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 Parameters obtained in a smaller scale simulation can be 
fed into larger scale simulations. 
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Multiscale Multiphysics Schemes 
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Vertical CNT-Si and GNR-Si Interfaces 

 Interfacial bonding is covalent. 

     GNR    Si 

 The thermal conductance is 
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A. Vallabhaneni, B. Qiu, J.N. Hu, Y.P. Chen, A.K. 
Roy, and X.L. Ruan, in review. 
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Graphene Supported on Substrate 
 MD simulation domains 

 
 
 
 
 

 Spectral Energy Density 
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Reduction of Phonon Relaxation Time τ 
 
 
 
 
 
 
 

 Suspended graphene: τ below 70 ps 
• ZA, ZO : Large τ  – weak coupling to in-plane phonons 

            Not huge – higher order anharmonic interactions limiting τ 
• TA, LA:  Larger τ at smaller k, smaller ω 

 Supported graphene: τ of all phonon branches largely reduced 
• Symmetry broken: mirror symmetry, translational symmetry 
• Most drop in ZA Qiu and Ruan, Appl. Phys. Lett., in press, 2012. 



College 
    of Engineering 9 

Thermal Rectification in Asymmetric Graphene 
Nanoribbons 

 Thermal rectification factor: 
η = |qLR-qRL|/qmin 

Hu, Ruan, and Chen, Nano Letters, 2009. 

 Various thermal 
rectifiers 
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 Bi2Te3: Layered structure similar to 
graphite. Van Der Waals and 
electrostatic interactions between 
quintuples. 
 
 
 
 

 PbTe: cubic structure similar to NaCl 

Bi2Te3 and PbTe Bulk and Nanostructures 

Teweldebrhan, Goyal, and 
Balandin, Nano Lett. 10, 1209, 
2010. 

~1 
nm 

Venkatasubramanian et al, 
Nature, 2001 

Poudel et al, Science, 2008 
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Empirical Interatomic Potential Development 

1 2 3 4 

E1 E2 E3 E4 

ab-inito calculations 

Configuration creation Energy surface 
generation 

Potential 
parameterization 
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Qiu and Ruan, Phys. Rev. B, 2009. 
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Thermal Conductivity Reduction in Bi2Te3 Nanowires 

• Diameter decreases  thermal conductivity decreases 
• Bulk  SMNW : 50% lower thermal conductivity 
• SMNW  STNW:  additional 35% lower thermal conductivity 
• At 30 nm diameter, no significant reduction seen 

Qiu, Sun, and Ruan, Phys. Rev. B, 83, 035312 (2011) 
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Thermal Conductivity of Bi2Te3 Few-Quintuple Films 

Temperature dependence 
Single quintuple film 

Thickness dependence 
Room temperature 

Qiu and Ruan, Appl. Phys. Lett. 97, 183107 (2010) 



College 
    of Engineering 15 

 The phonon relaxation time agrees very well with ultrafast 
pump-probe measurements. 

Spectral Phonon Relaxation Time and MFP 

Wang, Qiu, McGaughey, Ruan, and Xu, J. Heat Transfer, in preparation, 2012. 
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Solar Energy Harvesting and its Loss Mechanisms 
 Three steps:  
(1) Absorption of solar 

photons and creation of 
electron-hole pairs;  

(2) Decay of hot carriers;  
(3) Diffusion of carriers to 

electrodes. http://deviceace.com/science/266/mor
e-efficient-solar-cells-thanks-to-cnt-
films-that-transmit-infrared-light.html 

http://mrsolar.com 

 Loss mechanism 1: 
reflection  Loss mechanism 2: hot carrier relaxation 
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 Density functional theory to solve the Kohn-Sham equation 
 
 

 Fermi’s golden rule – imaginary part of the dielectric function 
 
 
 
 

 Kramer-Kronig transformation – real part of the dielectric 
function 

Ground State Ab Initio Methodology 
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Benchmark Work on Bulk GaAs 

H. Bao and X.L. Ruan, Int. J. Heat Mass Transfer 53, 1308-1312, 2010. 

Phonon 
peak 

Electron 
peak 

•  Electron peak: photon-electron interaction 
•  Phonon peak: photon-phonon interaction 

Conduction band (CB) 

Valence band (VB) 
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Ultra-Low Reflectance in CNT and Graphene Arrays 

Samples provided by Timothy 
Fisher at Purdue 
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 Vertical CNT and graphene arrays are excellent solar thermal absorbers. 
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Finite Difference Time Domain (FDTD) Simulations 

Bao, Ruan, and Fisher, Optics Express, 18, 6347-6359, 2010. 

• The absoptance 
increases with filling 
fraction 

• The absorptance first 
increases and then 
decreases with 
increasing incident 
angle. 

• The effective medium 
theory is not accurate. 
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Randomness Enhances Absorption! 

Bao and Ruan, Opt. Lett. 35, 3378-3380, 2010. 

Random Position 

Random Diameter 

Random Length 

Experiment 

Garnett et al., Nano Lett, 2010 
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Reduced Electron-Phonon Coupling in QDs 

 Electron-phonon scattering is expected to be more difficult to 
occur in quantum dots because: (1) multiphonon process is 
a higher order process, (2) energy conservation is more 
difficult. 
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Non-Adiabatic Molecular Dynamics 
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 MD with electron-phonon coupling calculations 
 Trajectory surface hopping within time-dependent 

density functional theory (TDDFT) 
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Band Structures and E-P Coupling Spectra for PbSe 
Quantum Dots 

Bao, Habenicht, Prezhdo, and Ruan, Phys. 
Rev. B 79, 235306-1-7, 2009. 

Sagar et al, PRB, 77, 235321 (2008) 
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Higher Excited State 

LUMO 

Effects of Temperature, Size, and Shape 

 The relaxation time is in the 
picosecond order. It decreases with 
increasing size and temperature. 

Bao, Habenicht, Prezhdo, and Ruan, Phys. 
Rev. B 79, 235306-1-7, 2009. 

Chen, Bao, Tan, Prezhdo, and Ruan, J. Phys. 
Chem. C, 2011. 
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Summary 
 Multiscale multiphysics approaches bridging different length 

and time scales can link macroscopic level thermal 
properties with atomic level structure.  It is essential for a 
fundamental understanding of structure-property 
relationship. 
 

 Thermal transport control that is not possible at the bulk 
phase can be realized at the nanoscale, by taking advantage 
of boundary, interface, and quantum confinement effects. 
 

 Nanoscale control of thermal transport may significantly 
enhance the efficiencies of energy transfer and conversion 
processes.  
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