

Low Temperature Plasmas: A Foundation for Future Technologies

Sergey Macheret Professor, School of Aeronautics and Astronautics

Low Temperature (Cold) Plasmas

Atom

- Plasmas (ionized gases), the "fourth state of matter", account for > 99.9% of the mass of the universe (dark matter aside).
- An energetic free electron collides with an atom, creating a positive ion and another free electron
- In cold plasmas, only 1 atom in a 1,000 – 10,000,000 is ionized, gas is cold (~room temperature), but electrons are very hot

Energetic

 $(\Xi \ge \Delta E)$

Free Electron

PURDUE

Cold Plasmas: Now

- Low Temperature Plasma (LTP) ionized gas in extreme thermodynamic nonequilibrium: room temperature gas, but very hot (10,000 – 40,000 K) electrons and very high populations of excited atomic and molecular states.
- 2012: 12% of US electricity was expended by lighting; ~2/3 of that was used in LTP lighting sources.
- The entire current and future information technology (IT) infrastructure owes its very existence and Moore's Law development (transistor number in a dense IC doubles every 2 years) to LTPs.
- Renewable energy sources such as solar cell arrays, cannot be economically produced without deposition and etching by LTPs.
- High efficiency jet engines, military and commercial, would not exist in the absence of thermal barrier coatings produced by LTPs.
- Spacecraft rely on propulsion from LTP thrusters.
- The estimated impact on the US economy **\$650 billion 1.2 trillion** today

Cold Plasmas: Societal Benefits

01—Plasma TV

- 02-Plasma-coated jet turbine blades
- 03-Plasma-manufactured LEDs in panel
- 04—Diamondlike plasma CVD eyeglass coating
- 05-Plasma ion-implanted artificial hip
- 06-Plasma laser-cut cloth
- 07—Plasma HID headlamps
- 08-Plasma-produced H, in fuel cell

- 09—Plasma-aided combustion
- 10—Plasma muffler
- 11—Plasma ozone water purification
- 12—Plasma-deposited LCD screen
- 13—Plasma-deposited silicon for solar cells
- 14—Plasma-processed microelectronics
- 15—Plasma-sterilization in pharmaceutical production

- 16—Plasma-treated polymers
- 17—Plasma-treated textiles
- 18-Plasma-treated heart stent
- 19—Plasma-deposited diffusion barriers for containers
- 20—Plasma-sputtered window glazing
- 21—Compact fluorescent plasma lamp

Ref:

"Plasma Science: Advancing Knowledge in the National Interest",

US National Research Council, 2007.

Breakthroughs Enabling Transformative Plasma Technologies

Plasma aerodynamic actuators (drag reduction, lift enhancement) and plasma-assisted combustion Plasmas in medicine (treatment of cancer, skin diseases, etc.), dentistry, food safety, and pharmaceutical industry

Electromagnetic metamaterials with microplasma elements enable novel vis/UV/THz sources and reconfigurable RF electronics (antennas, switches,

transistors)

Plasmas in liquids: from novel chemical reactors to underwater acoustics

•ns high-V pulses at MHz repetition rates – new physical principles + new hardware: 100 - 1,000x energy savings, stable plasmas at high electron and gas densities, and selective atomic/molecular manipulation •Nano/microfabrication shrinks devices from cm/mm to 1-5 μm. Ultrahigh electron density (10⁵-10⁸x that of conventional plasmas), 10-100x gas pressure, 10³-10⁴x power density, while keeping plasma cold, stable, controllable

2000S

Cold Plasmas for Aerospace

Aerodynamics and Flow Control

Cold microplasma arrays:

- Low-power tunable actuation
 → 30-50% higher fuel
 efficiency and range: military
 apps; est. \$15B savings in US
 airline industry
- aircraft noise suppression.

