## Along for the Ride -

# reflections on the past, present, and future of nanoelectronics 

## Mark Lundstrom

lundstro@purdue.edu<br>Electrical and Computer Engineering<br>Birck Nanotechnology Center<br>Purdue University, West Lafayette, Indiana USA

"If someone from the 1950's suddenly appeared today, what would be the most difficult thing to explain to them about today?"
"I possess a device in my pocket that is capable of assessing the entirety of information known to humankind."
"I use it to look at pictures of cats and get into arguments with strangers."

Curious, by Ian Leslie, 2014.

## transistors

The basic components of electronic systems.

>100 billion transistors

## transistors

"The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research."
-- Ira Flatow, Transistorized!
http://www.pbs.org/transistor/

# "The most important moment since mankind emerged as a life form." 

## Isaac Asimov

(speaking about the "planar process" used to manufacture ICs -

- invented by Jean Hoerni,

Fairchild Semiconductor, 1959).


IEEE Spectrum Dec. 2007

## Integrated circuits

"In 1957, decades before Steve Jobs dreamed up Apple or Mark Zuckerberg created Facebook, a group of eight brilliant young men defected from the Shockley Semiconductor Company in order to start their own transistor business..."

Silicon Valley:
http://www.pbs.org/wgbh/americanexperience/films/silicon/

## a brief history of electronic devices...

From the vacuum tubes until today.

## vacuum tubes

## Vacuum Tube



Edison effect (Edison, 1883) cathode rays (Thompson, 1897) diode (Fleming, 1904) triode (De Forest, 1905)
http://en.wikipedia.org/wiki/Vacuum_tube

## vacuum tube electronics

## Golden age of radio 1935-1950


http://history.sandiego.edu/GEN/recording/imag es5/radio11.jpg

ENIAC
(1945, Mauchly and Echkert, U Penn)

http://en.wikipedia.org
17,468 vacuum tubes 1000 sq. feet of floor space 30 tons 150 KW
-50 vacuum tubes / day

## microelectronics

## "Nature abhors the vacuum tube."

-J.R. Pierce, Bell Labs

## invention of the transistor

Field-Effect Transistor Lilienfeld, 1925 Heil, 1935

transistor


Bardeen, Brattain, Shockley, 1947

## the point contact transistor

 1930's - 1940's

Bell Labs 1947

Lundstrom June 2015

## Purdue's semiconductor history


"Karl Lark-Horovitz is best known for turning the physics department of Purdue University, then a backwater school, into a research powerhouse. His personal research was in germanium and solid state science -and if anyone had had a chance of inventing the transistor before Bell, it was Lark-Horovitz. As it was, the Purdue physics lab was probably only six to twelve months behind."
http://www.pbs.org/transistor/album1/a ddlbios/lark.html

1941: WWII: Semiconductor diode rectifiers
http://www.computerhistory.org

## transistors


amplifier

digital electronics
Lundstrom June 2015

## nanotransistors



## What is nanotechnology?



## Billions of nanometers

A two meter tall male is two billion nanometers.

## A million nanometers

The pinhead sized patch of this thumb is a million nanometers across.

## Nanometers

Ten shoulder-to-shoulder
hydrogen atoms span 1
nanometer. DNA
molecules are about 2.5
nanometers wide.


Thousands of nanometers
Biological cells have diameters in the range of thousands of nanometers.


Less than a nanometers
Individual atoms are up to a few tenths of a nanometer, in diameter.

## Transistors get started....

## transistors



Sony TR-63
6-transistor
shirt pocket radio 1957

http://www.sony.net/Fun/SH/1-6/h2.html

# "The most important moment since mankind emerged as a life form." 

## Isaac Asimov

(speaking about the "planar process" used to manufacture ICs -

- invented by Jean Hoerni,

Fairchild Semiconductor, 1959).


IEEE Spectrum Dec. 2007

## "microelectronics"

integrated circuit


Kilby /Noyce, 1958/59

Intel 4004


Hoff (1971)
2300 transistors
$L=10$ micrometers
$L=10,000$ nanometers

## Frederick Terman

"This new electronics lives close to the frontiers of science, and requires a high level of technical competence. It grows by the development of new products. It is characterized by the transistor and other solid-state devices." Including a Appraisal of Electronics in the Midwest," Delivered at the luncheon of the 16th National Electronics Conference, Chicago, IL, October 12, 1960.

