (<5nm) silver nanoparticles
- In one reported method, the reduction takes place between layers of kaolinite, a layered silicate clay material that functions to limit particle growth.
- Dimethyl sulfoxide (DMSO) is used as a capping agent to prevent corrosion and aggregation of the Ag particles.

Schematic illustration of the preparation of Ag nanoparticles on kaolinite.

R. Patakfalvi et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 45/54

Attrition

- Attrition is a mechanical method for creating certain types of nanoparticles.
- Macro or micro scale particles are ground in a ball mill, a planetary ball mill, or other size reducing mechanism.
- The resulting particles are separated by filters and recovered.
- Particle sizes range from tens to hundreds of nm.
- Broad size distribution and varied particle geometry.
- May contain defects and impurities from the milling process.
- Generally considered to be very energy intensive.

Attrition: Rotary Ball Mill

- A hollow steel cylinder containing tungsten balls and a solid precursor rotates about its central axis.
- Particle size is reduced by brittle fracturing resulting from ball-ball and ball-wall collisions.
- Milling takes place in an inert gas atmosphere to reduce contamination.

http://www.ktf-split.hr/glossary/image/ball_mill.gif

Attrition

Attrition Examples

Composition	Attrition technique	Grain size (nm)	Attrition time (h)
Fe-Co powders	Rotary ball mill	10-15	30
Fe	Vibratory mill	20	4
NiAl	Vibratory mill	12	100
Ni silicides	Vibratory mill	10-17	30
Fe-C	Horizontal ball mill	4.7	500
Fe ₃ Al	Vibratory mill	12.6	100

 ${\it Claudio\ L.\ De\ Castro,\ Brian\ S.\ Mitchell.\ Nanoparticles\ from\ Mechanical\ Attrition.}$

Outline

- Nanoparticle Synthesis
 - Colloidal Chemical Methods
 - Attrition
 - Pyrolysis
 - RF Plasma
 - Thermal Decomposition
 - Pulsed Laser Method
- Nanoparticle Applications

- History
- System Overview
- Aggregation and agglomeration
- Impact of oxygen flow
- Jet design
- Flame quenching
 - Nozzle quenching
 - Electrostatic Charging

Pyrolysis: Material Applications

Tires

Paints

Optical fibers

Inks

Makeup

TiO₂

Flowing aid

Images clockwise from top left:

- 1. Tire <www.Safercar.gov>
- 2. Paint cans http://www.ndhealth.gov/wm/PollutionPreventionAndRecyclingProgram/MercuryContainingDevicesProducts.htm
- 3. Optical Fibers https://lasers.llnl.gov/publications/photons_fusion/2009/january-february.php
- 4. Vitamans <www.fda.gov/AboutFDA/WhatWeDo/History/ThisWeek/ucm117726.htm>
- 5. Makeup https://pa-online.pa.gov.sg/NASApp/sdsol/sdsol/common/Bring_Out_Best_In_You.htm
- 6. Ink Quil < http://www.orovalleyaz.gov/Town_Government/Town_Clerk/notary_services.htm>

Annual Production of Flame made materials

- Carbon black 8 million tons \$8 billion
- TiO₂ 2.5 million tons, \$5 billion
- SiO₂ 2.0 million tons, \$2 billion

Zwischen 4 und 20 Millimikron bewegt sich die Teilchengröße von

dem neuen Hilfsmittel für die Lackindustrie

Bitte, fordern Sie den neuen Prospekt an

DEGUSSA

ABT. RUSS . FRANKFURT/M.

History: Advertisement in Farbe & Lacke (1949) of SiO₂ nanoparticles

Between 4 to 20 millimicron is the particle size of **aerosil**, the new additive for the lacquer industry.

Please ask for the new brochure at Degussa, Carbon Black Dept., Frankfurt

Pratsinis, Sotiris E., <u>Functional Nanoparticles and Films Made in the Gasphase</u>. Nano Science and Technology Institute, Cambridge. 2008

- Pyrolysis is a popular method for creating nanoparticles, especially oxides. A precursor (liquid or gas) is forced through an orifice at high pressure and burned.
- The resulting ash is collected to recover the nanoparticles.
- Large volume of gas leads to high rate of material synthesis

Flame Spray Pyrolysis (FSP)

- Versatile
- Large Variety of precursors
- Controllable
- Scalable

Mädler et al., J. Aerosol Soc. 33, 369-389 (2002)

Pyrolysis: System Overview

Xiao Q., Yiguang J., Stefan B. and Nan Y. Synthesis of Y2O3:Eu Phosphor Nanoparticles by Flame Spray Pyrolysis. Princeton University, Princeton, NJ

Aggregates and Agglomerates:

- Aggregate An assemblage of particles rigidly joined together by chemical or sinter-forces.
- Agglomerate A loosely coherent assembly of particles and/or aggregates held together by weak interactions
- Current aerosol instruments cannot distinguish between them.