Hypersonics

X-51: Mach>5 for 210 sec (2013)

Plasma would increase hypersonic lift-to-drag ratio by 30-50% and would also enable scramjet ignition and stable combustion

Plasma-Assisted Combustion & Cold Plasma Micropropulsion

Nanosecond-pulsed cold plasma sources:
•Tune in/out specific molecular and atomic processes → Ultimate control of chemistry
•Chemistry activation and quenching control → less fuel, lower temperature, higher speeds
•Novel plasma microthrusters: enabling orbital control and maneuvering for nanosatellites

Food/Medical Technology

Purdue invention: 30-120 kV atmospheric cold plasma technology

Medical Device Sterilization

\$100B annual market opportunity

Kevin Keener

(Food Science & ABE)

device

Food Safety

Cold plasma extends shelf-life by 4 weeks \$140M annual loss prevention – fresh tomatoes

Industrial Processing

Food Oil Hydrogenation

- a. No catalyst required
- b. Trans-fat free

Plasma (N₂-H₂ gas)

c. Low energy

Corn/Soybean Oil

High

Dielectric

material

Voltage Electrode Food Oil \$28B annual market value

Plasma Enhanced CVD of Nanostructures

- PECVD is an efficient process to grow nanomaterials due to lower operation temperatures.
- Nanostructured devices enabled by PECVD:
 - Electrochemical Biosensors: Glucose detection limit of 0.3 μm, linear sensing range of 0.01–50 mM.
 - Supercapacitors: Higher power density, faster power delivery and better cycle to cycle stability

Microwave Plasma Chemical Vapor Deposition

MPCVD refers to Microwave Plasma Chemical Vapor Deposition. This is a technique used to grow carbon nanotubes, graphitic sheets and nanopetals, and graphene.

Procedure:

- Pure hydrogen introduced into reactor.
- Microwaves generate electric field, ionize gas and form plasma.
- Nitrogen and methane are introduced after reactor reaches steady state.
- Methane dissociates due to plasma, gets deposited on substrate, growth occurs.

Advantages of MPCVD over other CVD techniques:

- Energy efficient due to lack of electrodes.
- Stable and reproducible non-isothermal plasmas allow deposition for long time.
- Low temperature synthesis of nanomaterials.
- Potential to be scaled up to larger substrates.

Microplasma for Reconfigurable RF Electronics

Why it is important:

- Unprecedented bandwidth growth on a global scale leads RF engineers to think of creative solutions that move beyond the existing but inadequate "add-one-more-channel" solution to mobile handsets, satellite terminals, and base stations.
- Reconfigurable RF electronics enable total transceiver reconfiguration leading to new functions and optimal utilization of spectral resources at a minimum form factor and cost.
- The next 20-30 years will demand completely reconfigurable RF electronics.
- Existing solutions (solid state, ferroelectrics, MEMS) cannot handle high power and are susceptible to electromagnetic attacks
- Plasmas offer the ultimate platform for novel electronics.

Microplasma for Reconfigurable RF Electronics

Plasmas offer the ultimate platform for reconfigurable RF electronics. Vision: plasma-based switches, reconfigurable antennas, transistors.

Added benefit: can handle much higher power than semiconductor electronics. Impact:

•Reconfigurable antennas and amplifiers for future personal mobile devices

Modern airplanes (e.g. F-22) have ~100 antennas, strongly affecting design
 Miniaturizing and combining antennas would open new design space

In 1950s, semiconductors have killed the vacuum and gaseous (i.e. plasma) electronics. The gaseous/vacuum electronics is about to make a [limited] comeback.

Plasma Antennas

- As any conductor, plasmas can be used as antennas
- Can be rapidly turned on/off (no antenna when plasma is off)
- With microcavity plasmas, plasma antennas can be miniaturized
- Microplasmas incorporated into complex metallic/dielectric antenna structure can be used to reconfigure the antenna
- Lower gain than metallic antennas (due to lower electrical conductivity) not good
- Reduced cross-coupling between array elements good
- Lower high-frequency EM noise than metallic antennas (due to low electron collision frequency), thus potentially higher Figure of Merit: Gain/Noise

Plasma Antennas: Background

First patent on plasma antennas: J. Hettinger, "Aerial Conductor for Wireless Signaling and Other Purposes,"

US Patent 1,309,031, issued July 8, 1919 (filed June 4, 1917)

Surface wave driven plasma antenna

- RF driven, 30 MHz
- Argon at 1 Torr
- $n_e = 5.3 \cdot 10^{11} \text{ cm}^{-3}, \sigma = 28 \text{ S/m}$