## discrete transistors


(Texas Instruments, ~ 2000)

## microelectronics



Lundstrpmteupe 2015

## CMOS microprocessor (65 nm technology)



| \# of transistors: | 1.328 B |
| :--- | :--- |
| \# in logic core: | 121 M per core |
| size of chip: | $435 \mathrm{~mm}^{2}$ |
| speed: | 3.4 GHz |
| supply voltage: | 1.25 V |
| power dissipation: | 150 W |
| amount of wire: | 6000 m |
|  | (source: ITRS) |

## outline

# Transistors 

Integrated circuits

The planar process

## Moore's Law

Today's challenges

The future

Lundstrom June 2015

## manufacturing integrated circuits:

## How a CPU is Made

(Global Foundries)
https://www.youtube.com/watch?v=qm67wbB5GmI

## optical lithography

Illumination source

mask
resist
oxide


## Moore's Law




Electronics, vol. 38, April 19,1965
"The number of transistors incorporated in a chip will approximately dounde eyery 24 months."
-- Gordon Moore, Intel co-founder

## diffraction



## Challenges: scaling



## exponential growth


from "Digital Immortal," by R.W. Lucky, New Republic, Nov. 8. 1999

## exponential growth



Lundstrom June 2015

## Moore's Law



## the dawn of $21^{\text {st }}$ Century electronics: 2007

CMOS transistors for logic
III-V transistors for RF A/D and D/A convertors Digital Signal processor Microprocessor ROM and FLASH memory

CMOS imager
Gyroscope MEMS devices
www.apple.com Magnetometer Microphone, speaker LCD display and touch screen

## a technological threshold?

- We Will End Disability by Becoming Cyborgs
- Robots Will Pave the Way to Mars
- Make Your Own World With Programmable Matter
- Digital Actors Go Beyond the Uncanny Valley
- The Rise of the Personal Power Plant
- Wearable Computers Will Transform Language
- Driverless Cars: Optional by 2024, Mandatory by 2044
- So, Where Are My Robot Servants?
"The Future We Deserve", IEEE Spectrum, Jan. 2015.


## The World Is Fast

## Recent Elections Missed the Biggest Challenge of All



Thomas L. Friedman

ShareTweetEmailSaveMore

We've just had a nonsense midterm election. Never has more money been spent to think so little about a future so in flux. What would we have discussed if we'd had a serious election? How about the biggest challenge we're facing today: The resilience of our workers, environment and institutions.

The world is fast. The three
biggest forces on the planet - the market, Mother Nature and Moore's Law - are all surging, really fast, at the same time.
globalization, is tying economies more tightly together than ever before, making our workers, investors and markets much more interdependent and exposed to global trends, without walls to protect them.

Moore's Law, the theory that the speed and power of microchips will double every two years, is, as Andrew McAfee and Erik Brynjolfsson posit in their book, "The Second Machine Age," so relentlessly increasing the power of software, computers and robots that they're now replacing many more traditional whiltendsfirbertolle29a5s, while spinning off new ones - all of which require more skills.

## The end of Moore's Law?



> Molecular Electronics Will Change Everything It's the dawn of a new technological revolution and the death of silicon."
> (archive.wired.com)

## Challenges: scaling



## Challenges: power

## personal electronics

## server farms


"Power, pollution, and the Internet," NY Times, Sept. 22, 2012

## Novel nanoelectronic devices

## Carbon nanotubes

## Graphene and 2D materials

## Spintronics

Topological insulators

## What will it mean?



## The future of electronics?



Scientists from tbe RAND Corporation bave created this model to illustrate bow a "bome computer" could look like in tbe year zoo4. However tbe necded tecbnology चill not be ccomomicall, feasible for the average bome. Also tbe scientists readily admit tbat the computer will require not get invented tecbnology to actually work, but so years from now scientific progress is expected to solve tbese problems. Witb teletype interface and tbe Fortran language, the computer will be easy to use.

Source: Popular Mechanics, 1954

## Predicting the Great Achievements of the 21st Century

## Looking at the technologies of 1914 might give a hint to the future

By Robert W. Lucky
Posted 25 Dec 2014 | 16:00 GMT

"Think of what we knew in 1915 of the achievements that would come to be listed in 2000. It's actually quite a bit.

1) Things that have already happened or are well under way.
2) Things we can anticipate - or should have.
3) Things we can't possibly predict.

## Wrap-up

Solid-state electronics (microelectronics / nanoelectronics) is one of the significant accomplishments in human history.

It transformed the $20^{\text {th }}$ Century.

It will have even greater impact in the $21^{\text {st }}$ Century.

But there are many hard, interesting, and important research challenges to address.

