Nanoscale Energy Transport & Conversion Laboratory

Thermal Transport in Nanostructures: A Multiscale Multiphysics Simulation Approach

Xiulin Ruan School of Mechanical Engineering and Birck Nanotechnology Center Purdue University ruan@purdue.edu

> Symposium on Nanomaterials for Energy Purdue University April 16, 2012

Outline

- Overview of Multiscale Multiphysics Simulations
- Thermal Transport and Thermal Rectification involving Interfaces
- Thermal Conductivity of Thermoelectric Bulk and Nanomaterials
- Enhancement of Optical Absorption in Nanotube/Nanowire Array Solar Thermal/Photovoltaic Materials
- Reduction of Heat Generation in Quantum Dot Photovoltaic Materials
- Summary and Acknowledgements

College

ngineerina

Length and Time Scales of Simulation Methods

 Parameters obtained in a smaller scale simulation can be fed into larger scale simulations.

Nanoscale Energy Transport & Conversion Laboratory

College

of Engineering

Multiscale Multiphysics Schemes

College

of Engineering

IRDUE

UNIVERSITY

Nanoscale Energy Transport & Conversion Laboratory

Outline

- Overview of Multiscale Multiphysics Simulations
- Thermal Transport and Thermal Rectification involving Interfaces
- Thermal Conductivity of Thermoelectric Bulk and Nanomaterials
- Enhancement of Optical Absorption in Nanotube/Nanowire Array Solar Thermal/Photovoltaic Materials
- Reduction of Heat Generation in Quantum Dot Photovoltaic Materials
- Summary and Acknowledgements

College

ngineerina

A. Vallabhaneni, B. Qiu, J.N. Hu, Y.P. Chen, A.K. Roy, and X.L. Ruan, in review.

Nanoscale Energy Transport & Conversion Laboratory

College of Engineering

Graphene Supported on Substrate

MD simulation domains

Reduction of Phonon Relaxation Time $\boldsymbol{\tau}$

Suspended graphene: τ below 70 ps

60

40

Phonon relaxation time (ps)

- TA, LA: Larger τ at smaller **k**, smaller ω
- Supported graphene: τ of all phonon branches largely reduced
 - Symmetry broken: mirror symmetry, translational symmetry
 - Most drop in ZA

College

of Engineering

Qiu and Ruan, Appl. Phys. Lett., in press, 2012.

20

30

Phonon frequency (THz)

10

ZA.s DZA.p

ZO.s ºZO.p

TA.s

o TA.p

ALA.p

Thermal Rectification in Asymmetric Graphene Nanoribbons

 Various thermal rectifiers

College

of Engineering

Thermal rectification factor: $\eta = |q_{LR} - q_{RL}|/q_{min}$

Hu, Ruan, and Chen, Nano Letters, 2009.

Outline

- Overview of Multiscale Multiphysics Simulations
- Thermal Transport and Thermal Rectification involving Interfaces
- Thermal Conductivity of Thermoelectric Bulk and Nanomaterials
- Enhancement of Optical Absorption in Nanotube/Nanowire Array Solar Thermal/Photovoltaic Materials
- Reduction of Heat Generation in Quantum Dot Photovoltaic Materials
- Summary and Acknowledgements

College

ngineerina

Bi₂Te₃ and PbTe Bulk and Nanostructures

Venkatasubramanian *et al*, Nature, 2001

Zhou *et al*, Appl. Phys. Lett 2005

 Bi₂Te₃: Layered structure similar to graphite. Van Der Waals and electrostatic interactions between quintuples.

Purkayastha et al, Adv. Mater. 2006

Poudel et al, Science, 2008

PbTe: cubic structure similar to NaCl

E College of Engineering

Teweldebrhan, Goyal, and Balandin, Nano Lett. 10, 1209, 2010.

Empirical Interatomic Potential Development

Nanoscale Energy Transport & Conversion Laboratory

College

Thermal Conductivity Reduction in Bi₂Te₃ Nanowires

- Bulk \rightarrow SMNW : 50% lower thermal conductivity
- SMNW → STNW: additional 35% lower thermal conductivity
- At 30 nm diameter, no significant reduction seen

College

of Engineering

Thermal Conductivity of Bi₂Te₃ Few-Quintuple Films

Spectral Phonon Relaxation Time and MFP

 The phonon relaxation time agrees very well with ultrafast pump-probe measurements.

College

of Engineering

Wang, Qiu, McGaughey, Ruan, and Xu, J. Heat Transfer, in preparation, 2012.

Outline

- Overview of Multiscale Multiphysics Simulations
- Thermal Transport and Thermal Rectification involving Interfaces
- Thermoelectric Properties of Bulk and Nanomaterials
- Enhancement of Optical Absorption in Nanotube/Nanowire Array Solar Thermal/Photovoltaic Materials
- Reduction of Heat Generation in Quantum Dot Photovoltaic Materials

Nanoscale Energy Transport & Conversion Laboratory

Summary and Acknowledgements

Solar Energy Harvesting and its Loss Mechanisms

http://deviceace.com/science/266/mor e-efficient-solar-cells-thanks-to-cntfilms-that-transmit-infrared-light.html

Loss mechanism 1: reflection

RDUE College ^{of} Engineering

http://mrsolar.com

- Three steps:
- (1) Absorption of solar photons and creation of electron-hole pairs;
- (2) Decay of hot carriers;
- (3) Diffusion of carriers to electrodes.