Large, glow discharge plasma antennas

- 500 MHz–20 GHz performance similar to Cu wire
- Flexible plastic tubes for mechanical robustness
- Switchable
- Bulky

Macroscale discharge antennas: good, but bulky

New concept: conformal, tunable and switchable, antennas based on surface arrays of microplasmas

- Rapid (<1 μs) electronic switching; no antenna when powered off
- Frequency-tunable over several octaves – multiple antennas within one aperture
- Dramatic (100x in thickness) miniaturization of plasma antennas
- Conformal to any surface
- Can handle high power (EW)
- Multi-element design phased arrays possible
- Lower EM noise than that of metallic antennas

Potential for revolutionary antennas

Approved for public distribution AER201401002, 1-10-14

Microchannel Plasma Dipole Antenna

University of Illinois Laboratory for Optical Physics and Engineering

380 Torr Neon, 1.7 kVAC, 20 kHz

Microplasma Dipole Antenna

University of Illinois Laboratory for Optical Physics and Engineering

Multichannel plasma devices in glass: antenna reception measurements

Plasma antenna noise is 23 dB lower than that of copper wire:

•Low duty cycle and power

•Fundamental reasons

•Stochastic noise is determined by charge carrier scattering, but collision frequency in plasma is << that in metal, thus lower noise at high frequencies

Copper wire antenna performance

Plasma antenna resolves local FM stations

Electrically small µ-plasma antennas: low noise; resolve FM stations

Approved 10/18/2013 by DARPA for public release with distribution unlimited

Approved for public distribution AER201401002, 1-10-14

Plasma as Tunable Dielectric

$$\varepsilon_{r} = \left(1 - \frac{\omega_{p}^{2}}{\omega^{2} + v_{m}^{2}}\right) - j \cdot \frac{v_{m}}{\omega} \cdot \frac{\omega_{p}^{2}}{\omega^{2} + v_{m}^{2}}$$

The real part of permittivity is always <1 and can be negative! In fact, it can vary from $-\infty$ to 1. Recall that conventional dielectric have $\varepsilon_r > 1$. In this regard, plasma is unique.

By varying the gas pressure and the electron density, the collision frequency and the plasma frequency can be changed. Thus, plasma is a tunable dielectric! This can be practically useful.

The real (left) and imaginary (right) parts of the electrical permittivity for a wave frequency of 10 GHz. By changing the electron density and gas pressure (argon is assumed), ε ' can be tuned from positive to negative, and ε '' can be tuned over four orders of magnitude.

Microplasma Capacitor

$$\varepsilon_r = \left(1 - \frac{\omega_p^2}{\omega^2 + {v_m}^2}\right) - i \cdot \frac{v_m}{\omega} \cdot \frac{\omega_p^2}{\omega^2 + {v_m}^2}$$
$$\omega_p = \sqrt{\frac{e^2 n_e}{\varepsilon_0 m}} - \text{plasma frequency}$$

 v_m - electron collision frequency; n_e - electron number density

- Metal: $n_e \sim 10^{22-23}$ cm⁻³, $\sigma_M \sim 3 \times 10^5$ 3 × 10⁶ S/m, electron collision frequency $\sim 10^{15}$ s⁻¹, and at RF frequencies 100 MHz 10 GHz: skin depth $\delta \sim 0.7$ -30 μ m
- Plasma: $n_e \sim 10^{12-16}$ cm⁻³, $\sigma_p \sim 3 \times 10^{-1}$ 3 × 10³ S/m, electron collision frequency $\sim 10^{7-12}$ s⁻¹, and at RF frequencies 100 MHz 10 GHz: skin depth $\delta \sim 1-10$ cm
- Losses of RF energy in a plasma conductor are greater than those for a metallic conductor thus, lower gain
- But thermal EM noise is lower in plasma antennas than it is in metallic antennas. Two equivalent explanations:
 - − Since R_p ≤ δ, EM field is not in equilibrium with plasma, and therefore the effective noise temperature is < plasma temperature (Wort 1962, Manheimer 1994). This is similar to optically thin media where radiation escapes before reaching thermal equilibrium, so that the intensity is << that of blackbody.</p>
 - Thermal stochastic noise is due to electron scattering, but the electron scattering (collision) frequency in plasma is 3-8 orders of magnitude lower than it is in metals (Anderson 2002).