Agglomerate Formation Sequence

TiO₂ **Transient Hard Spherical Hard Agglomerates Soft Agglomerates** Monomers Agglomerates **Particles** Residence time

Images: O. Arabi-Katbi, SEP, P.W.Morrison, C.M. Megaridis (2001), Combust. Flame 124: 560.

Degree of agglomeration matters:

- Agglomerated
 - Fillers
 - Catalysts
 - Lightguide preforms
 - Particles for CMP
- Non-agglomerated
 - Pigments
 - Composites
 - Electronics
- Distinction between hard and soft agglomerates is largely empirical.
- Controlled agglomeration can minimize post-grinding and other costly separation techniques.

Pratsinis, Sotiris E., <u>Functional Nanoparticles and Films Made in the Gasphase</u>. Nano Science and Technology Institute, Cambridge. 2008

Non-Agglomerates

Hard Agglomerates

Soft Agglomerates

Effect of oxidant flow on flame

Silica producing flame (17 g/h)

Oxygen flow rate

Mueller, Kammler, SEP, Vital, Beaucage, Burtscher, Powder Technol., 140, 40-48 (2004)

Impact of oxygen

- Aids in combustion
- Provides chemistry in the reaction
- Acts as a dilutent, cools the flame, prevents agglomeration
- All of these variables can be decoupled by burner design. Which is cheaper than increasing oxygen flow.

Particle Size Controlled by O₂ Flow

 Excess oxygen makes the flame burn cooler resulting in smaller diameter particles

Mueller, Kammler, SEP, Vital, Beaucage, Burtscher, Powder Technol., 140, 40-48 (2004)

Particle Formation and Growth by Gas Phase Chemical Reaction, Coagulation, Sintering and Surface Growth:

Pratsinis, Sotiris E., <u>Functional Nanoparticles and Films Made in the Gasphase</u>. Nano Science and Technology Institute, Cambridge. 2008

Pyrolysis: Jet Design

Pyrolysis: Jet Design

Effect of Oxidant Composition on TiO₂ Morphology:

W. Zhu, SEP, ACS Symp. Ser. **622**, 64-78 (1996).

Pyrolysis: Nozzle Quenching

- Flame length is controlled by rapid quenching
- Prevents agglomeration by inhibiting growth processes in the early stages of growth.
- Provides precise control of particle size

Pyrolysis: Nozzle Quenching

Nozzle Quenching controls flame length and particle size.

Pyrolysis: Nozzle Quenching

TiO₂ Particle Size Control by Nozzle Quenching

Pyrolysis: Electrostatic Charging

- Particle size can also be controlled by generating an electric field across the flame.
- A large electric field (hundreds of kV/m) is generated between two plate electrodes situated on opposite sides of the flame.
- Similar to nozzle quenching, the electric field limits particle growth by reducing the residence time in the high temperature region of the flame.
- In addition, the electric field charges the particles. This
 results in electrostatic repulsion between newly formed
 particles, preventing coagulation.

S. Vemury, S.E. Pratsinis, L. Kibbey, <u>Electrically-controlled flame synthesis of nanophase TiO₂, SiO₂, and <u>SnO₂ powders.</u> JMR, Vol. 12, 1031-1042. 1997.</u>

Pyrolysis: Electrostatic Charging

Pyrolysis: Advantages & Disadvantages

- Pyrolysis is a high yield method that can fulfill the strong demand for nanoparticles.
- Can be customized to produce unique nanoparticles.
- Broad distribution of particle sizes and morphology.

Outline

- Nanoparticle Synthesis
 - Colloidal Chemical Methods
 - Attrition
 - Pyrolysis
 - RF Plasma
 - Thermal Decomposition
 - Pulsed Laser Method
- Nanoparticle Applications

RF Plasma Synthesis

- The starting material is placed in a pestle and heated under vacuum by RF heating coils.
- A high temperature plasma is created by flowing a gas, such as He, through the system in the vicinity of the coils.
- When the material is heated beyond its evaporation point, the vapor nucleates on the gas atoms which diffuse up to a cooler collector rod and form nanoparticles.
- The particles can be passivated by introducing another gas such as O₂.
- In the case of Al nanoparticles the O₂ forms a thin layer of AlO₃ around the outside of the particle inhibiting aggregation and agglomeration.
- RF plasma synthesis is very popular method for creating ceramic nanoparticles and powders
- Low mass yield.

RF Plasma Apparatus

Illustration of apparatus for the synthesis of nanoparticles using an RF-produced plasma.

Thermal Decomposition

- Thermal decomposition is the chemical decomposition of a substance into ins constituents by heating.
- A solid bulk material is heated beyond its decomposition temperature in an evacuated furnace tube.
- The precursor material may contain metal cations and molecular anions, or metal organic solids.
- Example: $2\text{LiN}_3(s) \rightarrow 2\text{Li}(s) + 3\text{N}_2(g)$
- Lithium particles can be synthesized by heating LiN₃ in a quartz tube under vacuum.
- When heated to 375°C the nitrogen outgases from the bulk material and the Li atoms coalesce to form metal nanoparticles.

