Tight binding parameters of InAs

Yaohua P. Tan^{1,*}

¹School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana, USA, 47906 (Dated: May 28, 2015)

PACS numbers:

I. PARAMETERS OF UNSTRAINED INAS

Tight Binding modelsp3d5s*Interaction rangeFirst nearest neighbour (4 neighbours per atom)Target bandsHybrid functional calculations (HSE06) by VASP(v 5.2.3)Date obtainedAug 2014ReferenceYaohua P. TanNemo5 DatabaseVanue P. Tan

TABLE I: Description of the parameters

sp3d5s* Tight Binding parameters of Si are given by table II. The band structure and DOS of InAs are shown in 1 respectively. The effective masses and important bandedges are compared in table III.

T	InAs			
	5.6307 Å			
E_{aa}	2 302580			
E_{re}	8 370285			
E_{pc}	24 012691			
E_{dc}	16.373934			
λ_c	0.106031			
E_{sa}	-5.502749			
E_{na}	5.049144			
E_{s*a}^{pa}	22.668600			
E_{da}	13.949303			
λ_a	0.160931			
$V_{scsa\sigma}$	-1.481759			
Vs*cs*ao	-3.695365			
$V_{s_c s *_a \sigma}$	-1.782697			
$V_{s_c p_a \sigma}$	2.569215			
$V_{s*_c p_a \sigma}$	2.238088			
$V_{s_c d_a \sigma}$	-1.576994			
$V_{s*_c d_a \sigma}$	-0.254846			
$V_{p_c p_a \sigma}$	3.591088			
$V_{p_c p_a \pi}$	-1.148472			
$V_{p_c d_a \sigma}$	-0.337095			
$V_{p_c d_a \pi}$	2.167329			
$V_{d_c d_a \sigma}$	-0.871815			
$V_{d_c d_a \pi}$	1.351395			
$V_{d_c d_a \delta}$	-1.350150			
$V_{s_a s *_c \sigma}$	-1.151180			
$V_{s_a p_c \sigma}$	2.550779			
$V_{s*_a p_c \sigma}$	2.287784			
$V_{s_a d_c \sigma}$	-1.221846			
$V_{s*_a d_c \sigma}$	-0.380596			
$V_{p_a d_c \sigma}$	-0.913584			
$V_{p_a d_c \pi}$	1.947015			

TABLE II: Slater Koster type ETB parameters of bulk InAs. All presented parameters except for the lattice constants are in the unit of eV. The lattice constants are in Angstrom.

* Electronic address: tyhua020gmail.com

FIG. 1: Band structure and density of states of bulk InAs. ETB band structure agree with the HSE06 band structure (a), especially for bottom conduction bands (b) and top valence bands(c).

Target	DFT (eV)	TB (eV)	$\operatorname{error}(\%)$
$E_g(\Gamma)$	0.350726	0.347059	1.0
$E_g(X)$	2.052520	1.994117	2.8
$E_g(L)$	1.514575	1.445715	4.5
$Delta_{SO}$	0.391471	0.397117	1.4
$E_v(\Gamma)$	2.881317	2.903223	0.8
γ_1	19.027	18.986	0.214
γ_2	9.035	9.065	0.339
γ_3	8.011	7.997	0.174
m_{hh100}	0.344	0.358	3.905
m_{hh110}	0.625	0.636	1.874
m_{hh111}	0.835	0.848	1.525
m_{lh100}	0.026	0.026	0.003
m_{lh110}	0.026	0.026	0.020
m_{lh111}	0.025	0.025	0.276
m_{so100}	0.102	0.096	5.776
m_{so110}	0.102	0.096	5.780
m_{so111}	0.102	0.096	5.769
m_{c100}	0.022	0.022	0.252
m_{c110}	0.022	0.022	0.548
m_{c111}	0.022	0.022	0.185
m_{cXL}	1.458	1.404	3.712
m_{cXT}	0.232	0.211	9.072
m_{cLL}	1.904	1.927	1.208
m_{cLT}	0.114	0.123	7.493

TABLE III: Targets comparison of bulk InAs. Critical band edges and effective masses at Γ , X and L from TB and HSE06 calculations are compared. The E_g and Δ_{SO} are in the unit of eV; effective masses are scaled by free electron mass m_0 . The error column summarizes the discrepancies between HSE06 and TB results.