Plasma Tunable Parallel LC Resonator

Plasma Tunable Parallel LC Resonator

Measured change in resonant frequency (S11) from 340 MHz down to 162 MHz (52%) by increasing the GDT current up to 90 mA. Preliminary experiments: A. Semnani, D. Peroulis, (Purdue)

p≈100 mTorr, S11_Mag $n_{e} \approx 2.5 \times 10^{10} \text{ cm}^{-3}$ 0 -10 -20 161.95 MHz - DB(|S(1,1)|) -21.32 dB -30 0mÄ 3 10mA 3 → DB(|S(1,1)|) → 20mA_3 -40 340.76 MHz \times DB(|S(1,1)|) -48.11 dB 30mA 3 -50 0.3 200.3 600.3 400.3 Frequency (MHz)

Microplasma for Tunable RF Systems

- For low loss tangent, $\tan \delta \approx \frac{\sigma \omega}{\varepsilon_0 \omega_p^2} = \frac{\nu_m}{\omega} \le 10^{-3}$, and also for low EM noise, need very low collision frequency, thus low pressure (<10 mTorr)
- Need electron density >10¹¹ cm⁻³ for tunability in RF regime
- How can a microplasma with substantial electron density be sustained at p≤10 mTorr and d≤100 µm, i.e. at pd≤0.0001 cm × Torr???
- Additionally, it would be desirable to operate the microplasma at low voltage (<100 V).
- But the basic physics of electron impact ionization dictates high voltages (100s and 1000s V) and pd≥1 cm × Torr
- Need completely new way of plasma generation

New Plasma Generation Principle

- Electrons are generated at the cathode by field emission (FE) from Carbon Nanotubes (CNT) or similar emitters
- Ions are independently generated in tunneling field ionization (FI) at atomically-sharp tips of protrusions from the anode
- Electrons and ions move in the opposite directions, mix, and create a plasma
- Low pressure results in collisionless (ballistic) motion with no electron-impact ionization
- Plasma in general is not quasineutral
- Space charge affects FE and FI (coupling)

Field Emission and Field Ionization

Fowler-Nordheim Field Emission

$$j_{FN} = \frac{A_{FN}\beta^2 E^2}{\phi_w t^2(y)} \exp \left[-\frac{B_{FN}\phi_w^{\frac{3}{2}}v(y)}{\beta E} \right]$$

$$j_{FN} = \text{field emission current density}$$

$$E = \text{electric field}$$

$$\phi_w = \text{work function}$$

$$\beta = \text{field enhancement factor}$$

$$A_{FN}, B_{FN} = \text{Fowler-Nordheim constants}$$

$$v(y) \approx 0.95 - y^2; t^2 \approx 1.1$$

$$y = 3.79x 10^{-4} \sqrt{\beta E} / \phi_w$$

Field ionization:

(Used in atom-probe microscopy and mass spectrometry)

Building Purdue Plasma Preeminent Team

Sergey Macheret (AAE) **Plasma theory** Nanosecond-pulse plasma sources **Applications: from** plasma antennas to aerodynamics

Kevin Keener (ABE) High-V cold plasma Food safety Medical devices

Sally Bane (AAE) **Plasma-assisted** combustion and Aero flow control

Alina Alexeenko (AAE) Plasma modeling Plasma material processing **Microplasma**

> Allen Garner (NE) Pulsed power, **Biomedical** applications

Ahmed Hassanein

Plasma-materials

interactions

(NE)

(ECE)

Jonathan Poggie (AAE) – formerly USAF **Modeling of plasmas** and plasma aerodynamics

Alex Shashurin (AAE) Plasma propulsion, microplasmas, diagnostics, 2D materials

Tim Fisher (ME) Plasma CVD Nanofabrication

plasma-enhanced combustion and CVD

Dimitri Peroulis Microplasma for reconfigurable RF **RF/THz electronics**

Robert Lucht (ME)

Laser diagnostics,

including