Thermal Decomposition Apparatus

Outline

- Nanoparticle Synthesis
 - Colloidal Chemical Methods
 - Attrition
 - Pyrolysis
 - RF Plasma
 - Thermal Decomposition
 - Pulsed Laser Methods
- Nanoparticle Applications

Pulsed Laser Methods

- Pulsed Lasers have been employed in the synthesis silver nanoparticles from silver nitrate solutions.
- A disc rotates in this solution while a laser beam is pulsed onto the disc creating hot spots.
- Silver nitrate is reduced, forming silver nanoparticles.
- The size of the particle is controlled by the energy in the laser and the speed of the rotating disc.

Pulsed Laser Apparatus for Ag Nanoparticles

Apparatus to make silver nanoparticles using a pulsed laser beam that creates hot spots on the surface of a rotating disk. [Adapted from J. Singh, Mater. Today 2, 10 (2001).]

Nanoparticle Applications: ZnO

- Zinc Oxide has opaque and antifungal properties.
- Used as UV blocking pigments in sunscreens, cosmetics, varnishes, and fabrics
- Incorporated in foot powders and garden supplies as an antifungal.
- ZnO nanowires can improve the elastic toughness of bulk materials

Nanoparticle Applications: TiO₂

- Titanium Dioxide is used as an inorganic white pigment for paper, paints, plastics, and whitening agents.
- TiO₂ nanoparticles are used as UV blocking pigments in sunscreens, cosmetics, varnishes, and fabrics.
- TiO₂ has unique photocatalytic properties that make it suitable for a number of advanced applications:
 - Self-cleaning glass and antifogging coatings
 - Photoelectrochemical cells (PECs)
 - Detoxification of waste water
 - Hydrolysis

Nanoparticle Applications: Fe

- 50-100nm Iron nanoparticles are used in magnetic recording devices for both digital and analog data.
- Decreasing the diameter to 30-40nm increases the magnetic recording capacity by 5-10 times per unit.

Nanoparticle Applications: Iron Oxide

- Iron Oxide nanoparticles have unique magnetic and optical properties.
- Iron oxide nanoparticles can be translucent to visible light while being opaque to UV light.
- Applications include UV protective coatings, various electromagnetic uses, electro-optic uses, and data storage.

Nanoparticle Applications: Iron Alloys

- Iron-platinum nanoparticles have increased magnetism and it is predicted that 3nm particle can increase the data storage capacity by 10 times per unit area.
- Iron-palladium nanoparticles 100-200nm in diameter have been shown to reduce toxic chlorinated hydrocarbons to nontoxic hydrocarbon and chloride compounds.

Nanoparticle Applications: Alumina

- Alumina (Aluminum Oxide) is used in Chemical Mechanical Polishing (CMP) slurries, as well as ceramic filters.
- Nano-alumina is used in light bulb and fluorescent tube coatings because it emits light more uniformly and allows for better flow of fluorescent materials.

Nanoparticle Applications: Ag

- Silver has excellent conductivity and has been used as an antimicrobial material for thousands of years.
- Silver's anti-microbial potential increase with increased surface area.
- Applications include biocides, transparent conductive inks, and antimicrobial plastics, and bandages.

Nanoparticle Applications: Gold

- Gold nanoparticles are relatively easy to produce compared to other types of nanoparticles due to its high chemical stability.
- Uses for gold nanoparticles are typically catalytic and include DNA detection and the oxidation of carbon monoxide.
- Gold has superior conductivity allowing gold nanoparticles to be used in various probes, sensors, and optical applications.

Nanoparticle Applications: Gold

- The First Response® home pregnancy test uses 1µm polystyrene sphere and 50nm gold particles coated with an antibody to human chorionic gonadotropin (hCG), a hormone produced during pregnancy.
- When urine containing hCG comes in contact with the polystyrene-gold-antibody complex, the nanoparticles coagulate into red clumps. Fluids pass through a filter where the clumps are caught yielding a pink filter.
- Suspended (un-coagulated) nanoparticles pass through the filter and no color change occurs.

Bangs, L. B. New Developments in Particle-based Immunoassays. Pure & Appl. Chem. Vol. 68, No 10 p 1873-1879. 1996

Nanoparticle Applications: Gold

Bangs, L. B. New Developments in Particle-based Immunoassays. Pure & Appl. Chem. Vol. 68, No 10 p 1873-1879. 1996

Nanoparticle Applications: ZrO

- Zirconium Dioxide nanoparticles can increase the tensile strength of materials when applied as a coating.
- This has many possible applications in wear coatings, ceramics, dies, cutting edges, as well as piezoelectric components, and dielectrics.