Loss mechanism 2: hot carrier relaxation

Ground State Ab Initio Methodology

Density functional theory to solve the Kohn-Sham equation

$$\left[-\frac{\hbar^2 \nabla^2}{2m} + V_{KS}\right] \varphi_{nk}(\mathbf{r}) = \varepsilon_{nk} \varphi_{nk}(\mathbf{r})$$

Fermi's golden rule – imaginary part of the dielectric function

$$\epsilon_{\alpha,\alpha}^{\prime\prime}(\omega) = \frac{4\pi^2}{\Omega\omega^2} \sum_{i \in VB, j \in CB} \sum_{\mathbf{k}} w_{\mathbf{k}} \left| p_{ij}^{\alpha} \right|^2 \delta(\epsilon_{\mathbf{k}j} - \epsilon_{\mathbf{k}i} - \omega)$$

 $p_{ij}^a = \langle \mathbf{k}j | p_a | \mathbf{k}i \rangle$ is the transition matrix element.

Kramer-Kronig transformation – real part of the dielectric function

$$\epsilon'(\omega) = 1 + \frac{4}{\pi} \mathbf{P} \int_0^\infty d\omega' \frac{\omega \epsilon'(\omega)}{\omega'^2 - \omega^2}$$

Benchmark Work on Bulk GaAs

H. Bao and X.L. Ruan, Int. J. Heat Mass Transfer 53, 1308-1312, 2010.

Nanoscale Energy Transport & Conversion Laboratory

- Electron peak: photon-electron interaction
- Phonon peak: photon-phonon interaction

College of Engineering

Ultra-Low Reflectance in CNT and Graphene Arrays

Samples provided by Timothy Fisher at Purdue

College

of Engineering

Vertical CNT and graphene arrays are excellent solar thermal absorbers.

Finite Difference Time Domain (FDTD) Simulations

- The absoptance increases with filling fraction
- The absorptance first increases and then decreases with increasing incident angle.
- The effective medium theory is not accurate.

College

of Engineering

Bao, Ruan, and Fisher, Optics Express, 18, 6347-6359, 2010.

Outline

- Overview of Multiscale Multiphysics Simulations
- Thermal Transport and Thermal Rectification involving Interfaces
- Thermoelectric Properties of Bulk and Nanomaterials
- Enhancement of Optical Absorption in Nanotube/Nanowire Array Solar Thermal/Photovoltaic Materials
- Reduction of Heat Generation in Quantum Dot Photovoltaic Materials

Nanoscale Energy Transport & Conversion Laboratory

Summary and Acknowledgements

Reduced Electron-Phonon Coupling in QDs

 Electron-phonon scattering is expected to be more difficult to occur in quantum dots because: (1) multiphonon process is a higher order process, (2) energy conservation is more difficult.

College

Engineering

Non-Adiabatic Molecular Dynamics

- MD with electron-phonon coupling calculations
- Trajectory surface hopping within time-dependent density functional theory (TDDFT)

NA coupling strength:

Engineering

$$\mathbf{d}_{km}\cdot\dot{\mathbf{R}}=-i\hbar\left\langle\hat{\varphi}_{k}\left|\frac{\partial}{\partial t}\right|\hat{\varphi}_{m}\right\rangle$$

College

Transition probability: $dP_{km} = \frac{b_{km}}{a_{kk}} dt$ $b_{km} = -\mathbf{Re}(a_{km}^* \mathbf{d}_{km} \cdot \dot{\mathbf{R}}); a_{km} = c_k c_m^*$

Band Structures and E-P Coupling Spectra for PbSe Quantum Dots

College

of Engineering

Bao, Habenicht, Prezhdo, and Ruan, Phys. Rev. B 79, 235306-1-7, 2009.

Nanoscale Energy Transport & Conversion Laboratory

Effects of Temperature, Size, and Shape

Bao, Habenicht, Prezhdo, and Ruan, Phys. Rev. B 79, 235306-1-7, 2009.

College ^{of} Engineering

Chen, Bao, Tan, Prezhdo, and Ruan, *J. Phys. Chem. C*, 2011.

The relaxation time is in the picosecond order. It decreases with increasing size and temperature.

Summary

College

- Multiscale multiphysics approaches bridging different length and time scales can link macroscopic level thermal properties with atomic level structure. It is essential for a fundamental understanding of structure-property relationship.
- Thermal transport control that is not possible at the bulk phase can be realized at the nanoscale, by taking advantage of boundary, interface, and quantum confinement effects.
- Nanoscale control of thermal transport may significantly enhance the efficiencies of energy transfer and conversion processes.

Acknowledgements

Ajit

• Graduate students:

Aaron

Bo

Hua

Kelly Bhagirath Liang

Nanoscale Energy Transport & Conversion Laboratory

Yan

Collaborators:

Tim Fisher, Ajit Roy, Xianfan Xu, Jayathi Murthy, Oleg Prezhdo, Yong Chen, Yue Wu.

Sponsors:

Air Force Office of Scientific Research (AFOSR), National Science Foundation (NSF), Cooling Technology Research Center (CTRC), Purdue Research Foundation, Purdue Computing Research Institute.

